PROGRAM TRANSFORMATION OF HARDWARE
DESCRIPTIONS BY MEANS OF ILP.

D.Verkest. P.Johannes, L.Claesen, H.De Man"

IMEC!Kapeldreef 75, B-3030 Leuven, Belgium, Phone +32/16/281216

ABSTRACT

In this paper a new technique is presented for application of correct-
ness preserving transformations to designs, described in an exist-

ing hardware description language. A new program transformation
technique is used, based on Integer Linear Programming (ILP). to
calculate automaticaily the structure description of the transformed
design given the original designs’ description and a transformation
description. This technique is used for refining designs towards
efficient implementations. It has been applied to the design of a
systolic FIR filter and of a parameterized mutliplier-accumulator
module used in the Cathedral-ll silicon compilation system

INTRODUCTION

The CATHEDRAL-II silicon compiler [1] is organized according to
the meet-in-the-middle principle [2]. An automatic synthesis is
done from the high level specification language SILAGE [3] into a
number of controllers and execution units which are predesigned as
parameterized modules. Examples of parameters are: the wordlength
of the inputs, the number of busses, ... The set of required mod-
ule generators is designed by circuit specialists as a set of LISP
procedures [4], automatically generating the circuit layout for the
module when instanciated with the appropriate parameter values

While the high level synthesis is assumed to be correct by con-
struction, the correctness of the module generators is still being
verified using classical verification techniques like logic and circuit
level simulation. A further complication in the case of module gen-
erators is that the correctness has to be guaranteed not only for
one instance but for the whole allowable parameter domain of the
generator procedures. Due to the multiplicity of possible instances
that can be generated, verification techniques that act on instances
are not appropriate anymore. This paper describes a new technique
that can be used to guarantee the functional correctness of such
parameterized hardware modules.

For formal verification of parameterized hardware modules gen-
eral theorem provers can be used. Researchers like Hunt [5] and
Gordon [6] resort to well known formalisms of predicate calculus
The Boyer-Moore
theorem prover [7] has been succesfully applied by Hunt for the

and higher order logic to describe hardware

correctness proof of a microprocessor [5] and by German for the
verification of a parameterized comparator [8]. The HOL theo-
rem proving environment [9] has been used by Cohn [10] and by
Joyce [11] to conduct proofs concerning microprocessors. A com-
mon drawback [11] of these general purpose theorem provers is
that the construction of the proof is a tedious task. Also the proof
has to be well understood in advance.

‘ Professor at K.U.Leuven
'Interuniversity Micro Electronics Center

This drawback can be avoided by adopting a transformational
design style: correctness preserving transformations [12] are used
to refine designs towards efficient implementations. Sheeran de-
veloped uFP [13] and more recently Ruby [14] to support such a
design style. uFP and Ruby are two formal languages specially de-
velopeResearchers for the purpose of formal verification. However.
Borrione [15] showed that it is possible to use an existing Hardware
Description Language (HDL) for the purpose of formal verification
The motivation for using existing HDLs stems from the fact that
they are more familiar to hardware designers than the formalisms
mentioned above. The parameterized hardware modules to be veri-
fied, are described in an existing HDL and the technique presented
is used in a transformational design strategy [16]; the designer
specifies the transformations he wants to apply to the design by
means of transformation descriptions. Both the transformation de-
scription language and the HDL will be described in the following
section. The technique is based on a geometrical interpretation of
the structure and transformation description as will be explained
later on. The implementation of the technique is based on the ILP
algorithm, which will be discussed in the last section

HARDWARE AND TRANSFORMATION DESCRIPTION

The HDL is called HILARICS [18]. HILARICS starts from the con-
cept that the network structure should be described completely
independent from the other aspects of a design. It is an applicative
language in which designs can be described hierarchically and in a
parameterized way. HILARICS has been used for the description of
several hierarchical and parameterized VLS| designs As a working
example the structure description of the piece of hardware of fig-
ure 1is given. The minimum value of the parameter p is three. The
drawing in figure 1 is made for two specific values of the parameter
(p=3 and p=7). The HILARICS description is given in figure 2.

example(3)
o e
example(7)

