
Algorithms, Software, Architecture / J. van Leeuwen (Editor)
Information Processing 92, Volume I
Elsevier Science Publishers B.V. (North-Holland)
O 1992 IFIP. All rights reserved.

703

Performance through hierarchy in static timing
verification
P. Johannes o, L. Claesen ó, H. D" M.n ó

" IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)
ó Professor at Katholieke Universiteit Leuven Belgium

Abstract
Recent algorithms for timing verification that calculate the longest sensitizable

path often perform inefrciently for complex circuits with subcircuits having recon-
vergent logic causing the presence of íalse paths. This paper presents new algorithms
forexploitinghierarchyinstaticallysensitizablepathanalysis. Theusefulnessofthe
method is demonstrated with two complex modules having false paths and the most
difficult ISCAS-85 benchmarks that have false paths. Depending on the complexity
of the false paths within the circuit, speedups of several orders of magnitude are
demonstrated while maintaining the accuracy of the LSP algorithm.

Keyword Codes: B.7.2; B.7.3
Keywords: Integrated Cilcuits, Design Aids; Reliability and Testing

L Introduction
As integrated circuit designs evolve toward highel performance and complexity, there is an
increasing need for fast and acculate timing analysis [1]. The presence of many false paths
in VLSI circuits calls for complex algorithms to detect the longest true paths in a circuit.
Although the viable path concept [2] and other dynamic false path approaches [3, 4] are
theoretically more accurate, experimental evidence 12,3,4,5, 6] suggests that static false
path analysis is generally as accurate in real circuits. Therefure tlu Lasis uI tle researul
presented in this paper is the LSP algorithm iniroduced in [7].

The main performance problem of this algorithm is explained in section 2. In section 3

an hierarchical approach is presented which overcomes these ploblems. This solution is
quite different from the one published in [6], which is potentially limited for certain classes
of circuits, e.g. multipliers. To the authors' knowledge no algorithm fol the exploitation
of hierarchy in the {alse path problem has been published by other research groups. The
results of the new approach and its applicability are discussed in section 4. Finally, some
results on real life circuits and some conclusions are given.

2 Motivation
For the purpose of timing verification the circuit is transformed in an acyclic event graph
Vxtinwhich:



704

1. ),) is the set of vertices u which represent transitions on circuit nodes. These tran-

sitions can be either up or down.

2. t is the set of edges e between vertices u. They are weighted with the delay d and

contain the logic conditions on circuit nodes necessary for the traversal of e.

For a better understanding the LSP algorithm used in static timing verification is briefly

sketched below.

1. In a vertex of the graph, choose the best edge to add to the path, based on a quantity
called. esperance which is the maximal length ihe global path could attain if this

edge is added to the path.
2. If the chosen edge is compatible with the path which was collected up to this point,

add the edge to the path. Go to I with the starting vertex being the end vertex of

the newly added edge. If ihe edge is not compatible with the recorded path, go to
3.

3. Try the other edges leaving the vertex in decreasing order of esperance until a

compatibie edge is found, and add it to the paih. Go to I with the starting vertex

being the end vertex of the newly added edge.

4. If an output is reached, stoP.

5. If in a given vertex no edge can be found, remove the last edge added to the path

and go to 3 with the starting vertex of the removed edge.

The performance problem of this algor.ithm is caused by step 5. This step causes the

algorithm to inspect all possible paths, in decreasing order of maximal attainable length,

until a path is found that is completely statically sensitizable. This backtracking makes

the complexity of the algorithm linear in the number of false paths that are longer than

the longest sensitizable path. Therefore the worst case behavior of the algorithm is expo-

nential with the size of the event graph. An example of this behavior is shown in figure 1

where o and r indicate conflicting sets of propagation conditions along edges from A to
E. If each edge has length 1, the LSP algorithm will first examine the 36 r paths which

cannot reach E before considering one of the o paths.

Figure 1: Complexity in the LSP-algorithm

It must be noted that if there are no faise paths in the graph, the algorithm performs

linearly with the size of the graph.

A solution to this performance bottleneck is to have the algorithm analyze a graph

with as few faise paths as possible. An in Ioco removal of the {alse paths would be

unpractical for the same complexity reasons as mentioned above. Therefore the analysis

must be performed on a graph which has as few as possible false paths by construction.



