
rn proc. ,rAdvanced Research,worksnop on correct Hardware Design Methodologies"T

ed. P. Prinettor=i'T!i;;;ti' rurinl 'rune 12-14' 1991-' North-Holrand'

SFc-Tracingj & methodology of t'Design for
VerifiabilitY'? *

Luc Claesen f Mark Genoe, Eric Verlind, Frank Proesmans, Hugo De Mant

IMEC, Kapeldreef 75, 8-3001 Leuven Belgium
phone: +32-16-281203, email: claesen@imec.be

Abstract.

In this paper a novel and practical methodology of "design for verifiability" for the formal
correctness verification of digital (VISI) designs is presented. This methodology aims at bridging
the gap from transistor switch level circuits, as obtained from circuit extractionr up to high
level specifications. The SFG-Tracing verification methodology inherits its power from the
exploitation of the inherent algorithmic information the high level (signal flow graph level)
specifications. Given the fact that the circuit designer provides the appropriate reference signals
and mapping functions, the methodology has already successfully been experimented on the full
formal verification of VLSI circuits of more than 32.000 transistors as extracted from the layout.

L Introduction.
The possibilities offered by the steadily increasing complexities offered by the VLSI technology
has resulted in the fact that more and more complex systems can be build on integrated circuits.
The realization of complex systems has become design limited instead of technology limited. The
chalenge is indeed to design electronic systems first time right. This is required to avoid costly
redesigns, and delays in market introduction of new products. These economic reasons are the
drive behind alot ofefforts to check the correctness ofdesigns with respect to their specifications.

Traditionally simulation (at multiple levels of design abstraction) is being used, and is stan-
dard industrial practice, to verify the correctness of electronic designs before they are produced.
It is however very well known that for even moderately sized circuits it is not possible to try out
all possible input excitations in these simulations, due to the combinatorial explosion problem in
the number of possible patterns. Therefore designers have to chose an appropriate subset of in-
put stimuli for verification by simulations. This method however leaves open the possibilities for
undiscovered design errors. This motivates the need for analytic verification techniques that are
input pattern independent. The technique of static timing uerification is an analytic technique
that has currently gained industrial acceptance for the verification of the speed performance of
circuits.

The analytic verification ofthe behauioral correctness of digital designs with respect to their
specifications is however still in its infancy. It is mainly hindered by the problems of combina-
torial exploision in handling the mathematical formulas describing the systems at hand.

Formal correctness verification techniques have been investigated already for a few decades

in theoretical computer science. Although better insights have been gained in the mathematical
*This reseerch has been sponsored as part of the CHARME and CHEOPS ESPRIT Basic Research Actions
lprofessors at Kath. Univ. Leuven

t_



modeling of computer programs, no full correctness proofs of practical computer programs can be
done in a realistic way. Formal verifi.cation techniques derived from these developed in theoretical
computer science have been applied in hardware deslgns and illustrated by the correctness proofs
of small microprocessors using mechanical theorem proving methods lLz, L}r 1"41. Even for these
small sized applications, the correctness proofs require several months of (mechanical theorem
proving) expert interaction for conducting the correctness proof. It is also not obvious how
design specific theorems and proof strategies can be automatically generated from specifications
or how they can be reused in new designs. The promissing approach for the use of theorem
provers is in formal design derivation [15] and the proof of generic synthesis primitives.

For the representation and manipulation of Boolean formulas, the ordered binary decision
diagrams (OBDD's) [2a] is currenlty the best known technique. It is currently used in the
verification of combinatorial logic and in logic synthesis. Several additional techniques are still
being proposed that improve the efficiencies that can be obtained. Analytic methods [18, 19, 22]

have been developed that allow to extract symbolic equations from MOS switch level circuits,
that accurately model bidirectional information flow, multiple strengths of nodes and transistors
and 'X' behavior. For the verification of finite state machines (modeling the controlers in digital
systems) promissing techniques have been worked out [2].