Figure 1: Working example: a simple row of building blocks B

1174

ISCAS °89 CH2692-2/89/0000-1174 $1.00 © 1989 IEEE

CELL example (p)
TERMINALS in out

COMPONENTS
IF p»3 THEN FOR x=1 TO p DO Blij END
ELSE NOCOMP
END

CONNECTIONS
IF p3 THEN FOR x=1 TO p DO
IF x. 1 THEN in = Bixii
ELSE IF x-_p-1 THEN Bix-1l.0 - Bix/i
ELSE Blx-1l.0 = Bixli
B[x].0 = out

END
END
END
ELSE NONET
END
END

Figure 2: The structure description of the working example

A transformation description indicates two things:

e which primitive equivalence transformation is used,

¢ and to which part(s) of the design this primitive transforma-
tion applies.

The primitive equivalence transformations are correctness presery-
ing transformations: if they are applied to a specific structure.
a new structure is obtained that is functionally equivalent to the
original one, if and only if the original description fulfils certain con-
ditions depending on the primitive transformation being used. In
the DSP-like applications considered so far, the following classes
of primitive equivalence transformations can be considered:

o primitive arithmetic transformations can be applied to arith-
metic building blocks as e g. full adders

o primitive boolean transformations are used to replace boolean
logic. The correctness of these transformations is checked by
a tautology checker.

e primitive flowgraph transformations like delay management
and retiming operations.

More details on the transformations and the transformational de-
sign method can be found in [17].

As an example of a transformation we will substitute some
blocks B of figure 1 by different, but functionally equivalent, blocks
NEWB. This transformation will oniy have to be executed if the
parameter 'p' is larger than four. The transformation description
to achieve this is given befow and the corresponding transformed
structure is given in figure 3 (the NOP operation indicates that no
transformation has to be executed).

TRANSFORMATION example (p)

IF p-5 THEN IF x_.3 THEN IF x _%-1 THEN SUBST(BIx/NEWB/x})
ELSE NOP
END
ELSE NOP
END
ELSE NOP
END

1175

| T e T

example(3d)
o e [- o
exampie(7)

o-{oe- (L -

Figure 3: The working example after transformation

GEOMETRICAL INTERPRETATION

As a shorthand notation for the structure and transformation de-
scription we use a binary tree. The leafs of the tree correspond
to the net definitions resp. primitive transformations. The vertices
contain the tests of the IF THEN ELSE constructs. The left edge of
a vertex corresponds to the THEN case of the IF THEN ELSE con-
struct in that vertex and the right edge corresponds to the ELSE
case.

The conditions found in the vertices can be seen as equali-
ties (or inequalities) defining hyperplanes (or hyperspaces) in an
N-dimensional space; N is the number of indices and parameters
concerned in the structure description. By following a path from
the root to a leaf L of such a tree. the vertices (conditions) encoun-
tered, define a polytope whose boundary planes are given by the
conditions in the vertices. For all integer points within this poly-
tope, the net definition of the leaf L is active, i.e. the nets defined
by the definition in the leaf are present in the structure. In the case
of the transformation description, the primitive transformation de-
fined in the leaf L has to be executed for all integer points within
this polytope.

Figures 4 and 5 show the tree representation and the geometri-
cal interpretation of resp. the structure description and the trans-
formation description of the example design. To calculate the

rﬂ 8 @ o
,9 @ @
/

B{x-1].0

= B[x].i B[x-1].0

Blx].o =

B(x].i

out

Figure 4: The structure tree and its geometrical interpretation

description of the transformed structure we will have to find out if
a particular net definition of the structure tree has to be transformed
by a particular transformation definition of the transformation tree
This can be done by looking for intersecticns of the polytopes in
which the respective definitions are active For all integer points in
such an intersection both the net and the transiormation definition
are active, meaning that the particular net has to be transformed

NOP

|
/ SUBST(B[x],NEWB(x])
| x

4 S 6

Figure 5: The geometrical interpretation of the transformation tree

by the particular transformation. These intersections can be de-
termined by inserting the complete transformation tree in front of
each leaf of the structure tree. The tree obtained in that way is
called the merged tree. Each root-leaf path RL of the merged tree
describes exactly ane intersection (see figure 6). Three cases can

NONET B N mebeseossnanuge
H a g :r\c:l‘ 4
EAL A AT O
NONET i e e
RN
Ea
A
H
H] 4]
]
:
van st .
1
@ B(x-1].0 = Bx|J 1
B{x).0 = oul T T S i
Blx-1].0 = Blx].i

D

A = Biz]

Figure 6: The merged tree'and its geometrical interpretation

be distinguished:
1. RL defines a region in which both net definition and trans-
formation definition are active: the intersection of the two
polytopes. In this region the new net definition can be cal-
culated from the old net definition and the transformation

definition.

