
SPI:
A Procedural Interface

for Electronic CAD Tool Integration*

P. De Worm, R. Severyns, L. Marent, A. Demar6e,
J. Cockxl pft. Reynaertl L. Claesen! H. De Manl p. Six

IMEC, Kapeldreef 75, 8-3001 Leuven, Belgium

Abstract

This paper describes the SPI Structure Procedural Interface to integrate elec-
tronic CAD tools. SPI is intended to be a standard interface for the exchange of
netlist information between CAD tools. SPI uses interprocess communication and
provides a set of utilities for expanding circuit descriptions (hierarchy and busses)
and making use of multiple editors. The interface fits within the global philosophy
for an open system architecture and therefore considerably simplifies tool integra-
tion besides making it more effective. The SPI Interface is not a framework, it
has no own database, no user interface nor a design management system, but it is
comgtlementary to a framework.

1 fntroduction
The Structure Procedural Interface SPf transferc structural information. The structure
(hierachical interconnection of components) is produced by primary design definition tools,
called structure producers (e.g., schematics editors, structure description languages, ...)
and is consumed by design verification tools, called structure consunxers (e.g., verification
tools, simulators, ...) to perform analysis on this data.
The basis of the Structure Procedural Interface SPI [Cock89,Cock90,Schu90] has been
developed in the ESPRIT 1058 project (partners: IMEC, Philips, EDC (formerly Silvar-
Lisco), INESC) and has been adopted successfully in other projects such as the CAD
Framework Initiative (CFI), Design Representation Procedural Interface working group.

*This research is sponsored by the JCF ESPRIT-5082 project of the EC
tEDC, Abdijstraat 34, 8-3001 Leuven
tEDC, Abdijstraat 34, 8-3001 Leuven
9Professor at K.U. Leuven
tlProfessor at K.U. Leuven



The SPI concept has been demonstrated in the CFI Integration Project at the 1990 Design
Automation Conference [CFI90a,CFI90b].
Further research is being performed in the Jessi-Common-Framework (JCF) project (ES-
PRIT 5082). SPI is the main integration mechanism for electronic design CAD tools, and
is also used in other ESPRIT projects (SPRITE, JESSI, ...).
In section 2 of this paper the key characteristics of the SPI interface are indicated. Sec-

tion 3 gives an introduction to the specification and the data model of the Structure
Procedural Interface. Also the SPI utilities will be described. In section 4 recent en-
hancements and related interface work are explained. Section 5 describes some of the
actual shortcomings. Finaly, ongoing work and conclusions are mentioned in section 6

and 7.

2 K.y Characteristics
SPI is a standard interface, with the following key characteristics:

o Direct communication

One of the main disadvantages of many current CAD tools is that communication
is via files. The representation of design information requires often different formats
and the need of cross-reference lists are necessary. This is extremely time consuming
in a verification phase where the feedback between design definition and design
verification is currently taking most of the designers time.

SPI avoids this problem using direct communication between the CAD tools. FiS-
ure I shows a typical design cycle without and with using SPI.

o Interactive feedback

SPI provides a direct interacti.ae feeilback, with mechanisms for highlighting, select-
ing and backannotating of the structural information, which results in a fast design
cycle and a tight integration.

o Environment independent

SPI is enaironment ind,ependent; it runs on every machine that supports UNIX and
TCP/P. This allows CAD tools to run on different machines and in their original
environments.

o Language independent

In the specification of the SPI communication protocol, only long integers and, char-
acter strings are used. This makes SPI language inilepenilenf . Any language with
these two data types can be used to implement the specifications (C, Pascal, Lisp,
Fortran). CAD tools written in diferent languages can therefore be integrated to-
gether.



r Transparent

A structure consumer does not need to know whether the netlist has been expanded,
merged, or comes from another process.

Figure 1: A typical design cycle without and with SPI.

