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ABSTRACT

ln this papcr a ncw technique is presented for application o{ correct-

ness preserving transformations to designs, described in an exist-

ing hardware dcscription Ianguagc. A new program transformation

techniquc is used, based on lnteger Linear Programming (lLP), to

calculatc automatically ih€ sttucture description of the ttans{ormed

design given the original dcsigns'dcscription and a trans{ormation

description. This technique is uscd for re{ining designs towards

eflicient implementations. lt has been applicd to the design o{ a

systolic FIR {ilter and o{ a paramctcrized mutliplier-accumulatot

module uscd in the Cathedral-ll silicon compilation system'

INTRODUCTION

Thc CATHEDRAL-ll silicon compiler [1] is organized according to

thc mect-in-thc-middlc principle [2l An automatic synthesis is

donc from thc high lcvel specification language SILAGE [3] into a

number of controllers and cxecution units which are predesigned as

parametcrized modulcs. Examples o{ paramcters are: the wordlength

of the inputs, the number of bussei, . . Thc set o{ required mod-

ule gencrators is designcd by circuit specialists as a set o{ LISP

procedures {41, automatically generating the circuit layout for the

module whcn instanciated with thc aPPtopiiate parameter values'

While thc high level synthesis is assumed to bc correct by con-

struction. th€ cortectness of the module generators is still being

veri{ied using classical veri{ication techniques like logic and circuit

level simulation. A furthcr complication in the case of module gen-

erators is that the corrcctness has to be guarantced not only for

one instancc but for the wholc allowable patam€ter domain o{ the

genctator proccdurcs. Due to thc multiplicity o{ possible instances

that can bc generated, vcriJication techniques that act on instances

are not appropriate anymore. This paper describcs a new technique

that can be uscd to guarantee thc functional correctness of such

parameterizcd hardware modules.

For formal veri{ication ol paratnelerized hardware modulcs gen-

eral thcorcm provers can be uscd. Researchers like Hunt [5i and

Gordon [6] resort to well known formalisms o{ predicate calculus

and higher ordcr logic to describe hardware. The Boyer-Moore

theorem prover [7] has been succesfully applied by Hunt for the

correctness proof of a microprocessor [5] and by German for the

verification of a parameterized comparator [8l The HOL theo'

rem proving environment [9] has been used by Cohn [10] and by

Joyce [11] to conduct proofs concerning microprocessors A com-

mon drawback [11] of thcsc general purpose theorem provers is

that the construction ofthc proofis a tedious task. Also thc proof

has to be well understood in advance.
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This drawback can be avoided by adopting a trans{ormational

design stylc: correctncss preserving transformalions [12] are used

to reJine designs towards efficicnl implcmentations. Shceran de-

velopcd ;rFP [13] and more reccntly Ruby [f+l to support such a

design style. pFP and Ruby are two formal languages specially de-

vclopcRcscarchers for the PUrpose of formal verification. However'

Borrione [15] showed that it is possible to use an existing Hardrnrare

Dcscription Language (HDL) for thc purposc of formal verification

Thc motivation for using existing HDLs stems from the fact that

thcy arc more familiar to hardware designers than the formalisms

nrcntioned above. Thc paramctcrized hardware module: to bc veri'

{ied, are described in an existing HDL and the technique presented

is used in a transformational design strategy [16]; the designer

speci{ics the trans{ormations he wants to apply to the design by

means of transformation dcscriptions. Both thc transformation de-

scription languagc and the HDL will be dcscribed in the following

section. The technique is bascd on a gcometrical interpretation o{

thc structur. and trans{ormation description as will be explained

latcr on. Thc implemcntation of the technique is based on the ILP

algorithm, which will be discusscd in the last section

IIARDWARE AND TRANSFORMATION DESCRIPTION

Thc HDL is callcd HILARICS [181. HILARICS starts {rom the con'

cept that the network st?xctu?e should be described completely

independent from thc otheraspects of a design. lt is an applicative

language in which designs can be dcscribed hierarchically and in a

parametcrized way. HILARIC5 has bcen used for the description of

sevcral hicrarchical and parameterizcd VLSI designs As a working

examplc thc structur€ description of thc piece of hardware o{ fig-

ure l is given. The minimum valuc o{the parameter p is three. The

drawing in {igure 1 is made for two specific valucs of the parameter

(p=3 
"nd 

p=7) The HILARICS description is given in ligure 2
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Figure 1: Working cxamplc: a simple row of building blocks B
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CELL cxamplc (p)