2. RL defines a region in which the net definition is active but
the transformation definition is not: there is no intersection
The old net definition doesn’t have to be transformed

3. RL defines a region in which the net definition is not active.

The tree representing the transformed design can be derived
directly from this merged tree, using the techniques described in
the next section. This transformed tree is shown in figure 7 and it
corresponds to the drawings of figure 4,

ILP TECHNIQUES

The problem is now reduced to:
¢ determine wether the two polytopes have an intersection.

o if they have an intersection determine the minimal set of
(in)equalities describing that intersection.

1176

. p>=5

B[x-1].0=B[x].i

3‘1 15 B[x].0 = out

= B[x].i
x=3 NEWBIx-1].0 = B[x].i
NEWB(x-1].0 B(x].o = out
NEWB(x].i m
B[x-1].0 = B[x].

B[x-1.0 = NEWB[x].i

Figure 7: The structure tree of the transformed design

Intersection of polytopes

In the first stage we are given a number of (in)equalities that de-
scribe an intersection and we want to determine if that intersection
is non-empty, i.e. if the (in)equalities contain a feasible solution
Since we are dealing with hardware descriptions the solution will be
made up of integers (parameters and indices). This problem can
be mapped on the [LP problem (pp.307 of [19]). An algorithm to
solve this consists of three parts:

1. determine an initial feasible solution by solving a slightly dif-
ferent LP problem by means of the simplez algorithm.

. solve the relaxed LP problem (i.e. identical to the ILP prob-
lem but without the constraint for an integer solution) by
means of simplez.

. iterate to an optimal and integer solution by means of the
cutting plane algorithm.

For our problem we can leave out the second step: we only
want to know whether the set of constraints allows for a feasible
solution - meaning the two polytopes have an intersection - and
we don't need an optimal solution (for that matter we don't have
a goal function to optimize either).

After this first stage we know whether there is an intersection
in the root-leaf path considered. If there is no intersection we check
the following root-leaf path of the merged tree. If there is an inter-
section we proceed with the second stage to eliminate redundant
(in)equalities to obtain a minimal set describing the intersection.

Elimination of redundant equations

We have a sequence of (in)equalities determining an intersection
and we want to eliminate all superfluous ones. We suppose that
there are no redundant (in)equalities among those of the structure
tree and then we check one by one the (in)equalities of the trans-
formation tree. A redundant equation is an (in)equality which is
always false or always true given the previous (in)equalities. We
use the ILP algorithm to decide about the redundancy of the last

(in)equality in a sequence of (in)equalities by means of the following
technique (see figure 8):

o if the ILP finishes without a feasible solution then the last
(in)equality is always false and thus can be deleted. However.
since we first checked that there was indeed a solution, this
situation will not occur.

o if there exists a feasible solution we restart the |LP. but with
the last (in)equality inverted. If there is still a feasible solu-
tion then the last (in)equality is not redundant (figure 8.a)
If there is no feasible solution then the last (in)equality is
always true and can be deleted (figure 8.b).

By proceeding in this way we can eliminate all the redundant (in)
equalities and prune the merged tree to obtain the tree representing
the transformed structure (see figure 7).

1.

given inequalities

given Inequalitles

AN

givan inequalities

given inequalities givan inequalities

Figure 8: Deciding an inequality A using ILP

Extensions

A serious restriction of ILP is that it can only deal with linear
(in)equalities. This means that expressions involving e.g. i | or
mod(i.j) can not be dealt with (i and j are variables). Since this
sort of constructs is allowed in most HDLs and is often used when
describing for example systolic arrays, the algorithms will have to
be adapted to work with non-linear programming techniques

CONCLUSIONS

It has been shown that it is feasible to do program transforma-
tion of hardware descriptions using an existing HDL. A new tech-
nique has been presented therefore. Given the hardware description
of a design and a transformation description, this program transfor-
mation technique calculates the hardware description corresponding
with the transformed design.

