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rn this paper, ,"o:;::3"''", on-tine sisnature
veriftcation system based on dynamic time-warping

@fW). The DTW-algorithm originates frorn the field of
speech recognition, and has been applied successfully in
the signature vertfication area more than once.

However, until now, few adaptations have been made in
order to take the specific charactertsfics of signature
veriftcation into account. According to us, one of the
most important dffirences is the availability of a rather
large number of reference patterns, making it possible to
determine which parts of a reference signature are
important and which are not. By disconnecting the
DTw-stage and the feature extra.ction process we are
able to deal fficiently with this extra amount of
information. We demonstrate the beneftts of our
approach by building and evaluating a complete system.

l.Introduction.

As a result of the growing automation, there is an
increasing need for efficient and reliable identity
verification by machines in our community. For decades,

automatic identity verification has been covering almost
exclusively the non-biometric part of the field. Non-
biometric verification means that a person identifies
himself by a key, a pass-word, a PIN-code,... These

techniques are, however, far from perfect. The "secrets"
that are shared with the machine can be lost or stolen,

and the person who is using them to prove his identity
must do a considerable effort. To overcome these

disadvantages is the objective of biometric identity
verification. An overview of the different methods is
given in [1].

Here we focus on identity verification by onJine
signature verification. This means that we use a special
input instrument to collect data such as pen-tip positions,
speeds, accelerations or forces, while a person is signing.
Several different methods have already been used to
classiff a certain signature as "original" or "forgery".
An overview can be found in [2] and [3]. The complete
verification process is performed in different steps. The
most important ones are data-acquisition and pre-

processing, feature-extraction and classification. This
subdivision in three stages forms the backbone of this
paper. Chapter 2 deals with data-acquisition and pre-
processing. In chapter 3 we reveal our feature-extraction
approach. The actual classification is done by the
methods described in chapter 4. Chapter 5 evaluates the
performance of the complete system. Conclusions are
drawn in chapter 6.

2. Data-acquisition and pre-processing.

On-line signature verification requires the use of a
special input instrument to collect the signals to be

classified. The instrument that is used in this research
(figure 1 and [4]) looks like a conventional pen, but it
contains several sensors. These sensors serve two
purposes:
o Measuring the forces on the pen-tip in 3 directions.
o Measuring the pen inclination angles.

Figure 1: The SmartPen and some of its
components (force sensor and controller ASIC).

As we are not interested in rotations of the pen around
its own axis, 2 angle sensors instead of 3 are sufficient.
All 5 signals are low-pass filtered with cut-off-frequency
40 Hz. The resulting signals are sampled at 100 Hz. As
already mentioned, the orientation of the pen in the
signer's hand is not characteristic, but it does influence
the other signals, as those are measured relative to the
pen. We eliminate the effect of these pen-rotations by



redefining the co-ordinate system that is used. The new
reference axis's are chosen as the ones with extreme
energy contents.

3. Feature-extraction.

When comparing a test and a reference signature in
order to extract the features used for classification, we are

faced to the presence of non-linear timing differences
between the 2 pattems involved. A common way to deal

with this problem is to use the DTw-algorithm. First we
summarise the basics of the DTW-approach, afterwards
we discuss how DTW is integrated in the feature-

extraction process.

3.1. The DTW-approach.

The goal of the DTw-algorithm - as presented in [5] -
is to find an optimal time-alignment between two
patterns R (Reference) and T (Test), both sampled with
the same, constant sampling-rate. We define a time-
alignment (warping-path) p as:

(1) p = c(o), c(l), c(2),..., c(K)

(2) pr= c(k) = (i(k),j(k)

I and j refer to the i-th/j-th sample of R respectively T.
As the conditions for p to be a valid warping-path are not
crucial in this discussion, we do not focus on them. The
interested reader is referred to [5]. Assume:

(3) d(pr) = d(i(kx(k)) = lln' -r;ll

K

features xnor* (5) and xyo,lonl (6) out of a reference/test
couple of signatures.

