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Abstract.
In this pa.per a novd and practical methodology of ttd.esign for verifiability" for the formal
correctness verification of tligital (VLSI) designs is presented. This methodology aims at bridging
the gap from transistor switc,h level circuits, as obtained from circuit extractionr up to high
level specifications. TbLe SFG-TTacing verification methoilology inherits its power from the
exploitation of the in-h.erent algorithmic information the high level (signal flow graph level)
specifications. Given the fact that the circuit d.esigner provides the appropriate reference signals

and mapping functions, the methodology has already successfully been e:cperimented on the full
formal verification of VIrSI circuits of more than 32.000 transistors as extracted from the layout.

1 Introduction.

The possibilities offered by the steadily increasing complexities offered by the VLSI tech:rology
has resulted in the fact that more and more complex systems can be build on integrated circuits.
The realization of complex systems has become design limited instead of technology limited. The
chalenge is indeed to design electronic systems fird time rigftf. This is required to avoid costly
redesigns, and delays in market introduction of new products. These economic reasons are the
drive behind a lot ofeforts to check the correctness ofdesigns with respect to their specifications.

Traditionally simulation (at multiplelevels of design abstraction) is being used, and is stan-
d.ard industrialpractice, to verify the correctness of electronic designs before they are prod.uced..

It is however very well known that for even mod.erately sized circuits it is not possible to try out
all possible input excitations in these simulations, due to the combinatorial explosion problem in
the number of possible patterns. Therefore designers have to chose an appropriate subset of in-
put stimuli for verification by simulations. This method however leaves open the possibilities for
unfiscovered. design errors. This motivates the need. for analytic verification techniques that are

input pattern independent. The technique of static timing aerification is an analytic tech:o.ique

that has currently gained. industrial acceptance for the verification of the speed performance of
circuits.
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The analytic verification of the behaviorcl comvctneu of digital designs with respect to their
specifications is however still in its infancy. It is mainly hindslsd by the problems of combina-
torial e:cploision in hanrlling the mathematical formulag describing the systems at hand.

Formal correctness verification techniques have been investigated alreatly for a few d,ecad.es

in theoretical computer gcience. Although better insightr have been gaineil in the mathematical
mocle1ing of computer programs, no full correctness proofs of practical computer programs can be
done in a realistic way. Formal verification techniques derived from these developed in theoretical
computer science have been applietl in hardware designs and illustrated by the correctness proofs
of small microprocessors using mechanical theorem proving methods [12,13,14]. Even for these

small sized applications, the correctness proofs require several monthg of (mechanical theorem
proving) expert interaction for conducting the correctness proof. It is also not obvious how
ilesign specific theorems and. proof strategies can be antomatically generated from specifications

or how they can be reused. in new desigas. The promissing approach for the use of theorem
provers is in formal d.esign derivation [15] and the proof of generic synthesis primitives.

For the representation and manipulation of Boolean formulas, the ordered bina,ry d.ecision

diagrams (OBDD's) [2fl is currenlty the best tnown technique. It is currently nsed in the
verification of combinatorial logic and ia logic synthesis. Several adfitional techniques are still
being proposed that improve the efficiencies that can be obtained. Analytic method.s [21122125]
have been developed that allow to ertract symbolic equations from MOS switch level circuits,
that accurately model bidirectional information flow, multiple strengths of nodes and transigtors
and 'X' behavior. For the verification of finite state ma&ines (modeling the controlers in digital
systems) promissing tectrniques have been worked out [2].

Irr [31] an alternative method for verification of high level synthesis has been presented,

which is based on backannotating the specification with clock statements according to the
schedule. This methodology still needs to be ertended by the verification of the correctness of
the schedule.
In [32] a method for the verification of high level synthesis results is presented that is based

converting the flowgraphs of the specffication and the implementation into a normal form. This
can up to now however only be applied for a restricted class of synthesis transformations as are

described in [SZ], and further resea,rch is ongoing to make thig method more general applicable.
The main breafttroughs in formal verification methods fot behaaioral correctnecr have been

achieved by methods that ta,ke ad.vantage by exploiting the circuit structure in the verification
algorithms. This is the only way to avoiil the problem of combinatorial erplosion that results
when trying to formulate the correctnesg problem in a general way (e.g. Boolean formulas) and

have a general decision procedure trying to figure out the correctness.