The method is based on the simplex and cutting-plane algorithm
for solving LP and ILP problems. Hence it is limited to hardware
descriptions which involve only linear expressions though it could
be extended by adding techniques to solve non-linear programming
problems.

1177

. The technique has been illustrated on the basis of a simple
example. It has also been applied for the design of a systolic FIR
filter and a parameterized multiplier accumulator module used in
the Cathedral-Il silicon compiler,

REFERENCES

[1] H.De Man, " Cathedral-ll: A Silicon Compiler for Digital Signal Pro-
cessing”, IEEE Design & Test of Computers, Dec 1986, Vol.3,
NO.6, pp.73-85

H.De Man, " Evolution of CAD tools towards third generation custom
VLS| design” Revue Phys. Appl. 22, Vol.22, Jan 1988, pp.31-45
P.N.Hilfinger, " A High Level Language and Silicon Compiler for Dig-
ital Signal Processing”, Proc CICC-85, pp.213-216

P.Six, " An Intelligent Module Generation Environment”, Proc 23rd
DAC, Las Vegas June 29 - July 2, 1986, pp.730-735

W.A Hunt, "FM8501: a Verified Microprocessor”, IFIP WG 10,2
Workshop From HDL descriptions to guarantred correct circuit
designs, Grenoble (France), September 1986, pp.85-114

M.Gordon, "Why higher-order logic is a good formalism for speci-
fying and verifying hardware”, in Formal Aspects of VLSI Design,
editors: G.Milne P.Subrahmanyam, Elsevier Science Publishers B V
(North-Holland), 1985 pp.153-178

[2

3

[4

5

(6]

[7] R.S.Boyer, 1.5.Moore, “A Computational Logic”, Academic Press
New York 1979, ISBN 0-12-122950-5
[8] S.M.German, Y.Wang, " formal Verification of Parameterized Hard-

ware Designs", Proc ICCD-45, October 1985, pp.549-552

M.Gordon, “"HOL: A Proof Generating System for Higher-Order
Logic", in VLSI Specification, Verification and Synthes:s, editors:
G.Birtwistle, P.Subrahmanyam, Kluwer Academic Publishers, 1988,
pp.73-128

A.Cohn, "A Proof of Correctness of the Viper Microprocessor: The
First Level”, in VLSI Specification, Verification and Synthesis, ed-
itors: G.Birtwistle, P.Subrahmanyam, Kluwer Academic Publishers,
1988, pp.28-71

J.J.Joyce, "Formal Verification and Implementation of a Micropro-
cessor”, in VLSI Specification, Verification and Synthes:s, editors:
G.Birtwistle, P.Subrahmanyam, Kluwer Academic Publishers. 1988,
pp.129-157

H.Eveking, Synthesis
Transformations - Cooperative Approaches to Correct Hardware De-
sign”, IFIP WG 10.2 Workshop From HDL descriptions fo guar-
anteed correct circuit designs, Grenoble (France). September 1986
pp.229-239

M.Sheeran, " uFP, an Algebraic VLS| Design Language”. Ph.D. The-
sis, Programming Research Group, Oxford University, 1983

[9

(10]

(11]

[12] "Verification, and Correctnes-Preserving-

(13]
[14] M.Sheeran, "Describing and Reasoning about Circuits using Rela-
tions”, Proc. Leeds workshop on Theoretical Aspects of VLSI De-
sign, 1986

D.Borrione, "An Approach to the Formal Verification of VHOL De-
scriptions”, Rapport de Recherche, Institut National Polytechnique
de Grenoble Grenoble (France), November 1987

L.Claesen, " Guided Synthesis and Formal Verification Techniques for
Parameterized Hardware Modules”, Proc. Compeuro §8, pp.90-99

(15]

(16]
[17] D.Verkest, "Formal Techniques for Proving Correctness of Param-
eterized Hardware using Correctness Preserving Transformations”,
International working Conference on "The Fusion of Harduware
Design and Verification ™, Glasgow, July 3-6, 1988, pp.75-96

[18] E.Vanden Meersch, R.Severyns, “HILARICS: User's Manual, 2nd

edition”, Internal report IMEC, MRO3-KUL-7-B3-3, January 1986

C.H.Papadimitriou, K.Steiglitz, "Combinatorial Optimization: Algo-
rithms and Complexity”, Prentice Hall, 1982

(19]

PROGRAM TRANSFORMATION OF HARDWARE
) DESCRIPTIONS BY MEANS OF ILP.