Because of these characteristics, SPI poses few constraints on CAD tools. SPI supports
the integration of in-house as well as third party design tools provided that the source
code is available. Therefore, SPI can easily be integrated in existing CAD environments.
The structure producers have to implement the specified procedures, while the structure
consumers have to call these procedures. The effort to couple a structure consumer to
SPI is about 1 week, and 3 weeks for a structure producer. The difference in time is
because an editor has to implement all SPI functions, while a consumer has only to call
the SPI routines. Once the SPI Interface is integrated in a CAD tool, a lot of other CAD
tools which implemented SPI become accessible. T'-erefore. the SPI interface is said to
be open.

3 Structure Procedural fnterface
The specification of a Structure Procedural fnterface (including the data model) together
with software utilities provide a standard way for communication of netlist structure
among CAD tools and to support theft integration.

editor

netlist extraction

)(REF

netlist interface )(REF

tool

a.,

t)I
r
o
o

Ho
o
tro

'od
rt
d

'lt

diredly
via IPC

linked or
GCPTP)

RESI.JLTS
interpretation ?

editor

TOOL



3.1 Data Model
Communication between CAD tools requires a cortmon d,ata mod,el. Together with this
data model a proceiluml interface can be defined. The data on which the interface operates
are netlists. The SPI data model is illustrated in figure 2.
The SPI data model is compatible with the ECIP data model [Ecip88a,Ecip88b]. The
terminology used to describe netlists has been borrowed from the EDIF standard [EdifST].
A cell is a building block representing a part of the circuit. A cell communicates with
the outside world through its ports. A cell can either be a leaf cell or be composed
of instances of other cells. The ports of these instances and of the cell itself can be
connected. A set of connected ports is called a net. Connections of instance ports are
called internal connections. Connections of ports of the cell itself with instance ports are
called external connections. Nets and ports can have a width and thus become busses
(cables), respectivily bus ports.

Figure 2: The SPI netlist data model

The data model contains five objects (cells, instances, nets, ports and instance ports),
and is known as the *five box model".

3.2 The Speciffcation of the Structure Procedural Interface
SPI references to all structure objects by non-zero long integer numbers instead of names.
The names of the objects are only useful for the user. The specification of the Structure
Procedural Interface is written using C syntax and contains procedures

CELL
ic-cell

INSTANCE

PORT
ic-cell-termhal

is-part-of

INSTANCE PORT
ic-cell-termimlhterfaces-as

NET
ic-cell-rct

(Ecip data model terminolgy)

is-locued-k

is-located-h

is-part-of

is-cornected-to



o to control:
producer(s);

for setting up the data structure and initialization of the structure

r to request structure information: to get structure information from the producer;

o to request structure related information (attributes): to get attributes about objects
from the producerl

o for backannotation of structure related information: to add or modify structure
attributes in the structure producer from a structure consumer;

r to highlight structure objects: to highlight objects in graphical representation (e.g.,
schematics editor) or in textual form (e.g., textual editor);

o to request selection of a structure object: selection of an object by the user by
pointing to it, or by referencing it by namcl

o to ask for usernames of structure objects: to pass the username of an object.

Attributes are additional information associated with one of the five objects of the data
model. Attributes have a narne and a aalue. The name is represented as a character
string. The value can be a character string, or an integer or floating point number.

3.3 Utilities
The SPI utilities are software modules that call and/or implement the SPI functions and
that can be linked with an SPI editor and/or tool, and provide additional features.
The utilities include hierarchy and bus expansion, interprocess corununication, merging
of netlists from different producers into one netlist, a database that maintains informa-
tion about all cells defined in the different producers and a browser for highlighting and
selecting in hierarchical designs.

HEX : Hierarchy Expander
The hierarchy expander is a utility that provides a fl,attened circuit to a specific structure
consumer from hierarchical structure producers using information obtained via SPI calls.