In [28] an alternative method for verifi.cation of high level synthesis has been presented,
which is based on backannotating the specification with clock statements according to the
schedule. This methodology still needs to be extended by the verification of the correctness of
the schedule.
In [29] a method for the verification of high level synthesis results is presented that is based
co4verting the flowgraphs of the speciffcation and the implementation into a normal form. This
can up to now however only be applied for a restricted class of synthesis transformations as are
described in [29], and further research is ongoing to make this method more general applicable.

The main breaktroughs in formal verification methods for behaaioral correctness have been
achieved by methods that take advantage by exploiting the circuit structure in the verification
algorithms. This is the only way to avoid the problem of combinatorial explosion that results
when trying to formulate the correctness problem in a general way (e.g. Boolean formulas) and
have a general decision procedure trying to figure out the correctness.

Further along these lines of correctness verification we propose a method called SFG-Tracing
that exploits the information available in the signal flow graph level specification that describes
the algorithms to be implemented.

In this paper we present a new method for the automatic verification from the behavioral
signal flow graph specification down to lower implementation levels. These can go down to
the switch level if a suitable symbolic simulator is used. In line with the automatic verification
algorithms, as much as possible the structure available in the problem at hand is being exploited.
The first application target is in the verification of high level synthesis results as obtained by
the CATHEDRAL silicon compilers [9, 10], but the methodology is generally applicable.

The algorithms are intended to operate with as little interaction from the user as possible.
The underlying assumption is that the flow graph specification is synthesized while keeping
track of mapping relationships of a set of well chosen reference signals of the specifying flow
graph and of the implementation. The global verifi,cation problem is reduced to a manageable
size by partitioning the information in the global signal flow graph into acyclic subgraphs and
providing correspondence (mapping) functions between the interface values (reference signals)
in the partitioned graph and the signal values at specific cycle and clock phase times in the
implementation. The correctness of each individual subgraph is proven by making use of a
(switch-level) symbolic simulator that acts on the actual switch level models of transistor circuits.

To give an indication of the information explosion fromhigh level (SFG = Signal Flow Graph)
specifications down to the implementation, consider the modem pulse shaper and equalizer chip
indicated in figure 1 and as designed by Vanhoof e.a. [11]. This system implernents the filter flow

2



Aigorlthm trme
(samples) SFG :evci

t t
Y:iroco'Je cyc les
bRT level..f, lil :-:il -.!l il'il ''ll,t,

I
:.-

.g

E
t

T
E

Ft2 Fri Fr' Ft2 Frl

li?

(-:ock Phases
5RT cver

tn nt
Switch lever

Figure 1: Design & time abstraction levels from SFG (signal flow graph) downto transistor
layout, for a receiver pulse shaper and equalizer, containing 3 ALU's of l-4 bits as synthesized
by CATHEDRAT-II

3



graph indicated in the top of the figure and can by formaly specified in teh SITAGE language
in 70 lines of text. The chip implementation as synthesized by CATHEDRAT-II [11] results in
a microcoded architecture with 3 ALU's of 14 bits and consists of more than 1"2000 transistors.
Near the figure is shown the time abstraction from sample periods at SFG level over micro-code
instruction cycles, clock phases downto clock waveforms at the switch level. Notice that all the
signals that appear in the SFG speciflcation occur in some form during speciffc times at speciftc
places in the transistor implementation of the chip. Operations in the SFG can however occur
on the same hardware blocks such as ALUts at different instances of time. This relationship
between algorithmic SFG signals and signals in space and time of the implementation forms the
basis for the ,SFG Tracing veriffcation methodology.

In this paper we give a short overview of the theoretical background of the SFG-Tractng
methodology. For a more elaborate explanation of the methodology and the relationship with
existing formal verification methods we refer to [5]. The step-by-step application of the method-
ology has been described by means of the full verification of the switch level implementation
with respect to the high level specifications of a small design example (BCD-recognizer) as has
been published in [6].

In the next section, we give an overview of the SFG-Tracing methodology. The concepts
are illustrated in section 4 by the full verification from the layout-extracted transistor netlist
up to the high level specification of a small signal processor as has been synthesized by the
CATHEDRAT-II system [10].