D.Verkest, P.Johannes, L.Claesen, I[I.De Man’

IMEC!Kapeldreef 75, B-3030 Leuven, Belgium, Phone +32/16/281216

ABSTRACT

In this paper a new technique is presented for application of correct-
ness preserving transformations to designs, described in an exist-

ing hardware description language. A new program transformation
technique is used, based on Integer Linear Programming (ILP), to
calculate automatically the structure description of the transformed
design given the original designs’ description and a transformation
description. This technique is used for refining designs towards
efficient implementations. It has been applied to the design of a
systolic FIR filter and of a parameterized mutliplier-accumulator
module used in the Cathedral-ll silicon compilation system,

INTRODUCTION

The CATHEDRAL-II silicon compiler [1] is organized according to
the meet-in-the-middle principle [2]. An automatic synthesis is
done fram the high level specification language SILAGE [3] into a
number of controllers and execution units which are predesigned as
parameterized modules. Examples of parameters are: the wordlength
of the inputs, the number of busses, ... The set of required mod-
ule generators is designed by circuit specialists as a set of LISP
procedures [4], automatically generating the circuit layout for the
module when instanciated with the appropriate parameter values.

While the high level synthesis is assumed to be correct by con-
struction, the correctness of the module generators is still being
verified using classical verification techniques like logic and circuit
level simulation. A further complication in the case of module gen-
erators is that the correctness has to be guaranteed not only for
one instance but for the whole allowable parameter domain of the
generator procedures. Due to the multiplicity of possible instances
that can be generated, verification techniques that act on instances
are not appropriate anymore. This paper describes a new technique
that can be used to guarantee the functional correctness of such
parameterized hardware modules.

For formal verification of parameterized hardware modules gen-
eral theorem provers can be used. Researchers like Hunt [5] and
Gordon [6] resort to well known formalisms of predicate calculus
and higher order logic to describe hardware. The Boyer-Moore
theorem prover [7] has been succesfully applied by Hunt for the
correctness proof of a microprocessor [5] and by German for the
verification of a parameterized comparator [8]. The HOL theo-
rem proving environment [9] has been used by Cohn [10] and by
Joyce [11] to conduct proofs concerning microprocessors. A com-
mon drawback [11] of these general purpose theorem provers is
that the construction of the proof is a tedious task. Also the proof
has to be well understood in advance.

*Professor at K.U.Leuven
Hnteruniversity Micro Electronics Center

This drawback can be avoided by adopting a transformational
design style: correctness preserving transformations [12] are used
to refine designs towards efficient implementations. Sheeran de-
veloped ;:FP [13] and more recently Ruby [14] to support such a
design style. £FP and Ruby are two formal languages specially de-
velopeResearchers for the purpose of formal verification. However,
Borrione [15] showed that it is possible to use an existing Hardware
Deseription Language (HDL) for the purpose of formal verification.
The motivation for using existing HDLs stems from the fact that
they are more familiar to hardware designers than the formalisms
mentioned above. The parameterized hardware modules to be veri-
fied, are described in an existing HDL and the technique presented
is used in a transformational design strategy [16]; the designer
specifies the transformations he wants to apply to the design by
means of transformation descriptions, Both the transformation de-
scription language and the HDL will be described in the following
section, The technique is based on a geometrical interpretation of
the structure and transformation description as will be explained
tater on. The implementation of the technique is based on the ILP
algorithm, which will be discussed in the last section.

HARDWARE AND TRANSFORMATION DESCRIPTION

The HOL is called HILARICS [18]. HILARICS starts from the con-
cept that the network structure should be described completely
independent from the other aspects of a design. It is an applicative
language in which designs can be described hierarchically and in a
parameterized way. HILARICS has been used for the description of
several hierarchical and parameterized VLS| designs. As a working
example the structure description of the piece of hardware of fig-
ure 1 is given. The minimum value of the parameter p is three. The
drawing in figure 1 is made for two specific values of the parameter
(p=3 and p=7). The HILARICS description is given in figure 2.

example{d)

 Ho{=— o

example{7)