TERMINALS in out

COMPONENTS
IF p13 THEN FOR x=t TO p DO BIii END

ELSE NOCOMP
END

CONNECTIONS
IF p_3 THEN FOR x-l TO p DO

IF x:1 THEN in = 911;.;
ELSE IF x..p-l TIIEN Blx.ll.o - Bix{.i

ELSE BIx-tr.o - B;xl.i
B[xi'o = 6q1

END
END

END
ELSE NONET

END
END

Figurc 2: Thc structurc dcscription of the working ex.mplc

A tra4sformation description indicates two things:

. which primitivc Gquivalcnce trons{ormotion is used,

. and to which part(s) of thc design this primitive trans{orma-
tion applies.

The primitive €quivalence transformations are cottectness preserv-
ing transformations: if thcy are eppli€d to a spccific structure.
a ncw structure is obtained that is functionally equivalent to the
original onc, i{ and only if the original description ful{ils ccrtain con-
ditions depcnding on thc primitivc transformation being uscd. ln
the D5P.likc applications considcred so far, the following classes

of primitive equivalence transformations can be considcred:

o primitive arithmetic transformations can be applied to arith-
metic building blocks as e.g. full adders.

o primitivc boolean transformations are used to replace boolean
logic. The correctness of these transformations is chcckcd by
a tautology checkcr.

o primitive flowgraph transformations like delay management
and retiming opcrations.

More dctails on thc trans{ormations and the transformational de-
sign method can bc found in [171.

As an example of a transformation we will substitute some
blocks B of {igure I by diffcrent, but functionally equivalent, blocks
NEWB. This transformation will oniy havc to be executed if the
parametcr 'p' is largcr than four. The transformation description
to achievc this is given below and the corresponding trans{ormed
structure is givcn in {igure 3 (thc NOP operation indicates that no
transformation has to be executed).

TBANSFORMATION examptc ( p)

IF p35 THEN IF x-3 TIIEN IF x. b-l THEN SUBST(BtxlNEWBlx;)
ELSE NOP

END
ELSE NOP

END
ELSE NOP

END

out

Figure 3: The working example after transfornration

GEOMETRICAL INTERPRETATION

As a shorthand notation for the structure and transformation de-

scription wc usc a binary tree. Thc leafs o{ the trce correspond
to the nct de{initions resp. primit;v€ transformations. The vertices
contain the tests ofthc IF TIIEN ELSE constructs. The left edge o{
a vertcx corresponds lo thc THEII casc of the IF THEN ELSE con-
st?uct in that vcrtex and thc right edge corresponds to the ELSE

ca5c.

The conditions found in thc vcrtices can be secn as equali-
ties (or incgualities) defining hyperplanes (or hyperspaces) in an

N-dimcnsional space; N is thc number of indices and parameters
concerned in the struclurc dcscription. By following a path fronr
the root to a leaf L ofsuch a tree. thc vertices (conditions) encoun-
tcrcd, dcfinc a polytope whosc boundary planes are given by the
conditions in the verrlces. For all integer points within this poly-
topc, thc net dcfinition of thc lcaf L is active, i.e. the nets de{ined
by thc de{inition in the lcaf arc prcscnt in the structure. ln thc case

of thc transformation description, the primitive transformation de-

fined in thc leaf L has to bc executcd for all integer points within
this polytopc.

Figurcs 4 and 5 show the tree represenlation and the geometri-
cal interprctation of resp. the structure description and the trans-
formation dcscription of the exmple design. To calculate the
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Figure 4: The structure tree and its geometrical interpretation

description of the transformed structurc we will have to find out if
a particular net definition of the structure lree has to be trans{ormed
by a particular transformation dcfinition of thc transformation tree.