Further along these lines of correctness verification we propose a method. called. SFG-Ibocing
that erploits the information available in the signal flow graph level specification that describes

the algorithms to be implemented.
In this paper we present a new method for the automatic verification from the behavioral

signal flow graph specification d.own to lower implementation levels. These can go down to
the switch level if a suitable symbolic simulator is used. In line with the automatic verification
algorithms, as much as possible the structure available in the problem at hand is being exploited.
The first application ta,rget is in the verification of high level synthesis results as obtained by
the CATHEDBAL silicon compilers [9,10], but the methodology is generally applicable.

The algorithms a,re intendeil to operate with as little interaction ftom the user as possible.

The uaderlying assumption is that the flow graph specification is synthesized while keeping

track of mapping relationships of a set of well chosen reference rignals of the opecifying flow
graph and of the implementation. The global verification problem is rednced to a ma,nageable
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Figure 1: Design & time abstraction levels from SFG (signal flow graph) downto transistor
layout, for a receiver pulse shaper and equalizer, containing 3 ALU's of 14 bits as synthesized
by CATHEDRAL-I

size by partitioning the information in the global signal flow graph into acyclic subgraphs and
providing correspond.ence (mapping) functions between the interface values (reference signals)
in the partitioned. graph and. the signal values at specific cycle and clock phase times in the
implementation. The correctnese of each individual subgraph is proven by making use of a
(switch-level) symbolic simulator that acts on the actual switchlevel models of transistor circuits.

To give an indication of the information explosion from high level (SFG = Signal Flow Graph)
specifications d.own to the implementation, consider the nrodem pulse shaper and equalizer chip
indicated in figure 1 and as designed by Vanhoof e.a. [11]. This system implements the filter flow
graph indicated in the top of the figure and can by formaly specified in teh SILAGE language
in 70lines of text. The chip implementation as synthesized. by CATHEDRAL-II [11] results in
amicrocoded architecture with 3 ALU's of 14 bits and consists of more than 12000 transistors.
Near the figure is shown the time abstraction from sample periods at SFG level over micro-cod.e
instruction cycles, clock phases d.ownto cloct waveforms at the switch level. Notice that all the
signals that appear in the SFG specification occur in some form iluring specific times at specffic
places in the transistor implementation of the chip. Operations in the SFG can however occur
on the same hardwa,re blocks suctr as ALU's at different instances of time. This relationship
between algorithmic SFG signals anil signals in space and time of the implementation forms the
basis for the SFG Tracing verification method.ology.
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In this paper we give a short overview of the theoretical bacftground of the SFG-llacing
methodology. For a more elaborate erplanation of the methotlology and the relationship with
existing formal verification methods we refer to [5]. The rtep-by-step application of the method-
ology has been described. by means of the full verification of the switc.h level implementation
with respect to the high level specffications of a small deeign era,rrple (BCD-recognizer) as has
been publisheil in [6].

In the next section, we present our view on the aspects of Design for Verifi.ability and the
contribution of SFG-TTrcing to this concept. In section 3, we give an overview of the .9FG-
Tracing methodology. The concepts are illustrated in section 5 by the firll verification from the
layout-extracted transistor netlist up to the high level specification of a small signal processor

as has been synthesized by the CATHEDAAL-II system [10].

2 -A.spects of Design for Verifi,abi,Iity

Until now formal haldware verifcation has not yet found its way into comnercial CAD systems

nor has it been introduced in the the YIrSI d.esign process yet. The major problems encouatered.
in the automatic verification of VLSI hardware is the inherent complexity of the basic verif.cation
problem (NP-complete). To enable the verification of VLSI ha,rdwa,re the CIIARJ\,IE pa,rtners

have decid.ed. in 1988 to define appropriate verificatioa enabling methodologies [36]. In analogy
to Design for Testability this has since then been termed Design for Verifiability.

2.t Design for Testability (DfT).

The testing of VLSI circuits is necessary because d.evices can be mal functioning due to defects

inherent in allphysicalprocessing technologies. The testing of integrated circuits alsohas to be
performed in a reasonable amount of time. This puts limitations on the amouat of test vectors
that can be applied per device under test.