Figure 1: Working example: a simple row of building blocks B

CELL example (p)
TERMINALS in out

COMPONENTS
« IF p>3 THEN FOR x=1 TO p DO B[i] END
ELSE NOCOMP
END

CONNECTIONS
IF p>3 THEN FOR x=1 TO p DO
IF x<1 THEN in = Bfx].
ELSE IF x<p-1 THEN B(x-1]).0 == B[x].i
ELSE B[x-1].0 - B[x|.i

Bix].0 == oul
END
END
END
ELSE NONET
END
END

Figure 2: The structure description of the working example

A transformation description indicates two things:

e which primitive equivalence transformation is used,

¢ and to which part(s) of the design this primitive transforma-
tion applies.

The primitive equivalence transformations are correctness preserv-
ing transformations: if they are applied to a specific structure,
a new structure is obtained that is functionally equivalent to the
original one, if and only if the original description fulfils certain con-
ditions depending on the primitive transformation being used. In
the DSP-like applications considered so far, the following classes
of primitive equivalence transformations can be considered:

e primitive arithmetic transformations can be applied to arith-
metic building blocks as e.g. full adders.

o primitive boolean transformations are used to replace boolean
logic. The correctness of these transformations is checked by
a tautology checker.

o primitive flowgraph transformations like delay management
and retiming operations.

More details on the transformations and the transformational de-
sign method can be found in [17].

As an example of a transformation we will substitute some
blocks B of figure 1 by different, but functionally equivalent, blocks
NEWB. This transformation will only have to be executed if the
parameter 'p’ is larger than four. The transformation description
to achieve this is given below and the corresponding transformed
structure is given in figure 3 (the NOP operation indicates that no
transformation has to be executed).

TRANSFORMATION example (p)

IF p>5 THEN IF x>3 THEN IF x-: -1 THEN SUBST(B[x|NEWB(x])
ELSE NOP
END
ELSE NOP
END
ELSE NOP
END

example(3)
o || [11] = oo
example(7)

Rl e 2 o Y o o 0

Figure 3: The working example after transformation

GEOMETRICAL INTERPRETATION

As a shorthand notation for the structure and transformation de-
scription we use a binary tree. The leafs of the tree correspond
to the net definitions resp. primitive transformations. The vertices
contain the tests of the IF THEN ELSE constructs. The left edge of
a vertex corresponds to the THEN case of the IF THEN ELSE con
struct in that vertex and the right edge corresponds to the ELSE
case.

The conditions found in the vertices can be seen as equali-
ties (or inequalities) defining hyperplanes (or hyperspaces) in an
N-dimensional space; N is the number of indices and parameters
concerned in the structure description. By following a path from
the root to a leaf L of such a tree, the vertices (conditions) encoun-
tered, define a polytope whose boundary planes are given by the
conditions in the vertices. For all integer points within this poly
tope, the net definition of the leaf L is active, i.e. the nets defined
by the definition in the leaf are present in the structure. In the case
of the transformation description, the primitive transformation de-
fined in the leaf L has to be executed for all integer points within
this polytope.

Figures 4 and 5 show the tree representation and the geometri-
cal interpretation of resp. the structure description and the trans-
formation description of the example design. To calculate the

p

6 = o
() s5|.d @ &
norer |1

4 H @
NONET 3 |—F

In = B[x].l

B[x-1].0 = B[x].l Blx-1].0 = B[x].i
B{x).0 = out

Figure 4: The structure tree and its geometrical interpretation

description of the transformed structure we will have to find out if
a particular net definition of the structure tree has to be transformed
by a particular transformation definition of the transformation tree.
This can be done by looking for intersections of the polytopes in
which the respective definitions are active. For all integer points in
such an intersection both the net and the transformation definition
are active, meaning that the particular net has to be transformed

NOP

SUBST(B[x].NEWB[x])

x
»

1 2 3 4 5 8

Figure 5: The geometrical interpretation of the transformation tree

by the particular transformation. These intersections can be de-
termined by inserting the complete transformation tree in front of
each leaf of the structure tree. The tree obtained in that way is
called the merged tree. Each root-leaf path RL of the merged tree
describes exactly one intersection (see figure 6). Three cases can

<~ Blx-1).0 = B[x}| 1
@ Blx).o = out '
@ Bix-1]l.0 = Bx].i

In = Bx).
Figure 6: The merged tree and its geometrical interpretation

be distinguished:

1. RL defines a region in which both net definition and trans-
formation definition are active: the intersection of the two
polytopes. In this region the new net definition can be cal-
culated from the old net definition and the transformation
definition.