This can bc donc by looking for intersccticns o{ the polytopes in

which the respective definitions are active. For all integer points in
such an intersection both the net and the trans{orrnation de{inition
are active, meaning that the particular net has to be transformed
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Figure 5: The geomctrical intcrprctation o{ the transformation trec

5v the particular trans{ormation. Thcsc intersections can be de-

termined by inserting the complctc transformation tree in front of
cach leaf of the structure tree. The trec obtained in that way is

called the mergedtrce. Each root-leaf path RL of th€ merg€d trce

de:cribes exactly one intersection (see ligure 6). Thrce cases can

P>-3

P>=5 F>=5

x>3 Blx- 1 l.o=Blxl.i
Blxl.o = out1l.o = Blxl.i

NEWB[x-1
NEWB[x].i

l.o

NEWBtx-l1.o = B[x].i
Blxl.o = out

B[x-1].o = Blxl.i

B[x-l].o = NEWBlxl.i

Figure 7: Thc structure tree of the transformed design

Intersection of polytopes

ln the {irst stage we are given a numb€r of (in)equalities that de-

scribe an intersection and wc want to determine if that intersection
is non-empty, i.e. if the (in)equalities contain a fcasible solution.

Since we are dealing with hardware descriptions the solution will be

made up o{ integers (paramcters and indices). This problem can

bc mappcd on the ILP problem (pp.307 of [19]). An.algorithm to

solve this consists of thrcc parts:

1. dctermine an initial fcasiblc solution by solving a slightly dif-

ferent LP problcm by means of the simpler algorithm,

2. solvc thc relaxcd LP problem (i.e. identical to the ILP prob-

lcm but without the constraint for an integer solution) by

means of simplet.

3. itcratc to an optimal and integer solution by means o{ the
cutting plane algorithm.

For our problem we can leave out the second step: we only
want to know whcther thc sct of'constraints allows for a feasible

solution - mcaning thc two polytopes have an intersection - and

wc don't need an optimal solution (for that matter we don't have

a goal function to optimizc either).
Aftcr this {irsi stage we know whether there is an intersection

in the root-leaf path considcrcd. lf there is no intcrsection we check

the following root-lcaf path of the merged tree. lf there is an inter-

scction wc procced with thc second stage to eliminate redundant

(in)cqualities to obtain a minimal set dcscribing thc intcrsection.

Elimination of redundant equations

We havc a scqucnce of (in)equalities determining an intersection
and we want to eliminate all supcr{luous oncs. We suppose that
therc are no redundant (in)equalities among thosc of the structure
tree and then wc check one by one the (in)equalities of the trans-
formation trce. A rcdundant equation is an (in)equality which is

always falsc or always lruc givcn thc prcvious (in)equalities. We

usc thc ILP algorithm to dccidc about the redundancy of the last
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Figure 6: The merged tree'and its geometrical interprelation

be distinguished:
i. RL dcfincs a rcgion in which both net de{rnition and trans-

formation de{inition are active: the intersection o{ the two
polytopes. ln this region the ncw net definition can be cal-

culated from the old net definition and thc transformation
deii nition.

2. RL dclines a region in which the net dc{inition is active but
the lrans{ormation dc{inition is not: there is no intersection.
The old nct de{inition doesn't have to be transformed.

3. RL de{ines a region in which thc net definition is not active.

Thc trce reprcsenting thc transformed design can be derived
directly from this mergcd trce, using the techniques described in
the next scction. This transformcd tree is shown in {igure 7 and it
cortesponds to the drawings of figure 4.