BEX : Bus Expander
The bus expander is similar to the HEX module. It is a utility that generates a circuit
without busses (that is, all the busses are expanded) from a netlist producer supporting
busses to a structure consumer that only accepts simple nets.

Cellbroker
The cellbroker is a simple database that maintains and controls information about all
cells defined in the different producer(s). It can also be used to select the editor for each
cell if multiple versions of these cells are available in different editors. The cellbroker is a
server process accessible via remote procedure calls. See figure 3.



Switcher
The switcher can determine from the cellbroker in which editor a certain cell is located
and create an IPC link from the consumer to the correct producer. Figure 3 shows that
it is possible for a tool to communicate with different editors via the switcher.

Figure 3: Using multiple editors with the SPI Cellbroker and Switcher

Browser
This module is a software tool to browse through the design hierarchy during highlight
and select actions.

4 Recent enhancements

A number of extension and enhancements were added to the current version of SPI.

4.L Narning conventions in SPI
CAD applications exchanging structural information must also be able to exchange names

of design entities (cells, instances, nets, ports, attributes), mainly for backannotation to
the user. However, not all tools use the same naming schemel some tools use very simple
names, while other tools allows almost any character in names. Problems arise when some

editor generate names that can not be accepted by other editors or tools. Therefore, a
filter is needed to convert complicated names back and forth to simple names. A special

Cellbroker

Editor A

Editor R Switcher

Editor C

SPI

Tool
Verihcatioru
simulation



utility ("spinacon": SPI Name Conversion) [Seve89] is developped to decode and encode
complex names.

4.2 Controlling Netlist Expansion
Until now, it was not possible for a tool to decide at run-time what kind of netlist expan-
sion (HEX, BEX, HEX & BEX) should be applied by the SPI system. The tool developer
had to decide at the linking step of the tool which SPI library to link. Three libraries are
available, one that does no expansion, one that does the hierarchical expansion and one
that does bus expansion in addition to hierarchy expansion.
A new function has been provided to control the netlist expansion:

aoid SPlcontrol (mode)

The parameter mode can have one of the following values:

t SPI-NOEX : pcrform no hierarchy expansionl

o SPI-HEX : perform hierarchy expansion;

o SPI-BEX : perform bus expansionl

o SPI-HEXBEX : perform bus expansion in addition to hierarchy expansion.

The default mode, when the function SPlcontrol 0 is not used, is SPI-NOEX, i.e., no hi-
erarchy expansion. This routine serves as a switch that guides all subsequent SPl-function
calls to their respective tno-expansion'-, thex'-, 'bex'- or 'hexbex'- implementations.
The result is a new library that contains all the possible expansion methods. The imple-
mentation of the run-time controllable expansion is realised in such a way that it is fully
compatible with the existing SPI definitions. This means that the programmer does not
have to change anything to existing source code if he/she does not want to use this new
feature. It is now possible for a tool to decide at run-time what kind of netlist expansion
must be applied. This is especially useful when selective expansion is needed [Dema9O].

4.3 Exchange Layout information
The need to enable tools to obtain layout data and supply layout results in a manner
that it will be independent of the CAD system in which they will be used resulted in
the definition of a Layout Procedural Interface (LPD. The interface contains routines to
transfer technology data and layout information, a set of. selection routines and operation
routines. This interface is general enough so that many layout tools can use it [Rijn89,
Mar90a]. Figure 4 shows a design cycle with interprocess communication using SPI and
LPI.



Layout editor

LPI sPr

LPI sPt

compaction simulation

Figure 4: Interprocess communication using SPI and LPI.