Akin to formal verification, exhaustive application of test vectors is impossible to d.o for most
practical circuits. The algorithms to determine the test vectors su-ffer from the sarne complexity
problems as the automatic verification algorithms (NP-complete). It has also become clear that
the testing of sequential designs is much more complicated than for purely combintorial designs.

As it is absolutly necessary to test devices for their correct operation, appropriate measures

to achieve testability have been worted out and a.re currenlty known as Design for Testability
also abreviated. as DfI [19,17,18,16]. The main points in Dff a"re centered arround retiable
ilesign and. arrounil breaking down the testability complexity by introducing controlability artd,

obseraability to the circuits. These measures pa,rtition the complex circuits in small pieces.

The application of Dff has its efect on two aspects in design:

DfT rules for how to design the ha,rdwa,re circuitry itself. These rules determine whic"h. circuit
structures have to be used and whictr have to be avoided for maft.ing testing possible. The
DfT rules consist of constraints of how a designer can compose his/her design. The DfT
rulec concentrate on the following classes ofrules:

o reliability rulec constrain the designs to e.g. synchronous designs, level sensitive
design, clocking rules etc...

o controlability anil obseruabilitg ralec reqrrire ad.ilitional hardware to be introduceil in
order to make the internal state of the system controlable and observablu. Blarnples
of such structures are LSSD, BITBO circuits, accessable datapats etc... [19].



Reliable hardwa,re designs have to adhere to these measures!

DfT rnethodology for how to test. These methodologies assume that measures for a good

controlability and observabiltiy have been ta,ken as provided by the Dff rules. They
concentrate on the development of appropriate methods for the generation of test patterns
(e.g. D-algorithqrr PODEM, tr[.N, C-testabilitn signature analysir etc.).

2.2 Design for Veriffability (Dfy).
Verifying integrated. circuits is necegsa,ry because devices can be nal functioning due to errors

introduced in the d,esiga process (by incorrect human intervention or by software bugs in the

CAD tools). The verification of VLSI ha,rdwa,te hag to be performed in reasonable tirnes. The
verifi.cation of sequential eystems is nuch more compler than combinatorial logic. In analogy to
DfT, one c&n argue that Deeign for VerifiaDdldty (also called DfV) is required.

Similar as to the problem in testing, the problem of the verification ef ssmFlex systems can

be coped. with by providing conhvlabilify and obsentability. In contrast to Dff these measutes

are available by having the appropriate information in the CAD d.atabases that represent the

design antl do not require extra ha,rdware as DfI does.

For all practicdl ilesign applicationt that hate to be proiluceil, one cdn also reasonably aseume

that the circuits to be aertfieil ailhere to the rdet of iletign fot testability.
In analogy with Dff , one could also argue that DfV has its effect on two aspects of d.esign:

DfV rules for how to desiga the halilware circuitry itself [33,35]. These rules determine which

circuit stractures have to be used and whic.h have to be avoided in order to maft,e verification
possible. It is the opinion of the authors that, in contrary to what one might believe, no

aclditional circuit constraining rules a,re required in DfV for testable circuitg. B,eliable

circuits are designeal with enorgh margins such that the nod.els used in verification can be

used, very well. Limitations of verffication algorithms to deal with complexities do not have

to be reflected. in the constraining the circuits that could be ilesigned. Controlability and

observability of circuits for verification does not require ertra and/or constrained circuitrn
but on the contraly requires appropriate information in the CAD databases used in the

design.

DfV methodology The mqi'r coqjecture of this paper is that Deaign for Verifiabilitg fot cit-
cuits adherirrg Deeign for Testability, is a matter of methoilology. Hardware designers

shoulil not be constrained more by verification than by Dff rules. Making verification
possible is critically dependent on carefully exploiting concepts similar to obcenability
and controlability in testabiftn in order to provide enough information [34] in the d.esign

trajectory according to the status ofthe verification technology.

The SFG-ITacing methodology presented. further on in this paper does not make any

further assumptions on the kind.s of circuits being designed further than requirecl by Df[,
but addresses a methorlology for mafting verification and DfV practical.