705

It is possible to use hierarchy to obtain such a graph: if a leaf cell of a circuit is
completely free of false paths, then false paths at higher level can only be created through
hierarchical assembly. The number of false paths will thus be greatly reduced, as only the
composition and not the content of the leaf cells can introduce unsensitizable paths.

Consider for example the 4 bit carry bypass adder section of figure 2. It consists of
4 full adders and a nand-multiplexor bypass cell. The full adders each contain 24 false
paths and the bypass section contain 6 false paths. In a 4 bit carry bypass section they
introduce 346 false paths. Starting from leaf cells with no false paths, i.e. removing all
the unsensitizable paths from the full adder cells, only have 78 false paths remain in the
4 bit section.

b0 a0 b]- a1 b2 a2 b3 a3

o
P.

o

d

s0 sl- s2 s3

Figure 2: A 4 bit carry bypass section

In the next section the construction of the trming model without {alse paths is dis-
cussed.

3 Model generation
The generation of a timing model that is free of false paths can be done in several ways:

o Path Enumeration: all paths are enumerated, the false ones are rejected. This is
the simplest method but has prohibitive memory requirements.

o Path Enumeration with Optimal Compaction: this has been presented in [8]. The
graph that is produced is minimal but the cpu-time required to do so is also pro-
hibitive.

e LSP based compaction: a path is created and checked for sensitizability in a forward
step. In a backward step the graph is compacted taking together events that refer
to the same node, have the same transition and have the same subgraph.

td

oQu.V

' d-
tsl
ourlJ

t,},

o
o

tÉ-
B
o
rJ

oQ,i u

" ,oh
tsJ

ov)lJ

ct

o
F.
Ë

c)

fd
n
orí(n b

7



706

All of the above methods result in a graph without false paths in which events may

be duplicated for the preservation of the logic behavior. A small example of such a

transformation is shown in figure 3, whele o and o indicate conflicting sets of propagation

conditions. The algorithm that offers the best solution, TVG, is presented below. It

b+d b-d
a

c+e
a

h---o-'à
c+e

a.

s
h----o-;c,+g, 

-o-'-t 
"

b.

Figure 3: a. graph with logic incompatibilities, b. graph with same logic behavior without
logic incompatibilities

works in a similar way as the ledundancy removal algolithm presented in l9l, bui acts on

the event graph only and does not change the behavior of the circuit in any way.

The example in figure 3 can be used to illustrate what the algorithm does. While
traversing the graph all sensitizable paths are copied. This means that edges (a,b),(b,d')
and (d,g) will be copied to the new gtaph. This is a fir'st sensitizable path as the prop-

agation conditions do not conflict. Edge (d, /) will not be represented in the path con-

taining (a,b),(b,d) of the copied graph as its propagation conditions r are incompat-
ible with o of edge (a,b). Similarly, edges (4, c),(c,e) and (e,/) will be copied, but

not (e,g). To maintain the logic behavior', the sensitizable path (h,c),(c,e),(e,9) has

also to be copied to the new graph, but as such it would reintroduce the false paths

(h,c),(c,"),(",Í) and(a,c),(c,e),(e,9). Toavoidthis,eventscandeareduplicatedand
the path (h,c'),(c',e'),("',9) is added to the new graph. The analysis terminates when

ail paths are examined. The events e artd e'in figure 3.b represent different events deter-

mined by a different sequence of event causalities from different logic conditions. A more

formal definition of the algorithm is given below'

The algorithm plesented below transforms the event graph of a given circuit into one

that has no statically unsensitizable paths. A dumtny evett, root. is connected to all

inputs by edges that have neither deiay nor propagation conditions. A path is a collection

of pa,irs of edges and events. .lfode refers to the circuit node connected with an event.

Copy the root tro neuttoot.
Start with euent = root,new-euent = new:root,path : {}

1. Forward Step:

V outgoing edges of euenl
if (edge is compatible wiíh path)

ad.d. euent and ed,ge to pat'h

copy ed,ge and append the copy to rtew-euent

new-cuent: copy of the end evení ol edge

the incoming edge to neut-euent is the copy ol edge

else

if (all edges oÏ euent are examined

lleuent is on an output) go to 2.