ILP TECHNIQUES

The problcm is now rcduccd to:
r dcterminc wethcr thc two polytopcs have an intersection.

o if they havc an interscction dctermine the minimal sct of
(in)cqualitics dcscribing that intcrsection.
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(in)cquality in a 5cqucncc of (in)cqualitics by means of the {ollowing

technique (see figurc 8):

o if thc ILP finishes without a feasible solution then the last

(in)cquality is always false and thus can be dcleted. However.

sincc we first checked that thcre was indeed a solution. this
situation will not occur-

o if there exists a feasible solution we restart the lLP, but with
the last (in)equality inverted. l{ there is still a feasible solu-

tion then the last (in)cquality is not redundant (figure 8.a).
lf thcrc is no fcasiblc solution then the last (in)equality is

always true and can be deleted (tigure 8.b).

By proceeding in this way we can eliminate all the redundant (in)
equalities end prune the merged tree to obtain the tree representing
the transformed structure (see figure 7).

givon inoqualitio3

. Thc tcchniquc has been illustratcd on the basis of a simple
cxamplc. lt has also bcen applied for the design of a systolic FIR
filter and a paramcterized multiplier accumulator module used in
thc Cathedral-ll silicon compiler.
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Figure 8: Dcciding an inequality A using ILP

Extensions

A serious rcstriction of ILP is that it can only deal with linear
(in)equalitics. This means that expressions involving e.g. i j or
mod(i,j) can not be dealt with (i and j are variables). 5ince this
sort of constructs is allowed in most HDLs and is often used when

dcscribing for cxamplc systolic arrays, the algorithms will have to
bc adaptcd to work with non-linedr progtamming techniques.

CONCLUSIONS

It has bccn shown that it is feasible to do program transforma-
tion of hardware dcscriptions using an cxisting HDL. A new tech-

nique has bcen prcscntcd there{ore. Given the hardware description

of a dcsign and a transformation description, this program transfor-

malion tcchnique calculates thc hardwarc dcscription corresponding

with the transformed dcsign.
Thc mcthod is bascd on thc simpl€x and cutting-plane algorithm

for solving LP and ILP problcms. Hcnce it is limited to hardware
descriptions which involve only linear expressions though it could

bc cxtcnded by adding tcchniques to solvc non-linear programming

problems.
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ABSTRACT

ln this paper a new technique is presented for application of correct-
ness preserving transformations to designs, described in an exist-
ing hardware description language. A new program transformalion
technique is used, bascd on lntegcr Linear Programming (lLP), to
calculate automatically thc struclurc description of thc transfornrcd
design givcn the original designs' description and a transformation
description. This technique is used for refining designs towards
efficient implementations. lt has becn applied to thc design of a

systolic FIR lilter and of a parameterized mutliplier.accumulator
module used in the Cathedral-ll silicon compilation systcm.

INTn.ODUCTION

The CATHEDRAL-ll silicon compiler Ill is organized according to
the meet-in-thc-middle principle [21. An automatic synthesis is

done from the high level specilication language SILAGE [3] into a

number of controllers and execution units which are predesigned as

parameterized modulcs. Examples of parameiers are: the wordlength
of thc inputs, the number of busses, .,.The set of rcquired mod-
ulc gcneralors is designed by circuit specialists as a set of LlSP
proccdurcs [4], automatically gcnerating the circuit layout for the
module whcn instancieted with the appropriate parameter values.

While the high level synthesis is assumed to bc correct by con-
struction, the correctness of the module generators is still being
veri{ied using classical verification techniques like logic and circuit
lcvel simulation. A further complication in the case of module gen-
erators is that the correctness has to be guaranleed not only for
one inslance but for the whole allowable parameter domain of the
gcnerator procedures. Duc to lhe multiplicity of possible inslances
that can be generated, verilication tcchniques that act on instances
are not appropriatc anymorc, This paper describes a ncw lcchnique
that can be used to BUarsntee the functional correctness of such
paramcterized hardware modulcs.