2 SFG-TracingMethodology.

The goal of the verification process is to verify the behavioral input-output correctness of the
lower level implementation with respect to the high level signal flow graph speciffcation. Of
course it would be the most interesting to perform the verification from a level as high as
possible to an implementation as detailed as possible. In this paper, we consider the SILAGE
SFG level as the specification, and the transistor switch level as the representation. Higher
levels of the implementation could also be considered (such as gate level or sRT or bRT level).
The same techniques as indicated below would apply in each of these cases. The switch level
implementation is however preferred, because it reflects the best the circuit implementation.
Appropriate symbolic analysis techniques based on Bryant's method [18, 19] for the switch level
have been developed and are supported in CAD tools [22, 20,2L).

2.1 Flow Graph Speciffcation.

For the SFG-tracing, two aspects have to be considered. The first consists of the verification of
the initialization sequence, and the second aspect consists of the verification of the steady state
behaaior. The initialization sequence is used to bring the implemented system in a known state.
Starting from that known state, cycles and clock phases can be defined, which correspond to
the SFG level sample periods. The initialization sequence consists of the sequence following for
example the reset pulse. The symbolic simulator will have to be started from the initialization
sequence in order to be able to bring the implemented system in a known state. The SFG
specification also contains initialization information (initial values at SFG level registers). The
verification will consist of two phases: the initialization and the steady state. Although similar
techniques can be used for both phases, this paper will concentrate further on the verification
of the steady state behavior.

2.2 Basic SILAGE Signal Flow Graph Semantics.

The basic SITAGE signal flow graph semantics are modeled by a graph g(V, E).

4



The set of vertices trr of this signal flow graph I are defined by vertices ui € v correspond-
ing to the primitive operations in SILAGE. Examples are: arithmetic operationa (addition,
subtraction, multiplication...), shift, logical operations and conditionals.

The set of edges is .E is defined by edges e i e E , where each e; corresponds to a signal in the
SILAGE flow graph. In SILAGE signals are defi.ned as one-sided inffnite streams, characterized
by a specific sampling rate.

Two functions
Inputs : V -+ .O* and
Outputs:V - E*

can be defined:
Inputs(a;) = {etrep41,.,.e^} and.
O utputs(u i) = {"r, et+1., ...en]'

which describe the inputs and outputs of operators in SILAGE. In SILAGE only one output
is used per operator.

To each edge ei corresponds a SILAGE signal, that is modeled as a stream. However at
specific moments in the algorithm time f"y' individual element values of the stream can be
considered ej(t"ts), The signals can be words representing numeric binary values of a specific
word lengtn wei The signal consisting of a binary word can be represented as eilL..ru.rl. It
is assumed that individual bits in signals representing binary values are ordered from most
significant bit (MSB) (index L) to the least significant bit (LSB) (index tuu, ). The k'th individual
bit of the signal er. is represented as ey[&].

2.3 Reference signals and, Mapping functions.

In SFG-Tracing we make the following assumptions:

1. Thereexistanumbern,.lof referencesignalse,e Refsignats(Q(V,.8))correspondingto
edges in the SFG algorithm specification and signals at specific (cycle and clock) times in
the implementation. The specification SFG is implemented in hardware maintaining the
same behavioral relationships for these reference signals.

For all reference signals e, € Retsignals(9(VrE)) the signals e,"" in the speciffcation and
e,.t in the implementation can be defined:

I The reference signals in the SFG specification e,"(t") have the following semantics in
terms of Boolean bit words:

e,"lk"l(t") e B (1)

for allbits &" € {l..ur"} in the SFG signal word and for a specific sample time f". B
is the set of Booleans. Often at the SFG level, the individual bits in signal words are
not considered.

o The reference signals in the implementation are characterized byl

e,'lk;l(t;1,,) e B (2)

for individual bits with index k.; e {l..wt} at specific implementation times t;6,. The
index k; of t;6, indicates that each bit of a reference signal has to be considered at a
specific cycle and clock phase individually. This is for example already necessary in
bit-serial implementations of SFG specifications.

5



SFG

\
Relerence sQnals MapPing lurrctions.

Figure 2: Illustration of the concepts of reference signals and mapping functions that relate
signals in the SFG specification to signals in lower level implementations. (Here down to the
switch level).