3 SFG-Tracing Methodology.

The goal of the verification process is to verify the behavioral input-output correctnegg of the
lower level implementation with respect to the high level signal flow graph specification. Of
course it would be the most interesting to perform the verification from a level as high as

possible to an implementation as detailed. as possible. In this paper, we consider the SILAGE



SFG level as the specification, and the transistor switch level as the representation. Higher
levels of the implementation coulcl also be considered (such as gate level or sRT or bBT level).
The same techniques as indicated below woukl spply in each of these cases. The switch level
implementation is however preferred, because it reflects the best the circuit implementation.
Appropriate symbolic analysis techniques based. on Bryantts method [21122] for the switch level
have been developed a.nd a,re supported in CAD tools [25123,24].

3.1 Flow Graph Speciftcation.

For the SFG-tracing, two aspects have to be considered. The first consists of the verification of
tlne initialization ceguence, and the second aspect consists of the verification of the eteoily ctate

behador. ffus inifin'liqation sequence is used to bring the implemented system in a known state.

Starting from that known state, cycles and doc"k phases ca,n be defined., which correspond to
the SFG level sample period.s. The initialization sequence consists of the sequence following for
example the reset pulse. The symbolic simulator will have to be sta,rted ftom the initialization
sequence in order to be able to bring the implemented system in a known state. The SFG

specification also contains initialization information (initial values at SFG level registers). The

verification will consist of two phases: the initialization and the steatly state. Although simila,r
techrriques can be used for both phases, this paper will concentrate firrther on the verification
ofthe steady state behavior.

3.2 Basic SILAGE Signal Flow Graph Semantics.

The basic SILAGE signal flow graph semantics are modeled by a graph g(V,E).
The set of vertices Ir of this signal flow graph I a,re defiaeil by vertices o; € V correspond-

ing to the primitive operations in SILAGE. Examples a,re: arithmetic operations (adfition,
subtraction, multiplication...), shift, logical operations and confitionals.

The set of edges is -E is defined by eclges ei € E, where each e; corresponds to a signal in the

SITAGE flow graph. In SILAGE signals are tlefinetl as one-sided infinite streams, characterized

by a speclflc sampling rate.
Two functions

Inprula:V --+ -E* and
Outpttts:V - E*

can be rlefined:
Inputs(a;) : {e*,e111,...e*} and
O utputs(a ;) = {"r, et+1, ...en}

which describe the inputs and outputs of operators in SILAGD. In SITAGE only one output
is used per operator.

To each edge e; corresponds a SILAGE signal, that is modeled as a stream. However at
specific moments in the algorithm time trqo, inclividual element values of the stream can be

considered. ei(trl), The signals can be words representing numeric binary values of a specific

word length tuor. The signal consisting of a binary word. can be represented as eil7..urrl. It
is assumed that individual bits in signals representing binary values are ordered ftom most

significant bit (MSB) (index 1) to the least significant bit (tSB) (index ro.r). The k'th infividual
bit ofthe signal e; is represented as e;[&].



3.3 Reference signals and. Mapping fanctions.

In SFG-Tracing we ma^ke the following assumptions:

1. There exist a number n,"y of reference signals e, € Retsignals(9(Vr-&)) corresponding to
edges in the SFG algorithm specifi.cation and signals at specific (cycle antl dock) times in
the implementation. The specification SFG is inplemented. in hardware maintaining the

same behavioral relationships for these reference signals.

For all reference signals e, € Ref Signals(9(VrE)) the signals e,'in the specification and

eri in the implementation can be definetl:

o The reference signals in the SFG specification e,'(t,) have the following semantics in
terms of Boolean bit words:

e,'[k,](t,) e B (1)

for all bits ft, € {l..to.} in the SFG signal word and for a specific sample time t,. B

is the set of Booleans. Often at the SFG level, the individual bits in signal words are

not considered.

o The reference signals in the implementation are cha,racterized by:

e,ilk;)(t;p,) e B (2)

for infividual bits with index ft; € {l..ur,} at specific implementation times t;4. The

index k; of t;p, inficates that each bit of a reference signal has to be consid.ered at a
specific cycle and clock phase inilividually. This is for example already necessary in
bit-serial implementations of SFG specifications.

2. There exist a set of mapping functions f that describe the behavioral correspondence in
space and time of reference signnln in the SFG algorith-m specification with respect to the

lower level implementation at the specific implementation times.

f : S w itch -t i g nol -s etnontic c --+ S F G -ai g nol s emantic s (3)

or

f : B-i -- B-' (4)

where B is the set of Boolean values.

The function f is defined as:

e,'(t,) = f(e,i[L](t;1)...e,;lw;](t;-,)) (5)

This is a vector assignment over the iniliviitual bits of the reference signal in the SFG.