For formal veri{icalion o{ parameterized hardware modules gen-
eral theorem provers can be used. Rcsearchers likc Hunt [5] and

Gordon [6] resort to wcll known formalisms of predicate calculus
and higher order logic to describe hardware. The Boyer-Moore
theorcm prover [7] has becn succesfully applied by Hunt for the
correctncas proof of a microprocessor [5] and by German for the
verification of a parametcrized cornparator [81. The HOL theo.
rem proving environmeni [9] has been used by Cohn [10] and by

Joyce [11] to conducl proo{s concerning microprocessors. A com-
mon drawback Il1l of these general purpose theorem provers is

that the construction of the proof is a tcdious task. Also lhc proof
has to be well understood in advance.
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This drawback can be avoided by adopting a transformational
design style: corrcclness prescrving lransforntalions [12] are uscrl
lo refinc designs towards cfficicnt inrplemcntations. Shceran de.
veloped pfP [13] and more reccntly Ruby [1al ro support such a

design style. pFP and Ruby arc two formal languages specially de-

velopeResearchers for the purpose of formal verification. However,
Bortione [15] showed that it is possible to use an exisring llardrunrc
Descriplion Language (HDL) for the purpose of formal veri{icaiion.
The motivation {or using existing HDLs stems from the fact that
they are more familiar to hardwarc dcsigners than the forrnalisnrs
mcntioned ebove. Thc parameterized hardware modules to be veri-
fied, are described in an cxisting HDL and thc techniquc presentcd
is used in e transformational design strategy [16]; the designcr
spccilies the lransformations he wants to apply to thc design by
means of transformation descriptinns, Both the transformation dr-
scription lenguage end the HDL will be described in the following
scction, The technique is based on a geometrical interpretation of
the structure and transfornralion description as will be explaincd
later on. The implementation of the tcchnique is based on the ILP
algorithm, which will be discussed in the last section.

HAItDw'ARD AND TRANSFONMATION DESCN-IPTION

The HDL is called HILARICS [181. HILARICS starts from thc con-
cept that the network slruchre should be described completely
indepcndent from lhe olher aspects of a dcsign. lt is an applicative
language in which designs can be described hierarchically and in a

paramclerized way. HILARICS has been used for the dcscription of
scveral hierarchical and parameterized VLSI designs. As a working
example thc structure description of the piece of hardware of lig-
ure 1is given. The minimum value of the parameter p is three. The
drawing in ligure 1 is madc for two specific values of the parameter
(p=3 and p=7). The HILARICS description is given in {igure 2.

oxamplo( 3)

ln out

examplo(7)

ln oul

B[l

qtl I

Figure 1; Workin6 example: a simple row of building blocks B
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CELL cxample (p)

TERMINALS in oul

COMPONEN'IS
. IF p)'3 THEN FOR x=l To p DO B[ij END

EI,SE NOCOMP
END

CONNECTIONS
IF p>.3 THEN FOR x=l TO p DO

JF x':l TIIEN in = B[x].i
ELSE IF x1:p-1 THEN BIx-1].o ,- Blxl.i

ELSE B[x-1].o ,, B[xl.i
B[xl.o = oul.

END
END

END
ELSD NONET

END
END

Figurc 2; Thc structurc description of ihe working cxAmplc

A transfonnation description indicates two things:

. which primitive equivalencc transformation is used,

. and to which part(s) of the dcsign this primitive transforma-
tion applies.

The primitive equivalence transformations are correctness preserv-

ing trensformations: if they ere applied to a specific atructurc,
a new structure is obtained that is functionally equivalent to the
original onc, if and only if th! original description fulfils certain con-
ditions depending on the primitive transformation being used. ln
the DSP-like applications considercd so far, the following classes

of primitive equivelence transformations can bc considered:

o primitivc arithmetic transformations can be applied to arith-
metic building blocks as e.g. full adders.

r primitive boolean transformations are used to replacc boolean

logic. The corrcctness of thcse transformations is checked by
a tautology checker.

o primitive llowgraph transformations like delay managemcnt
and retinring operalions.

More details on the transformalions and the transforntational de-

sign method can be found in [171.
As an example of a transformation we will subslitute some

blocks B of figure 1 by different, but functionally equivalent, blocks

NEWB. This lransformation will only have to be cxecuted if the
parameter 'p' is latger than four. The transformation description
to achieve this is given below and thc corresponding transformed
structure is given in ligure 3 (the NOP operation indicates that no
transformation hes to be execuled).