2. RL defines a region in which the net definition is active but
the transformation definition is not: there is no intersection.
The old net definition doesn’t have to be transformed.

3. RL defines a region in which the net definition is not active.

The tree representing the transformed design can be derived
directly from this merged tree, using the techniques described in
the next section. This transformed tree is shown in figure 7 and it
corresponds to the drawings of figure 4.

ILP TECHNIQUES

The problem is now reduced to:
o determine wether the two polytopes have an intersection.

o if they have an intersection determine the minimal set of
(in)equalities describing that intersection.

p>=5

B[x-1].0=B[x].i

B{x-11.0 = Bx]J Bix.o = out

NEWB([x-1].0 = Bx].

NEWB[x-1].0 B[x].0o = out

NEWB[x]. ¢
B[x-1].0 = B[x].l

B[x-1].0 = NEWB[x]

Figure 7: The structure tree of the transformed design

In the fitst stage we are given a number of (In)equalities that de-
scribe an intersection and we want to determine if that intersection
is non-empty, i.e. if the (in)equalities contain a feasible solution,
Since we are dealing with hardware descriptions the solution will be
made up of integers (parameters and indices). This problem can
be mapped on the ILP problem (pp.307 of [19]). An algorithm to
solve this consists of three parts:

1. determine an initial feasible solution by solving a slightly dif-
ferent LP problem by means of the simpler algorithm,

2. solve the relaxed LP problem (i.e. identical to the ILP prob
lem but without the constraint for an integer solution) hy
means of simplez.

3. iterate to an optimal and integer solution by means of the
cutting plane algorithm,

For our problem we can leave out the second step: we only
want to know whether the set of constraints allows for a feasible
solution - meaning the two polytopes have an intersection - and
we don't need an optimal solution (for that matter we don't have
a goal function to optimize either).

After this first stage we know whether there is an intersection
in the root-leaf path considered. If there is no intersection we check
the following root-leaf path of the merged tree. If there is an inter-
section we proceed with the second stage to eliminate redundant
(in)equalities to obtain a minimal set describing the intersection.

Elimina_ti_p_n_ of redundant equations

We have a sequence of (in)equalities determining an intersection
and we want to eliminate all superfluous ones. We suppose that
there are no redundant (in)equalities among those of the structure
tree and then we check one by one the {in)equalities of the trans-
formation tree. A redundant equation is an (in)equality which is
always false or always true given the previous (in)equalities, We
use the ILP algorithm to decide about the redundancy of the last

(in)equality in a sequence of (in)equalities by means of the following
technique (see figure 8):
e if the ILP finishes without a feasible solution then the last
(in)equality is always false and thus can be deleted. However,
- since we first checked that there was indeed a solution, this
situation will not occur.

if there exists a feasible solution we restart the ILP, but with
the last (in)equality inverted. If there is still a feasible solu-
tion then the last (in)equality is not redundant (figure 8.a).
If there is no feasible solution then the last (in)equality is
always true and can be deleted (figure 8.b).

By proceeding in this way we can eliminate all the redundant (in)
equalities and prune the merged tree to obtain the tree representing
the transformed structure (see figure 7).

1.

glven Inequaiilles

A

Z/4

given Inequalitles

2.b B
OK
glven inequalities

Figure 8: Deciding an inequality A using ILP

glvan Inequalities

A

/
P\
glven inequalities

Extensions

A serious restriction of ILP is that it can only deal with linear
(in)equalities. This means that expressions involving e.g. i j or
mod(i,j) can not be dealt with (i and j are variahles). Since this
sort of constructs is allowed in most HDLs and is often used when
describing for example systolic arrays, the algorithms will have to
be adapted to work with non-linear programming techniques.

CONCLUSIONS

It has been shown that it is feasible to do program transforma-
tion of hardware descriptions using an existing HDL. A new tech-
nique has been presented therefore. Given the hardware description
of a design and a transformation description, this program transfor-
mation technique calculates the hardware description corresponding
with the transformed design.