3. All edges and vertices i\ Q(VrE) are reachable via directed. paths starting at the edges

corresponfing to reference signals.

4. The reference signalpartitions the graph g(VrE) such that the subgraphs are acyclic.
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Figure 2: Illustration of the concepts of reference signals and, mapping functions that relate
signals in the SFG specification to signals in lower level implementations. (Here down to the
switch level).

The most essential form of reference cignals woulil be the input and the output to the
algorithrn to be implemented in hardware. The verification efort a^nd complexity can be reduced.

if more reference signals are available.
The concept of reference signals and. mapping functions is illustratecl in figure 2.

For the reference signals it is requireil that mapping relations are available, which state the
relationship between reference signals in the specffication and in the implementation. This could
be in the form of a certain word at a specif.c sample time in the SFG level begin implemented
in terms of bits in specific tegisters (at specific time phases) at the lower level implementation.
Most of the relationships will be simple correspondences of the logic values in specification and

implementation. Other relationships could includ.e a specific logic function to convert the logic
representation in the specilication into the logic representation in the implementation or vice
versa. The simplest form of this are signals in the specification that are id.entical or inverted in
the implementation. However, more complex relationships can be envisioned: e.g. an integer
word at the SFG level represented in the implementation in carry save techrrique.

The thircl confition is required so that the SFG Tracing algorithm can use a firected. graph
traversal algorithm to reach all of the pa,rts in the specification SFG in order to do the compar-
ison.

3.4 Signal Flow Graph partitioning.

The choice of appropriate reference signals anil mapping firnctions allows that SFG graph g(V, E)
is partitioned. into a signal flow graph PSFG (Partitioned Signal Flow Graph) consisting of a set

of clisjoint and acyclic subgraphs 9o(VorEr). Each subgraph Qo(Vo,-Eo) consists of a cutset of
vertices of Q(Vr.E) where the edges between vertices in the cutset and vertices out of the cutset
correspond. to the reference signals, related to that subgraph.

3.5 Description of the SFG-Tlacing method.

The reference signals nllow a subfivision of the global SFG in a number of subgraphs in the
PSFG. For each subgraph in the PSFG a verifi,cation of the implication of the specification by
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the implementation is verified by performing a symbolic simulation of the implementation.

SFG-Tracingo

{
r e ad-re f er enc e -s ignal s -and-mapp ing Jrurct i ons ( ) ;
init -synboli c-s inulat ion ( ) ;
PSFG = PartitionJfGO;
for each subgraph in the PSFG

{
1e3 irrFl-time = start-time to end-time;

{
s ynbinit ialize jrnpl 

-s ignal ( inpt-t ine ) ;
synbolic -s imulat e -st ep ( inpl-t ine ) ;

)
slnnb-conpare-signals ( ) ;

)
)

In read-ref erence-signals-and-nappingJunctions ( ) ; the reference signals and the map-

ping fuactions are read.. Mafting use of this information the pa,rtitioning of the signal flow graph

is performed in PartitionJFG. Hereafter for each subgraph the verification is done by a sym-

bolic simulation . Since reference signals in the implementation can occur in fifferent cycles

and clock phases, (within a global SFG ctoct period of the system) the values of implementa-

tion signals have to be initialized in the symbolic simulation at the appropriate implementation
times. Therefore the symbolic simulation has to be done from start-time to end-time, such

that all the signals that are input to the PSFG subgraph can be initializetl and that after that,
all signals at the ontpnt of the PSFG subgraph can be evaluated in the appropriate cycle time

and clock phases.

In the symbolic simulation, the reference signals and the signals dependent on them will be

evaluated symbolically. External signals that are always recurring during each global SFG time

period will have specific values. This is the case for external clock signals, that will be used. for

the specific values in the respective phases. Other signals like reset signals and signals to put the

circuit in test mod.e, will be set to the specific constant values. Doing such a symbolic simulation

will result in specific (Boolean 1,0) signals for the control circuits, and symbolic signals for the

other circuitry. Most of the time 'x' signals will be used in the symbolic simulation. Only for
those signals implementing the operations of the subgraph of the PSFG at hand, symbolic values

will be computed..
The controller taftes care of the sequencing in time of the hardware operations that have to be

performed on the same hardware operato" (".g. the same AtU). By doing symbolic simulation,

the effect of the sequencing by the controller is removed, and. the hardware operators can be

seen as unfoldeil for the specific operations that they have to perform.