2. There exist a set of mapping functions f that describe the behavioral correspondence in
space and time of reference signals in the SFG algorithm speciftcation with respect to the
lower level implementation at the specific implementation times.

F : S witch-sig nal -s emantics -, S F G -sig nal -semantics (3)

or:

F z B*i -- B*" (4)

where 6 is the set of Boolean values.

The function .F is defined ae:

e,"(t") : f(e"'[1](t;1)...e,'ltu;](t,;-,)) (b)

This is a vector assignment over the individual bits of the reference signal in the SFG.

3. All edges and vertices in Q(V,.E) are reachable via directed paths starting at the edges
corresponding to reference signals.

4. The reference signalpartitions the graph g(VrE) such that the subgraphs are acyclic.

The most essential form of reference signals would be the input and the output to the
algorithm to be implemented in hardware. The verification effort and complexity can be reduced
if more reference signals are available.

The concept of reference signals and mapping functions is illustrated in figure 2.
For the reference signals it is required that mapping relations are available, which state the

relationship between reference signals in the specification and in the implementation. This could
be in the form of a certain word at a specific sample time in the SFG level begin implemented
in terms of bits in specific registers (at specific time phases) at the lower level implementation.
Most of the relationships will be simple correspondences of the logic values in specification and
implementation. Other relationships could include a specific logic function to convert the logic
representation in the specification into the logic representation in the implementation or vice

o

trtrtrtrtrtrtrtrtrtrtr

outrtrtrtrtrtrtrtr

tr
tr
tr
tr
tr
tr
tr
tr
tr

WffiH
tr



versa. The simplest form of this are signals in the speciffcation that are identical or inverted in
the implementation. However, more complex relationships can be envisioned: e.g. an integer
word at the SFG level represented in the implementation in carry salre technique.

The third condition is required so that the ,SFG Tracing algorithm can use a directed graph
traversal algorithm to reach all of the parts in the specification SFG in order to do the compar-
ison.

2,4 Signal Flow Graph partitioning.
The choice of appropriate reference signals and mapping functions allows that SFG graph 9(V, E)
is partitioned into a signal flow graph PSFG (Partitioned Signal Flow Graph) consisting of a set
of disjoint and acyclic subgraphs 1r(VrrEo). Each subgraph 1r(Vrr.Eo) consists of a cutset of
vertices of g(VtE) where the edges between vertices in the cutset and vertices out of the cutset
correspond to the reference signals, related to that subgraph.

2.5 Description of the SFG-Tracing method.

The reference signals allow a subdivision of the global SFG in a number of subgraphs in the
PSFG. For each subgraph in the PSFG a veriftcation of the implication of the specification by
the implementation is verified by performing a symbolic simulation of the implementation.

SFG-Tracing ( )
{

read-ref erence-s ignals -and-rnapping*f unct ions ( ) ;

init-symboli c-s imulat ion ( ) ;

PSFG = Partition_SFco;
for each subgraph in the PSFG

{
for impl-time = start_time to end_time;

{
symb*init iaJ-ize_inpl-s ignal ( impl_t ine ) ;
synbolic-s imulate-stop ( impl_t ime ) ;

)
symb-compare-signals ( ) ;

)
)

In read-ref erence-signals-and-rnapping-f unctions ( ) ; the reference signals and the map-
ping functions are read. Making use of this information the partitioning of the signal flow graph
is performed in Partition-SFG. Hereafter for each subgraph the verification is done by a sym-
bolic simulation . Since reference signals in the implementation can occur in different cycles
and clock phases, (within a global SFG clock period of the system) the values of implementa-
tion signals have to be initialized in the symbolic simulation at the appropriate implementation
times. Therefore the symbolic simulation has to be done from start-time to end-tine, such
that all the signals that are input to the PSFG subgraph can be initialized and that after that,
all signals at the output of the PSFG subgraph can be evaluated in the appropriate cycle time
and clock phases.