TRANSf ORMATION exnmple (p)

IF p:6 THEN IF x)3 THEN IF x;; ir-t THEN sUBST(B[x]NEWB[xl)
ELSE NOP

ENI)
ELSE NOP

END
ELSE NOP

END

out

Figure 3: Thc working exanrple after trons[ornratiorr

GEOMETItICAL INTERPN-ETA,TI()N

As a shotthand notalion for the structure and transformation de.
scription we use a binsry tree. The lcafs of ihe tree correspond

to the net delinitions resp. primitive lransformations. The vertices
contain the lests of the IF THEl,l BLSE constructs. The left edge of
6 vertex corresponds to the THEN case of the IF TIIEN ELSE con
struct in thet vcrtex and lhe right edge corresponds to thc ELSE

ca se.

The conditions found in the vertices can be seen as equali-
ties (or inequaliiies) dcfining hyperplanes (or hyperspaces) in nn
N-dimensional spacc; N is the nunrber of indiccs arrd paramclers
concerned in the structure description. By following a path fronr
the root to a leaf L of such a trce, the vertices (conditions) encoun-
tercd, define a polytope whose boundary plancs are given by the
conditions in thc vcrticec. For all integcr points within this poly.
tope, thc nct definition of the leaf L is active, i.e. the nets defined
by the definition in the leaf are present in thc structure. ln the case

of thc transformation description, the primitive transformation de-

fined in the leaf L has to be executed for all integer points within
this polytope.

Figurcs 4 and 5 show the trce representation and the geonretri-
cal interpretation of rcsp. the structure description and the trans-
formation description of thc exarnple design. To calculate the

P>=3

x>= 1

X<=p 1
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ln

o x am plo (3)
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out tr iEt BItl

ln
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n
E

E
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2

t

ln = B[xl.l
12316

B[x-11.o = B[x].1 B[x-1].o = B[xl.l

Blxl.o - oul

Figure 4: The structure tree and its geonretrical irrlerpretation

description of the transformed structurc we will have to find out if
e particular nei definition of the structure lree has to be lransformed
by a parlicular transformation delinition of lhe transformation tree.
This can be donc by looking for intersections of the polytopes in
which the respectivc de{initions are active. For all integer points in
such an intersection both the net and tlre lranslbrrrratiorr delinition
a?c ective, meaning that ihe particular net has to be transformed

T_.:l T_:r
Bl1

Btl I t.-t l':'l t,r,l l:i:,1 I ".',1



3

Figurc 5: Thc geometrical interpretation of the transformation trec

by the particular transformation. These intersections can be dc-
termined by inserting the complete transformation trec in fronl of
each leaf of the structure trce, The tree obtained in lhat way is

called the mergedlrce. Each root-leaf path RL of the merged tree
describes exactly one interscction (see figure 6). Three cases can

P>- 3

x>-t
ffi

x<. P ,b"
MNEI

P>=3

X>= 1

t'lll,lEI
X<-p

ftoNET

x<=1

l\lot{Er

X <= p-1

ln = 8[xl.l

P>=5 P>=5

x>3 Blx-1 l.o=Blxl.l
Blxl.o = out1l.o = B[xl.l

x=3 NEWB[x-11.o = B[xl.l
8[xl.o - outNEWBlx.l

NEWBlxl.l
l.o

Blx-11.o = Blxl,l

B[x-11.o = NEWB[x].|

Figure 7: The structure tree of lhe transformed design

Interscction of polytopes

ln thc firsl $latc we are given a numbcr of (ln)equalities that de-
scribe an intcrsection and wc want lo determinc if that interscction
is non-cmpty, i.c. if the (in)equalities contain a feasible solution,
Since we arc dealing with hardware descriptions the solution will bc
made up of integcrr (parameters and indices). This problern cen
be mapped on the ILP problem (pp.307 o{ [19]), An algorirhnr to
solvc this consistl of three parts:

1. dcternrine an initial feasible solution by solving a slightly dif.
ferent LP problcm by means of the cinrplec algorithm,

2. solve the rclaxed LP problem (i.c. identical to the lLp prob-
lem but without the constraint for en integer solution) by
means of tirlplex.