707

2. Backward:
Combine(netr -euent with the node it refers to)
if (all edges are visited) return(new-root)
pop (new-euent,eilge) from the path
if (the starting event oï edge has no unvisited outgoing edges) go to 1.
else go to 2.

The procedure Combine(ne w -e,u ent,n od,e):

lel, euentJist be the list of events at nod,e of same transition as neu_euent.
ií (new-euent has outgoing edges)

if (leuent € euent,Jist such that:
{the sei of outgoing edges of eoenl}
: {the set of outgoing edges of new-euent})
add the incoming edges of new-euent to those of euent
d,elete new-euent and its outgoing edges

else

if. (new-euent is on an output)
if (euentJist l: NULL)

add the incoming edges of new-.euent to those ol euentJ,ist
delete new-euent

else add new-euent to node
else delete new-euent and its incoming edge

In the next section the result of applying this algorithm in the false path analysis is
presented.

4 ExperimentalResultsl
First two cases which pinpoint the usefulness of the introduction of the hierarchy in the
LSP analysis are discussed. Next the application on some benchmarks and a discussion
of the applicability is given.

4.L 24 bit carry bypass alu
The circuit consists of 116 instances of 5 leaf cells: a bypass, a carry even, a carry odd, a
general function block even and odd cell. The genelation of timing views for these cells
from transistor level descriptions takes 18s [10], simulations included. The LSP analysis
of the graph of the fuil ALU takes 22804s (> 6 hrs.).
A close look at the graph reveals that all false paths are generated in the bypassed 4 bit
sections of the carry chain. Therefore a new timing view is generated of those 4 cany
cells and a bypass cell, in 1.25s.

The introduction of this new level of hierarchy in the analysis reduces the number of
instances to 100, and the LSP analysis time to 2.6s. The longest paths remain the same.
Gain on the LSP analysis: 2280410.251 2.6) : 3591.

lAll the times mentioned are cpu times on a DecStaiion 3100.



708

4.2 16*16 booth multiplier
This is a standard cell design, in a2.4pm process with worst case parameters. A partic-

ularity is that the last row in the carry save adder matrix is a 32 bit camy bypass adder.

The multiplier consists of 524 instances of 13 leaf cells, whose timing views were generated

in less than one cpu minute. The LSP analysis of this multiplier did not terminate, the

PERI analysis took 5s. The resulting path was 380ns long. In a multiplier many are

false paths present. Usually, the longest real path is approximately of the same length as

the longest false path. However, with the bypass sections at the bottom of the carry save

matrix the longer false paths become much larger than the longest real path and thus

the LSP algorithm is swamped, as explained in section 2. An extra level of hierarchy is

introduced: a timing view for the carry bypass sections is generated. The LSP analysis

with this new level of hierarchy (446 instalces) iasts 6s and yields a path of 260ns.

4.3 ISCAS-85 benchmarks
Several of the circuits of the ISCAS-S5 benchmark suite [11] wele analyzed. The results

are presented in table 1. The circuits C1908 and C6288 which were not easily analyzed

in [5, 6] are analyzed in vely small cpu times. circuit c1908 takes more than 10 hrs

to analyze in [6]. The analysis of C6288 required the introduction of one extra level of

hierarchy (in circuit C6288*) to obtain a result in a reasonable cpu time. Indeed, it is a

multiplier described in terms of and and or gates and a timing view was made of those

gates that could be grouped into íull adders. The analysis of this circuit takes more than

20 hrs in [5] and is not terminated in [6].

4s

0.3s

0.6s

0.9s

37s

21s

14s

12s

11s

I2s
)3hrs.

139ns

90ns
116ns

117ns

149ns

182ns

226ns
208ns
140ns

466ns

160

202
383

546

880

1193

1 669

2307

1588

2368
24t6

c432
c499
c880
c1355
c1908
c2670
c3540
c5315
c7552
c6288*
c6288

cpu-
time

crit.
path

fl cellscircuit

21s

32s

6s

9s

0.08s

0.1 ls
2.6s

0.5s

9s

166ns *

217ns *

260ns *

331ns *

49ns

109ns *

53ns *

32ns
90ns *

931

2031

446

589

86

t4
100
EO

589

St.C.
sr.c.
St.C.
St.C.
St.C.
St.C.
Cath
Cath
Cath

ERDIF
REC3
16*16 MULT
ARCODEC
5xp1-orig
5xp1-area
24 bit ALU
APLUSB
ARCODEC

cpu-
time

crit.
pa,th

fl cellstypecircuit

Table 2: Results of the hierarchical analysis. A *

indicates that the longest(PERT) paths were false.Table 1: ISCAS-85 benchmarks

4.4 Applicability
From the two examples above it is clear that the hierarchical timing view approach can

yield very large improvements in the performance of the LSP algorithm. It is also clear