By this symbolic simulation, the micro-code controller will normally operate with instanti-
ated. signal values ('1', '0', 'x') instead of symbolic values in the execution of cycles and clock

phases. These instantiated signal values can directly be used (and reduced) in the s)'mbolic

simulations. By this fact of unfolding (or unrolling) the algorithm again to its maximal parallel

representation the effect of the controller, and. its specific encodings can be tsirnulated. away'.



After the symbolic simulation, symbolic erpressions a,re obtainecl for the output signals cor-

respond.ing to the subgraph under consideration. Notice that these symbolic output signals have
to be taften at the appropriate cyde and dock phase times as defineil by the reference signals.
As already e:qlaineil these output signals correspond to the maximally pa,rallel representation
as in the SFG specification, anil the correctnesE has to be verified by compa,rison.

trhom the semantic defi-nitions of the prirnitive operations in the specifying SFG, the mapping
functions for the reference signals (that form the interface for the subgraph at hand.), and the
results of the symbolic simulation a comparison is done in synb-conpare-signals.

Fbom the semamtics of the primitive operators in the subgraph of the PSFG under consid-
eration, the input output behavior at the SFG level for the subgraph can be derived.. This is
characterized by the function:

E,!s i B* --+ Bo (6)

This function provides the behavioral relationship as ertracted. from the SFG semantics

between reference signals at the input err.' antl at the output er^r' of the subgraph under
consideration:

er^r' = 6.ts(err-t) (7)

In the same way the input-output behavior function as derived by the symbolic gimulation

of the implementation can be defined:

9iropr 2 B* -- B* (8)

This function provides the relationship "r 6S1nined. by the symbolic simulation between

reference signals at the input er,.i and at the output er*,i of the subgraph under consideration:

"r*ri =5i-et(e'r.i) (9)

The mapping functions for the reference signals at the inputs and outputs of the subgraph

under consid.eration provide the following relationships:

(10)

and:

€'io - frr.("rr.i) (11)

tr\om the above relationships, the subgraph behavioral functions and the mapping functions,

the following condition for the correct behavioral verification of the subgraph und.er consideration

can be derived:

Erp(Frr-(err.t)) = f,^r(E;rnpt(",,.t)) (12)

The verification will normally be done by tautology checking, based on effcient methods such

as OBBD's [2?]. Irt this comparison, one can however also make use of the information available

from the signal flow graph, such as the fact that at the SFG level signals are representing bit-
words. Optimizeit verification algorithms and. vector-based reduction rules such as presented by
Eveking [30] anrl Simonis [29] can be used to improve the cpu-time efficiency of the verification.

t).E€r*, €r^,(o
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Figure 3: CAD environment for verification by SFG-Tracing

4 fntegration in a CAD environment.

The methodology of SFG-Ihacing is inclucled in the CATHEDRAL CAD environment as indi-
cated. in figure 3.

Starting from a SITAGE description the basic SFG is derived. This is partitioned into the
PSFG in such a way that it results in manageable pieces for further verification. The interface
signals (reference dgnals) for the subgraphs in the PSFG have to be provided to the synthesis
environment, to make sure that the correspelding signals in the layout for the switch level and
t}ne mapping functions can be generated. The synthesis environment has to provide the number
of cycles that correspond to the global SFG time period, because this is needed to perform the
appropriate symbolic simulation seqnences.

Starting from the PSFG, the reference signals and the correspondence functions, the SFG-

Tbacing is performed by the "Symbolic Simulation Manager", that prepares the simulation com-

mands for the symbolic simulator at hand. After infividual symbolic simulations on subgraphs,
the results will have to be verified for correctness. For the symbolic simulation the COSMOS
progra.m [25] is used. This will work on the transistor netlist as it is obtained from the layout
circuit extraction. In case of inconsistencies for specific subgraphs of the PSFG, the Symbolic
Simulation Manager can generate the appropriate error messages, to inficate where the error
occurs. It could also occur that the subgraph under consideration is too large to be able to
perform the verif.cation. In this case the subgraph has to be partitioned further. This can be

achieved. by the user giving hi:rts on SFG nodes, where the SFG has to be further partitioned
in order to give rise to smaller subgraphs.