4.4 Exchange Waveform information
Simulation tools with adequate functionality and high performance are required to meet
the increasing complexity of electronic systems. To achieve this goal, different simulator
tools can be integrated onto a simulation platform. Many simulators do exist, each tuned
for a specific application field using different data types (e.g., boolean, integer, real,
analog and digital values, ...) for representing the signal values. To interface between
different simulators, it must be possible to exchange simulation d,ata, status information
and commazd routines. The routines to exchange simulation data must be general enough
to support all the different data types and formats. Analogous with SPI, a Waveform
Pro'cedural Interface (WPI) is being defined. The interface contains routines to transfer
values for the signals, to start the simulator, and to get the resulting values of the signals
back to the controlling tool. The use of attributes to transfer the signal data will allow
that different simulation tools can be coupled using WPI [Clae90].

5 Shortcomings
The SPI interface is used intensively in IMEC to couple different simulation tools, syn-
thesis tools, module generation tools, . ... SPI has proven to be very effective, however
a number of shortcomings did appear [Schu89]. A number of these shortcomings will
be solved in the near future. A preliminary study of the deficiencies and enhancements
has been made. Solving these shortcomings, the new version of SPI must be upward
compatible.
The major shortcomings are discussed in the following subsections.



5.1 One way communication
The transfer of structure data is unid,ircctional, netlist information flows from editors
to tools. A tool cannot be both a 'consumer' and a tproducer' at the same time. A
bi-directional communication (read/write) would be needed for that. An example is the
following: a tool receives (read,s) the structure information with SPl-calls and does some
manipulations on this data. Then the tool sends (writes) the structure information to
another tool. Figure 5 shows such a bi-directional communication. Only the exchange
of structure related information, called attributes, goes in a bi-directional way between
structure producers and consumers using backannotation operations.

editor
databaee

producer

SPlin

TOOL

SPI out

conSumer

TOOL

80rvsr

client

Server

client

Figure 5: Bi-directional communication with SPI.

5.2 Synchronous communication
The implementation of the SPI routines does not allow asynchronous comnunication. In
the new version of the SPI interface, processes must provide asynchronous communication.
This means that one tool, after sending a request to another tool, must not wait until the
other tool has completed the task, but can execute other commands from the designer.



5.3 No buffering of data
SPI transfers the data one element at a time. It should be possible to exchange groups
of objects. Requests for information must therefore be powerful to get all information
of an object. This will speed up the transfer of large designs in case of interprocess
communication. Although requests to get information about one element should still be
supported.

5.4 High number of communication routines
The current SPI routines are at a low leuel. New higher level functions that are more
generic have to be defined. However, this implementation must still be compatible with
the existing specification.

5.5 Fault handling and error return status
Fault handling and crror return status are not available. In the current implemertal,iun,
the processes can hang if a problem occurs.

5.6 Exchange of other views
There is a need for the exchange of other information views than netlists. The future
implementation shall include additional views as listed below.

o Layout information.

o Waveform information.

o Signal Flow Graph (SFG) information (for high level synthesis).

o Parameterised netlist information: structural parameters are not allowed in SPI.
For the moment, producers (editors) must do the parameter expansion themselves.

The Layout Procedural Interface and the Waveform Procedural Interface are already
defined and will be implemented as part of the activities in the JCF project.

6 Work going on
The work on procedural interfaces is continuing in the JESSl-Common-Framework project
(ESPRIT project 5082).
Future work will first concentrate upon research on improved mechanisms for interpro-
cess communication [Sarm90,Mar9Ob,Mar90c]. Topics like bi-directional communication,
synchronous/asynchronous interprocess corrununication, buffering and the enhancement
of the performance of RPC mechanism will be taken into account.
Additional work will be done on the integration of new views in SPI.



Also feasibility studies to integrate SPI in the existing frameworks like Nelsis [Nels9O],
the NMP-CADLAB Framework [CADL9O], or newly developed frameworks will be inves-
tigated.