In the symbolic simulation, the reference signals and the signals dependent on them will be
evaluated symbolically. External signals that are always recurring during each global SFG time
period will have specific values. This is the case for external clock signals, that will be used for

7



the specific values in the respective phases. Other signals like reset signals and signals to put the
circuit in test mode, will be set to the specific constant values. Doing such a symbolic simulation
will result in specific (Boolean 1,0) signals for the control circuits, and symbolic signale for the
other circuitry. Most of the time 'x' signals will be used in the symbolic simulation. Only for
those signals implementing the operations of the subgraph of the PSFG at hand, oymbolic values
will be computed.

The controller takes care of the sequencing in time of the hardware operations that have to be
performed on the same hardware operator (e.g. the same AtU). By doing symbolic simulation,
the effect of the sequencing by the controller is removed, and the hardware operators can be
seen as unfolded for the specific operations that they have to perform.

By this symbolic simulation, the micro-code controller will normally operate with instanti-
ated signal values ('1', '0', 'x') instead of symbolic values in the execution of cycles and clock
phases. These instantiated signal values can directly be used (and reduced) in the symbolic
simulations. By this fact of unfolding (or unrolling) the algorithm again to its maximal parallel
representation the effect of the controller, and its speciffc encodings can be 'simulated away'.

After the symbolic simulation, symbolic expressions are obtained for the output signals cor-
responding to the subgraph under consideration. Notice that these symbolic output signals have
to be taken at the appropriate cycle and clock phase times as defined by the reference signols.
As already explained these output signals correspond to the maximally parallel representation
as in the SFG specification, and the correctness has to be verified by comparison.

Fbom the semantic definitions of the primitive operations in the specifying SFG, the mapping
functions for the reference signals (that form the interface for the subgraph at hand), and the
results of the symbolic simulation a comparison is done in symb-conpare-signals.

Fbom the semantics of the primitive operators in the subgraph of the PSFG under consid-
eration, the input output behavior at the SFG level for the subgraph cen be derived. This is
characterized by the function:

E"ls: B* -- B* (6)

This function provides the behavioral relationship as extracted from the SFG semantics
between reference signals at the input e",," and at the output e,ou," of the subgraph under
consideration:

eroute : S"!s(err^t) (z)

In the same wey the input-output behavior function as derived by the symbolic simulation
of the implementation can be defined:

Si*pr 2 B* -- B* (8)

This function provides the relationship as obtained by the symbolic simulation between
reference signals at the input e,.,,i and at the output erou,i of the subgraph under consideration:

e,o,,tt : Si-il(err,') (9)

The mapping functions for the teference signals at the inputs and outputs of the subgraph
under consideration provide the following relationships:

ero.rtt : Frour(", 
"ur')

(10 )

erin = Frr-("rr-i)

8

and

( 11)



SFG Specification
(srLAGE)

PSFG interlace
signals.

(reference signals)
SFG PartitionerUser Hints

List of nodes.

Synthesis
path.

PSFG versus Switch
mapping
functions.

Partitioned
Signal Flowgraphs

PSFG
countscYcle

(switch-level)
symbolic simulator

COSMOS

Symbolic Simulation
Manager.

Extracted transistor
netlist.Error File

Designer
Feedback.

t_

Figure 3: CAD environment for verification by SFG-Tracing

From the above relationships, the subgraph behavioral functions and the mapping functions,
the following condition for the correct behavioral verification ofthe subgraph under consideration
can be derived:

E"yn(fr,*(er,.o)) : Fr",r(S;^pr(",,"t)) (12)

The verification will normally be done by tautology checking, based on efficient methods such
as OBBD's [2a]. In this comparison, one can however also make use of the information available
from the signal flow graph, such as the fact that at the SFG level signals are representing bit-
words. Optimized verification algorithms and vector-based reduction rules such as presented by
Eveking [27] and Simonis [20] can be used to improve the cpu-time efficiency of the verification.

3 Integration in a CAD environment.

The methodology of SFG-Thacing is included in the CATHEDRAT CAD environment as indi-
cated in figure 3.

Starting from a SITAGE description the basic SFG is derived. This is partitioned into the
PSFG in such a way that it results in manageable pieces for further verification. The interface
signals (reference signals)for the subgraphs in the PSFG have to be provided to the synthesis
environment, to make sure that the corresponding signals in the layout for the switch level and
the mapping functions can be generated. The synthesis environment has to provide the number
of cycles that correspond to the global SFG time period, because this is needed to perform the
appropriate symbolic simulation sequences.