5 Design example: A small CATHEDRAL-If processor.

A step-by-step illustration of the SFG-T\ucing methodology has been described in [6] by means
of a BCD-recognizer [3]. Io this section tl.re SPG-lfucingmethodology is illustrated by the veri-
fication of a small signal processor [fl that is synthesized by the CATHEDRAL-U system. This
veriffcation is done from its transistor netlist up to the SILAGD speciffcation. This application,
although simple, includes a datapath, register files, multi-branch 'nicrocoded controller, and
additional circuitry as necessary for Design for Testability measures. This application illustrates
tl.e SFG-T)acing vetification methodology ar applied to one pa,rt of a partioned SFG behavioral
specification.

The application erample aplusb adds two streams of incornming 8 bit numbers and is spec-

ified in the SILAGD language [8] as follows:

a(ts)

*define ll0RD fix(8,0)
out (ts)

func main( a : llORD; b : tl0BD ) out : tl0RI)

begin
out = T0RD (a + b);

end;

I

8

9 I
b(ts)

Also indicated is the corresponfing SFG graphical representation. The implementation of
this specification can be done in various lvays. For erample bit-parallel, bit-serial [9], with
microprogrammed architectures [10] etc... At the SFG level only the relationships between
behavioral signal definitions is given. The correspondirB flowgraph for this small erarrple is so

small that it need not be partioned any further in subgraphs (as is a requirement for most other
applications.).

This small application has been synthesizerl for illustrative purposes into a chip layout by
the CATHEDRAL-II system [10,11] into a derlicated -icrocoded. architecture. (It is only an
illustrotive exomple and it ie deor that such a emall applicotion should. not be eyntheeired ao a

microcoded. architecture). The datapath and the controller are shown in figure 4.

The datapath indudes i/o pads, a small ALU, mux's and register files. The controller
implements an initialization sequence of 7 cycles as well as a stead.y state operation sequence of
3 cycles per sample in the high level specification. The controller consists of a program conter,
instruction rom, and multi-branch controller and instruction register. After module generation
anil floorplanning the layout consisting of 1935 transistors is generated 5. This includes all the
circuitry for testability such as scanpaths etc. It is from the layout extraced transistor netlist
that the verification is done.

Notice that in the specific irnplementation of this aplusb problem as a microcodeil archi-
tecture several additional state registels are included (such as i/o pails, register files, program
counter, instruction register,...) that a,re not seen in the high level specification in SILAGE.
The verification by means of SFG-Tracing, avoids the need to know the exact encodings of the
states in most of these registers, because only the reference signals that a,re also available in the
SILAGE specification are of importance (a, b, out). By provifing the mapping functions of
these signals in the high level specification with their implementation in specific cycles in the
implementation, the effect of the controller can be eliminated by the symbolic evaluation at the
switch level in COSMOS. The formal verification is performed by considering the intialization
sequence, the steady ctate opetation and the test se{luence. The full verification of this aplusb
example [7] takes 11.42 cpu seconds on a DEC-3100.
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Figrrre 4: Datapath anil controller for aplusb as synthesized,by CATHEDBAL-tr.
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Figure 5: Layout of the aplusb application example as automatically synthesized by
CATHEDRAL-tr.



A more elaborated description of the verif.cation of this design example is available irr [7].

6 Conclusions and Future 'W-ork.

In this paper a methodology of "Design for Verifiability" has been presented. that can be used

for the firll formal verification of hand nade as well as automatically synthesized designs. In
contrast to constraining the design style, no special requirements are posed. (other than a,re

required in addition to what is erpeced in "Design for Testability" methodologies [16]. The
underlying assumptions of the methodology a,re that both a formal high level specifi^cation is
available and that reference signals and mapping functions assist in subdividing a huge and
complex problem in manageble pieces.

The SFG-llacing methodology is currently buirrg worted out for proving the correctness

of the synthesis results in CATHEDRALI [9] anil CATHEDIAL-II. Design applications as

synthesized by both compilers have already successfully been verffied by the above mentioned
tech:riques. The largest SFG-llacing application up to now has been a modem chip of more

than 32.000 transistors. The COSMOS [25] compiled-code switch-level simulator is used as a
symbolic simulator in the algorithm.
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