7 Conclusion
In this paper, a practical and open interface for interactive CAD tool integration has been
presented.
A set of existing CAD tools has been successfully integrated with SPI within the context
of the ESPRIT-1058 project. Thanks to the integration, the CAD tools provide a true
design assistant for the development of flexible VLSI modules.
SPI is an open system because as few as possible constraints have been put on the tools
themselves to be able to integrate already existing tools. Once a CAD tool is integrated,
a lot of other CAD l,ools becomes available.
The SPI concept also proves to be a valuable input for the CFI Procedural Interface and
for JESSI-CAD-Frame.
To promote the standard, SPI is put in public domain.

8 Acknowledgements
The work described in this paper has been performed in the scope of the ESPRIT Project
1058 with the following participants: IMEC (Belgium, Prime Contractor), INESC (Portu-
gal), Philips-Natlab (The Netherlands) and EDC (formerly Silvar-Lisco Belgium). Many
people have contributed to the success of the project, and we thank in particular I. Bolsens,
T. Claes, K. Croes, P. Das, W. De Rammelaere, P. Johannes, T. Kostelijk, P. Lauwers,
B. Lynch, G. Mole, H. Neto, P. Odent, P. Petroni, J. Raposo, L. Rijnders, G. Schrooten,
J. P. Schupp, E. Vanden Meersch, E. Willems, for many discussions and for their contin-
uing efforts in the integration with SPI.

References

ICock89]

ICock90]

ISchue0]

ICFIe0a]

J. Cockx, SPI uersion 2.4, EDC (Silvar Lisco), 18 September 1990.

J. Cockx, RPC Compiler 1.7,EDC (Silvar Lisco), 2 May 1990.

J. P. Schupp, J. Cockx, L. Claesen, H. D; Mal, SPI An Open Interface
Integrating Highly Interactiue Electronic CAD Tools, IMEC vzw, VSDM
division, EDAC-90, January 1990.

The CFI DAC '9A Scalar Netlist Programming Interface Specif,cation, CFl,
30 January 1990.

Draft Proqtosal Inter-Tool Communication Procedural Interface, Version
0.1/, Document Number 52, CFI, 8 October 1990.

IcFreob]



IEcip88a]

IEcip88b]

lEdifsTl

ISchu89]

ISeveS9]

[Dema90]

[Rijn8e]

[Mar90a]

IClae90j

ISarm90]

[Mar90b]

IMar90c]

INels90]

IcADLe0]

The ECIP Conceptual Modelling Working Group, ECIP Conceptual Model
of Electroni.c Products, November 7th, 1988.

D. Chalmers, F. Meys, Successful CAD Integration Neeils A Stanilard, Con-
ceptual Model, Proceedings of the 5th Annual ESPRIT Conference, Brus-
sels, November 14-17r 1988, pp. 170-185.

Electronic Industries Association, EDIF - Electronic Design Interchange
Fonnat Version 2 0 0, Washington D.C., May 1987.

J. P. Schupp, An Eualuation of the SPI Interface, IMEC vzw, VSDM
division, June 1989.

R. Severyns, Naming Conaenti,ons in SPI and in Tools Communicating
with SPI,Imec Document, October 1989.

A. Demar6e, Controlling Netlist Erpansion in SPI, Imec Document, De-
cember 10, 1990

L. Rijnders, Procedural Interface for Transferring Layout Information,,
Imec Document, September 1990.

L. Marent, Layout Proced,ural Intertace, User's Manualr lmec Document,
September 1990.

T. Cla,es, Ontwikkeling aan een Logmos Preprocessor XLV, KIHL, Diepen-
beek, 1990.

H. Sarmento,, Ghost/Spook User Interface in the PACE framework, IEEE
International Conference on Computer-Aided Design, 1990.

L. Marent, Principles and Requirements of Interprocess Communication
for CAD tools,lmec Document, July 1990.

L. Marent, A Test Vehicle for Interprocess Communicationr lmec Docu-
ment, October 1990.

The Nelsis Framework, Release 4, TU Delft, DIMES Design and Test
Centre, May 1990.

NMP - CADLAB Framework Release /..1, CADLAB, 1990.