Starting from the PSFG, the reference signals and the correspondence functions, the SFG-
Tracing is performed by the "Symbolic Simulation Manager", that prepares the simulation com-
mands for the symbolic simulator at hand. After individual symbolic simulations on subgraphs,

I



the results will have to be verified for correctness. For the symbolic simulation the COSMOS
program [22] is used. This will work on the transistor netlist as it is obtained from the layout
circuit extraction. In case of inconsistencies for specific subgraphs of the PSFG, the Symbolic
Simulation Manager can generate the appropriate error messages, to indicate where the error
occurs. It could also occur that the subgraph under consideration is too large to be able to
perform the verification. In this case the subgraph has to be partitioned further. This can be
achieved by the user giving hints on SFG nodes, where the SFG has to be further partitioned
in order to give rise to smaller subgraphs.

4 Design example: A small CATHEDRAL-rr processor.

A step-by-step illustration of the SFG-Tracingmethodology has been described in [O] by me&n6
of a BCD-recognizer [3]. In this section the SFG-Tracingrnethodology is illustrated by the veri-
fication of a small signal processor [7] that is synthesized by the CATHEDRAT-II system. This
veriftcation is done from its transistor netlist up to the SITAGE specification. This application,
although simple, includes a datapath, register files, multi-branch microcoded controller, and
additional circuitry as necessary for Design for Testability measures. This application illustrates
t'he SFG-Tracingverification methodology as applied to one part of a partioned SFG behavioral
specification.

The application example aplusb adds two streams of incomming 8 bit numbers and is spec-
ified in the SILAGE language [8] as follows:

#def ine lrlORD f ix(8,0>
out (ts)

b(ts)
9

Also indicated is the corresponding SFG graphical representation. The implementation of
this specification can be done in various ways. For example bit-parallel, bit-serial [g], with
microprogrammed architectures [t0] etc... At the SFG level only the relationships between
behavioral signal definitions is given. The corresponding flowgraph for this small example is so
small that it need not be partioned any further in subgraphs (as is a requirement for most other
applications.).

This small application has been synthesized for illustrative purposes into a chip layout by
the CATHEDRAL-II system [10, 11] into a dedicated microcoded architecture. (It is only an
illustrative example and it is clear that such a small application should not be synthesized as a
microcoded architecture). The datapath and the controller are shown in figure 4.

The datapath includes i/o pads, a small ALU, mux's and register files. The controller
implements an initialization sequence of 7 cycles as well as a steady state operation sequence of
3 cycles per sample in the high level specification. The controller consists of a program conter,
instruction rom, and multi-branch controller and instruction register. After module generation
and floorplanning the layout consisting of 1935 transistors is generated 5. This includes all the
circuitry for testability such as scanpaths etc. It is from the layout extraced transistor netlist
that the verification is done.

Notice that in the specific implementation of this aplusb problem as a microcoded archi-
tecture several additional state registers are included (such as i/o pads, register files, program
counter, instruction register,...) that are not seen in the high level specification in SILAGE.
The verification by means of SFG-Tracing, avoids the need to know the exact encodings of the

a(ts)

func main( a : t'l0RD; b : WORD ) out : I'IORD

begin
out = I"IORD (a + b);

end;

I

I

I

10



I NPAD

to datapath

inlt

OUTPAD

Figure 4: Datapath and controller for aplusb as synthesized by CATHEDRAL-II

Figure 5: Layout of the aplusb application example as automatically synthesized by CATHE-
DRAL-II.

re

pr.counter reg

IlUX

11



states in most of these registers, because only the reference signals that are also available in the
SITAGE specification are of importance (a, b, out). By providing the mapping functions of
these signals in the high level speciffcation with their implementation in specific cycles in the
implementation, the effect of the controller can be eliminated by the symbolic evaluation at the
switch level in COSMOS. The formal verification is performed by considering the intialization
sequence, the steady state operation and the test sequence. The full veriff,cation of this aplusb
example [Z] takes 1L.42 cpu seconds on a DEC-3100.