(5) XFom = D(P) = minD(p)
p

(6) XMotion = Illt -:ll
(i,j)e P

So far [6, 7, 8], xpo* and xyollon have been constructed
using w(k) (see (4)) independent of i(k). As a result,
neither xpe6 nor xyo6on does reflect any information
about the relative importance of the different parts of the
reference signature in time or frequency domain.
Because both parameters are global, it's not possible to
construct a classifier out of them that does so.

The improved results presented in [9] illustrate that it
can be advantageous to use this type of stability-
information. The author uSeS Xpeal and xyolion ils
computed in [6]. Both features are however extracted for
couples of corresponding segments in R and T, and not
for R and T as a whole. The resulting local parameters
are then combined to a global one. Each local parameter
contributes to the global one in correspondence to its
stability over the complete set of reference signatures
created for one person.

In the next sections we describe an alternative method
to determine form and motion features allowing the
construction of a classifier that makes it possible to use

the available stability information more explicitly.

3.3. Form information-features.

"Form information" (for example xpo* defined in (5))
is extracted from the signals R and T without taking any
absolute timing aspects into account. As a result, in
order to derive form information, one should not look
directly at the optimal warping-path P, but at the aligned
signals that are constructed using it. A problem with
these signals is that the number of samples they contain
is not necessarily the same for different T's. We solve
this difficulty by constructing a signal F out of P, R and
T.

(7) R = mean(Il)
(i,j)e P

The length of F is equal to the length N of R. We will
use these N scalars Fi as local form classification
parameters.

I O* d"finition. of xpo* and xyolon differ from those in [6] as we do not
apply a linear rescaling ftom the signals' time-axis's prior to DTW. This
rescaling had almost no effect on our verification results.

w(k).d(p* )
k=l(4) D(p) = K

I*(tl
k=l

The goal of the DT\il-algorithm is to find the path P

that minimises D(p). This path is, from the DTW point
of view, the optimal time-alignment between T and R.

3.2. DTW and feature extraction.

One of the first successful attempts to use the DTW-
algorithm in signature verification has been reported by

Sato and Kogure [6]. Their approach is typical for how
DTW has been used in signature verification until now

[7, 8]. Sato uses the DTW-algorithm to extract two



3.4. Motion information-features.

"Motion information" (for example xyo6on defined in
(6)) reveals the magnitude of the actual timing-
differences between the signals T and R. It is extracted
using only the optimal warping-path P. A very annoying
property of this warping-path is that a time-correction at
sample k is reflected in the time-correction for all
samples I 0 > k). This is why we do not use the original
path itself, but we extract from it a signal that's strongly
connected to its derivative. We define our local motion
parameter Mi(n) as:

(8) M1(n) = Pi*n - Pi

(9) P1= j e> (i(kX(k)) e P

Both the form parameters Ft and the motion
parameters M1(n) contain local information about the
signing process. Due to this property we are able to
incorporate stability information in the classification
procedure. In the next chaptef we will reveal how this is
realised in practice.

4. Classification.

The final stage in the verification procedure is the

actual classification. The choice of the discriminant
method that's best suited for a particular application is
extremely important as it should allow to include all
available statistical knowledge about the classes involved
in the problem. In this paper, we use Mahalanobis
decision making. The Mahalanobis distance metric (Du)
is optimal on 2 conditions:
o The feature vector X has a multivariate normal

distribution over the class of original signatures for a
certain person.

o The probability density of X for the class of forgeries
can be considered constant in the area where the
probability density of X for the class of originals is
non-zero.
Both conditions are reasonably well satisfied. The

Mahalanobis distance from a pattern X to a class of
patterns T, characterised by its mean feature vector T
and its covariance matrix E is defined by:

(10) DM(X) = (x-T)r.E-1.(x-T)

We can construct a good estimate Ts for T 1t t;, but
as the number of references we have is much smaller
than the dimension of our feature vector, we must use a

very rudimentary approach A for 2 (12).

(11) TE- mean(T)
originals

(12) L - diag( mean ((T-TB).(T-Tr)'))
originals

The resulting classifier Ds is constructed as:

(13) Ds(x) = (x-TE)r.A-t.(x-T")

We call D5 the simplified Mahalanobis discriminant
function. In the next sections, we will focus on the use of
the form and motion parameters as discussed in the
preceding chapters to do the actual classification using
Ds.