3, iteratc to en optimal and inleger solution by means of lhe
crttting plane algorithm.

For our problem we can leave out the second step: we only
want to know whcther the set of consiraints allows for a fcasibh
solution - meaning the two polytopes have an interscction - and
we don't need an optimal solution (for that matter we don'l have
e goal function to optimize cither).

After this lirst stage we know whether there is an intersection
in thc root-leaf path considered. lf thcre is no intersection we chcck
lhe following root-leef poth of the mergcd tree. lf there is en inter-
section we proceed with the second stage to eliminate redundant
(in)equalitics to obtain a minimal set dcscribing the intersection.

Elimination of redundant equations

We have e sequence of (in)equalities determining an intersection
and we want to eliminate all supcrfluous ones. We suppose that
lhere are no redundant (in)equalities among those of the structure
tree and then wc chcck one by one the (in)equalitics of the trans.
formation tree. A redundant equation is an (in)equality which is
always false or always true given the previous (in)equalities. We
use the ILP algorithm to decide about the redundancy of the last
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Figure 6: Thc merged lrce and its geometrical interpretation

bc distinguished:
1. RL delines a rcgion in which both net definition and trans-

formation delinition are active: the intcrsection of the two
polytopes. ln this region the new net definition can be cal-
culated from the old net definition and the trans{ornration
delinition.

2. RL defines a region in which the net delinition is active but
the lransformation delinition is not: there is no intersection.
The old net definition doesn't have to bc trans{ormed.

3. RL defines a region in which the net definition is not active.

The tree representing the transformed design can be derived
ditectly from this merged lree, using the techniques described in
the next section. This transformed tree is shown in figure 7 and it
corrcsponds to the drawings of figure 4.

Ir,P TECHNIQUES

The problem is now reduced lo:
o determine wethcr the lwo polytopcs have an intersection.

r if they have an intersection determine thc minimal set of
(in)equalities describing that intersecrion.

e
. BF.tln

7



q

(in)equality in a sequence of (in)equalities by means of thc folloruing
technique (see figure 8):

r if the ILP finishcs without a feasible solution lhen the last
(in)equality is always false and thus can be deleted. However,

. since we first checked that there was indeed a solution, this
situation will not occur.

r if there exists a feasiblc solution we restart the lLP, but with
the last (in)equality inverted. lf thcre is still a feasible solu-
tion then the last (in)equality is not redundant ({igure 8.a).
lf there is no fcasible solution then the last (in)cquality is

always truc and can be deleted (figure 8.b).

By proceeding in this way we can eliminate all the redundant (in)
equalities and prune the merged tree to obtain the tree representing
the transformed slructure (see figure 7).

0lvsn lnequalltler
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The tcchnique has been illustrated on thc basis of a simple
examplc. lt has also been applied for the design of a systolic FIR
filter and a paramcierized multiplier accumulator module used in
thc Cathedral-ll silicon compiler.
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Figure 8: Deciding an inequality A using ILP

Exlensisns

A serious restriction of ILP is that it can only deal with linear
(in)equalities. This means that expressions involving e.g. i .j or
mod(i,j) can not be dealt with (i and j are variables), Since this
sort of construcis is allowed in most HDLs and is o{ten used when
describing for example systolic arrays, thc algorithms will have to
be adapted to work with non-&near programrning techniques.

CONCIJUSIONS

It has been shown that it is feasiblc to do program transforma.
tion of hatdware descriplions using an cxisting HDL. A new tcch.
nique has been presented therefore. Given the hardware description
of a design and a transformation description, this progranr transfor-
mation lechnique calculates the hardware descriplion corresponding
with the transformed design.

The method is based on the simplex and cutting-plane algorithm
for solving LP and ILP problems. Hence it is limited to hardwarc
descriptions which involvc only linear cxpressions though it could
be extended by adding techniques to solve non-linear programming
problems.