A more elaborated description of the verification of this design example is available in [7].

5 Conclusions and Future Work.

In this paper a methodology of "Design for Verifiabilityt' has been presented that can be used
for the full formal verification of hand made as well as automatically synthesized designs. In
contrast to constraining the design style, no special requirements are posed (other than are
required in addition to what is expeced in "Design for Testability" methodologies [1"6]. The
underlying assumptions of the methodology are that both a formal high level speciffcation is
available and that reference signals and mapping functions assist in subdividing a huge and
complex problem in manageble pieces.

The SFG- Tracing methodology is currently being worked out for proving the correctness
of the synthesis results in CATHEDRAT-I [9] and CATHEDRAT-II. Design applications as
synthesized by both compilers have already successfully been verified by the above mentioned
techniques. The largest SFG-Tracing application up to now has been a modem chip of more
than 32.000 transistors. The COSMOS [22] compiled-code switch-level simulator is used as a
symbolic simulator in the algorithm.

Acknowledgements.

The authors hereby wish to thank Randy Bryant and the whole COSMOS team for making the
COSMOS system available to perform the research mentioned in this paper. The authors also
thank the partners in the ESPRIT CHARME and CHEOPS Baeic Research Actions for the
fruitful cooperation and interesting discussions on the subject of formal hardware verification
methods.

References

[t] C.F. Kurth, keynote speech, ECCTD'83, Stuttgart 5-9 Sept. 1g83.

[2] O. Coudert, C. Berthet, J.-C. Madre, "Verification of Sequential Machines Using Func-
tional Vectorstt, in "Formal VLSI Correctness Verifi,cation", Ed, L.Claesen, North-Holland,
1990, pp.267-286.

[3] P.Camurati, T. Margaria, P. Prinetto, "Application selection: Finite State Machines",
report ESPRIT CHARME-PDT-1.A-01, July 1, 1990, pp. 6-11.

[4] P. Camurati, P. Prinetto, "Formal verification of hardware correctness: introduction and
survey of current research", IEEE Compater, July 1g89, pp. 8-19.

[5] t. Claesen, F. Proesmans, E. Verlind, H. De Man, ",5FG-Tracing: a Methodology for
the Automatic Verification of MOS Tbansistor Level Implementations from High Level
Behavioral Specifications", Proc. International Worlcshop on Forrnal Methods in VLSI
Design, ed. P.A. Subrahmanyam, Miami, January 9-1,L, 1gg1_.

L2



[6] t. Claesen, M. Genoe, E. Verlind, F. Proesmans, H. De Man, "Application Exam-
ple of multi-level digital design verification by the SFG-Tracing Methodology", Proc,
EUROASIC-9 I Conference, 27-31 May L99L, Paris.

[7] M. Genoe, L. Claesen, E. Verlind, F. Proesmans, H. De Man, "Illustration of the SFG-
lhacing multi-level behavioral verification methodology, by the correctness proof of a high
to low level synthesis application in CATHEDRAL-II", Internal report IMEC, L February
1991.

[8] P. Hilfinger, ((Silage, a high-level language and silicon compiler for digital signal process-
ing", Proc. IEEE CICC-|1, Portland, May 1.985, pp.213-216.

[9] R. Jain, F. Catthoor, J. Vanhoof, B. Deloore, G.Goosens, N. Goncalves, L. Claesen,
J. Van Ginderdeuren, J. Vandewalle, H. De Man, ttCustom design of a VL$I PCM.FDM
transmultiplexer from syetem epecifications to circuit layout ueing a computer olded design
system", IEEE Transactions on Circuits and, Systems, Vol. CAS-33, No.2, pp. 1,83-195,
February L986.

[10] H. De Man, J. Rabaey, P. Six, L. Claesen, "Cathedral-Il: A silicon compiler for digital
signal processing", IEEE Design €! Test of Computers, December 1986, Vol. 3, No. 6,
pp.73-85.

[11] J.Vanhoof, I.Bolsens, S.De toch, E.Blokken, H.De Man, "Evaluation of high-level design
decisions using the Cathedral-Il silicon compiler to prototype a DSP ASIC", Proceedings,
IFIP Workshop on High Leael and Logic Synthesis, ed. G. Saucier, Paris, 30 May-I" June
1990.