The method is based on the simplex and cutting-plane algorithm
for solving LP and ILP problems. Hence it is limited to hardware
descriptions which involve only linear expressions though it could
be extended by adding techniques to solve non-linear programming
problems.

The technique has been illustrated on the basis of a simple
example. It has also been applied for the design of a systolic FIR
filter and a parameterized multiplier accumulator module used in
the Cathedral-ll silicon compiler.

REFERENCES

[1] H.De Man, " Cathedral-1l: A Silicon Compiler for Digital Signal Pro-
cessing”, IEEE Design & Test of Computers, Dec 1986, Vol.3,
NO0.6, pp.73-85

[2] H.De Man, " Evolution of CAD tools towards third generation custom
VLS| design" Revue Phys. Appl. 22, Vol.22, Jan 1988, pp.31-45

[3] P.N.Hilfinger, "A High Level Language and Silicon Compiler for Dig-
ital Signal Processing”, Proc CICC-85, pp.213-216

[4] P.Six, "An Intelligent Module Generation Environment”, Pror 28rd
DAC, Las Vegas June 29 - July 2, 1986, pp.730-735

[5] W.A.Hunt, "FMB501: a Verified Microprocessor”, JIFIP WG 10.2
Workshop From HDL descriptions to guaranteed correcl cireuit
designs, Grenoble (France), September 1986, pp.85-114

[6] M.Gordon, "Why higher-order logic is a good formalism for speci-
fying and verifying hardware”, in Formal Aspects of VLSI Design,
editors: G.Milne P.Subrahmanyam, Elsevier Science Publishers B.V.
(North-Holland), 1985 pp.153-178

R.S.Boyer, 1.5.Moore, "A Computational Logic", Academic Press,
New York 1979, ISBN 0-12-122950-5

[8] 5.M.German, Y.Wang, "Formal Verification of Parameterized Hard-
ware Designs”, Proc ICCD-85, October 1985, pp.549-552

{9) M.Gordon, "HOL: A Proof Generating System for Higher-Order
Logic", in VLSI Specification, Verification and Synthesis, editors:
G.Birtwistle, P.Subrahmanyam, Kluwer Academic Publishers, 1988,
pp.73-128

[10] A.Cohn, "A Proof of Correctness of the Viper Microprocessor: The
First Level”, in VLSI Specification, Verification and Syntheais, ed-
itors: G.Birtwistle, P.Subrahmanyam, Kluwer Academic Publishers,
1988, pp.28-71

[11] J.).Joyce, "Formal Verification and Implementation of a Micropro-
cessor”, in VLSI Specification, Verification and Synthesis, editors:
G.Birtwistle, P.Subrahmanyam, Kluwer Academic Publishers, 1988,
pp.129-157

[12) H.Eveking, "Verification, Synthesis and Correctnes-Preserving-
Transformations - Cooperative Approaches to Correct Hardware De-
sign”, IFIP WG 10.2 Workshop From HDL descriptions to guar-
anteed correct circuit designs, Grenoble (France), September 1986,
pp.229-239

[13] M.Sheeran, " FP, an Algebraic VLSI Design Language”, Ph.D. The-
sis, Programming Research Group, Oxford University, 1983

[7

[14] M.Sheeran, " Describing and Reasoning about Circuits using Rela-
tions”, Proc. Leeds workshop on Theoretical Aspects of VLSI De-
sign, 1986

[15] D.Borrione, "An Approach to the Formal Verification of VHDL De-
scriptions”, Rapport de Recherche, Institut National Polytechnique
de Grenoble Grenoble (France), November 1987

[16] L.Claesen, " Guided Synthesis and Formal Verification Techniques for
Parameterized Hardware Modules”,’roc. Compeuro 88, pp.90-99

[17] D.Verkest, "Formal Techniques for Proving Correctness of Param-
eterized Hardware using Cotrectness Preserving Transformalians",

International working Conference on "The Fusion of Hardware
Design and Verification”, Glasgow, July 3-6, 1988, pp.75-96

[18] E.Vanden Meersch, R.Severyns, "HILARICS: User's Manual, 2nd
edition”, Internal report IMEC, MROS-KUL-7-B3-9, January 1986

[19] C.H.Papadimitriou, K.Steiglitz, " Combinatorial Optimization: Algo-
rithms and Complexity”, Prentice Hall, 1982