that the user must be aware of the faise path problem in order to make the largest gain:

it is of no use to make timing views of largel portions of the cilcuit than those where the

false paths occur, as it will probably take longer to do so. Therefore the user should know

rather well where relevant false paths occur.



709

In general, as the user is usually the designer of the circuit, this is not too much of a
problem.

5 Conclusion
Some additional results of the hierarchical anaiysis on real life examples are presented in
table 2. The type column indicates if the designs were made with standard cells or with
a silicon compilation [12, 13] system. 5xp1 is a well known logic synthesis benchmark.
5xpl-area is optimized for optimal area, whereas 5xpl-orig is only mapped to the library.

In this paper a new hierarchical timing verification algorithm for avoiding false paths
has been presented. The feasibility of the algorithm has been demonstrated by the analysis
of complex designs which were taking too much cpu time or which were even impossible
with previous approaches for timing verification taking into account path sensitization.

References
[1] T. G. Szymanski. LEADOUT: a static timing analyzer for MOS circuits. In Proc. oJ the

IEEE Int'l Conf. on CAD,pages 130-133, 1986.

[2] P. C. McGeer and R. K. Brayton. Efficient algorithms for computing the longest viable path
in a combinational network. ln Proc. 26th Design Automati,on Conference, pages 561-567,
1989.

[3] S. Perremans, L. Claesen and H. De Man. Static timing analysis of dynamically sensitizable
paths. In Proc. 26th Desígn Automati,on Conference, pages 568-573, 1989.

[4] H. C. Yen, S. Ghanta and H. C. Du. On the general false path problem in timing analysis.
ln Proc. 26th Design Automation ConJerence, pages 555-560, 1989.

[5] P. C. McGeer, R. K. Brayton, A. Saldanha, P. Stephan and A. L. Sangiovanni-Vincentelli.
Timing analysis and delay fault test generation using path recursive functions. In Proc. of
the Int'|. Workshop on Logic Synthesis, MCNC North-Carolina,799l.

[6] Yun-ChengJuandResveA.Saleh. Incrementaltechniquesfortheidentificationofstatically
sensitizable critical paths. lt Proc. 28th Desígn Automation Conference, pages 541-546,
1991.

[7] J. Benkoski, E. vanden Meersch, L. Claesen and H. De Man. Timing verification using
statically sensitizable paths. IEEE Trans. on Computer Aided, Design, Vol. CAD-9: pages
1073-1084, October 1990.

[8] J.-P Schupp, P. Das, P. Johannes, S. Perremans, L. Claesen and H. De Man. Efficient false
path elimination algorithms for timing verifica,tion hy event gra,ph prepror:essing. INTE-
GÈATION, the VLSI Journal, Nr. 8: pages 173 187, 1989.

[9] K. Keutzer, S. Malik and A. Saldanha. Is redundancy necessary to reduce delay? IEEE
Trans. on Computer Aided, Design, Vol. CAD-10: pages 427-436, April 1991.

[10] P. Johannes, P. Das, L. Claesen and H. De Man. Slocop-Il: a versatile tirning verification
system for MOS VLSI. ln Proc. of IEEE EDAC,pages 518-523, 1990.

[11] F. Brglez a.nd H. Fujiwara. Neutral netlist of ten combinational benchmark circuits and
a target translator in FORTRAN. In Proc. IEEE Int. Symp. Circuits and, Systems, Jtne
1985.

[12] H. De Man, J.Rabaey, P. Six and L. Claesen. Cathedral-Il: a silicon compiler for digital
signal processing. IEEE Design and ?esl, pages 13-25, December 1986.

[13] S. Note, F. Catthoor, G. Goossens and H. De Man. Combined hardware selection and
pipelining in high performance data-path design. In Proc. IEEE ICCD, pages 328-331,
September 1990.



t,