[12] W. Hunt, "FM850l-: A verified microprocessor", Technical Report 17, The Uniaersity of
Tenas at Austin, February 1-986.

[13] J.Joyce, "Formal Verification and Implementation of a Microprocessol", in "VLSI Spec-
ifi,cation, Verifi,cation and Synthesis", editors: G. Birtwistle and P.A. Subrahmanyam,
Kluwer L987, pp. L2g-L57.

[14] G. Birtwistle, B. Graham, "Verifying SECD in HOL',, in ,,Formal Method,s for VLSI
Design", editor: J. Staunstrup, Elsevier Science Publishers B.V. (North Holland), pp.
L29-L77.

[15] M.P. Fourman, "Formal System Desing", in ttFormal Methods for VLSI Design", editor:
J. Staunstrup, Elsevier Science Publishers B.V. (North Holland), pp, 1gL-236.

[16] H. Fujiwara, "Logic Testing and Design for Testability", Computer System Series, The
MIT Press, ISBN 0-262-06096-5, 1985.

[17] R.E. Bryant, ('A Switch-Level Model and Simulator for MOS Digital Systems", IEEE
Transactions on Comytuters,YoI. C-33, No.2, February 1984, pp. 160-177.

[18] R.E. Bryant, "Algorithmic aspects of symbolic switch network analysis", IEEE Transac-
tions on Computer-Aid,ed Design, Vol. CAD-6, No. 4, July 1_987, pp. 618-093.

[19] R.E. Bryant, "Boolean Analysis of MOS Circuits", IEEE Transactions on Computer-Aided
Design, Vol. CAD-6, No. 4, July L987, pp. 634-649.

[20] P. Herrebout, "BOTRYS: A program for the symbolic analysis of MOS circuits at the
switch level", Thesis IMEC - Katholieke Universiteit Leuven Belgium, July 1988.

1"3



[21] W. Lempens, "symbolic analysis of digital MOS circuits at the switch level", Thesis IMEC
- Katholieke Universiteit Leuven Belgiumo July lg8g.

[22] R.E. Bryant, D. Beatty, K. Brace, K. Cho, T. Sheffer, "COSMOS: A Compiled Simulator
for Mos circuits", 24th Design Automation conferencer pp. g-16, j"g87.

[23] S.Bose, A'L' Fisher, "Verifying Pipelined Hardware using Symbolic Logic Simulation",
Proc. of the IEEE International Conference on Computers and Design, ICCD-8g, pp.
2L7-22L.

[24] R.E. Bryant, "Graph Based Algorithms for Boolean Function Manipulati on", IEEE Trans-
actions on Computers, Vol. C-35 No. 8, August 1"g86, pp. 662-691.

[25] R'E. Bryant, "On the Complexity of VLSI Implementations and Graph Represeutations
of Boolean Functions with Application to Integer Multiplication", reysort Carnegie Mellon
Uniaersity, September 27, L988.

[26] H' Simonis, "Formal Verification of Multipliers", in "Formal VLSI Correctness Verifi,ca-
tion", Ed. L.Claesen, North-Holland, 1-gg0, pp. 26T-286.

l27l A. Bratch, H. Eveking, H.-J.Faerber, J. Pinder, U. Schellin, "LOVERT - A Logic Verifier
of Register tansfer Level Descriptions", in "Formal VLSI Correctness Verificationr, Ed.
L.Claesen, North-Holland, 1gg0, pp. 247-2b6.

[28] F. Corella, R. Camposano, R. Bergamaschi, M. Payer, '(Verification of Synchronous Se-
quential Circuits Obtained from Algorithmic Speciffcation{', Proc, International Worlc-
shop on Forrnal Method,s in VLSI Design, ed. P.A. Subrahmanyam, Miami, January g-11,
1991.

[29] F. Feldbusch, R. Kumar, "Verification of Synthesized Circuits at Register Transfer Level
witlr Flow Graphs", proceedings IEEE EDAC Conferencer26-28 February 1g91, Amster-
dam, pp.22-26.

L4