4.L. Classification using form information.

A generally accepted performance index for identity
verification systems is the Equal Eror Rate (EER). This
is the error-percentage that occurs when False
Acceptance Rate (FAR) and False Rejection Rate (FRR)
are equal for a certain database of signatures. The
database used here contains 360 signatures. from 18

different persons, collected over a period of 3 months.
For each participant 15 signatures are used as originals
for the construction of the classifier. The remaining 5

signatures are used as test originals. As forgeries for a
certain person, we use the original signatures produced
by the other signers.

Using Ds(X) with X=F as a classifier we achieve an
EER of 6.7Vo. Using X=xFo* we have an EER of 8.9Vo.

The main reason for this rather small improvement is
that Apo- is a very poor approximation of lpo-. This is
illustrated in figure 2.
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Figure 2: Correlations between classification
features.
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Figure 2 shows the average value of a correlation
coefficient that is "Distance from diagonal" away from
the main diagonal of its correlation matrix. The
correlations computed using X=F are shown by the
dashed line. These results are computed using the 18

sets of 20 original signatures in our database. As
expected, the correlation coefficients are becoming
smaller when farther removed from the diagonal. We are

however still far from the ideal case, where the
correlation matrix is a unity-matrix, making D5(X) and
Dr,r(X) equal. There exists however a linear
transformation of the parameters Fi that produces a
feature vector with corresponding X diagonal. This
transformation is called the Karhunen-Lobve Transform
(KLT). Unfortunately we can not compute the exact

KLT since this would require knowledge of lpo-. This is
why KlT-approximations like the Discrete Cosine
Transform (DCT) have been developed. Here we will
demonstrate how another transformation, the Gabor-

transform [10], can be used successfully for the same

purpose. We construct a new feature vector G out of F,

by shifting a Gaussian window (1300 msec.) over F and
by computing the FFT of the different signals generated.

Figure 2 displays in full line the average corelation
between the different components of G. It can be seen

that the correlations are much smaller than the ones

computed using X=F. This fact, combined with the good

locality of our parameters in both time and frequency
domain that is necessary to take into account the stability
information for a certain signer, allows us to reduce the
EER from 6.7Vo to3.3Vo.

So far, we have been using the complete information
contents of the 5 signals used for verification. It is

however generally accepted l2l that the relevant
information in human handwriting is concentrated in a
much smaller frequency range. This is illustrated in
figure 3.

Figure 3: Relation between frequency range in
use (0..x Hz) and EER.

Figure 3 reveals that optimal classification is achieved
when we limit ourselves to using only those Gabor
transform-coefficients describing the signal contents
from the 0 Hz. to +30 Hz. Acting like this, the EER is
further reduced to l.4Vo.

4.2. Classification using motion information.

Here we use Ds(X) with X=M(n). Results are optimal
if M(n) is constructed by using a time-shift of 100 msec.
(n=10). The major advantage of the use of local stability
information for classification using motion information is
clearly illustrated by the reduction of the EER from
13.3Vo using X=xM*ion to 2.0Vo using X=M(lQ).

5. Global system performance.

Our complete verification system integrates the use of
form and motion information by using the feature vector

IclX1 = Lrtr'll as an input for its (simplified

Mahalanobis) classifier. Since the dimension of Xr is
dependent on the number of samples N in the reference
pattern R, Ds(Xr) is divided by this dimension before
being compared to the classification offset. Acting like
this - and keeping in mind that only random forgeries are

used to test the system - we achieve perfect classification
(EER = 07o).

Figure 4 compares classification using Xr to
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classification using X2 = [**-J. The classification

starting from X2 is performed by using the kernel
approach I I 1] instead of by Mahalanobis decision
making, because for X2 the kernel approach results in a
much better classification performance. Using the kernel
approach for classification by & we achieve an EER of
0.3Vo. The use of the Mahalanobis discriminant function
on the contrary results in an EER of 1.67o. To make a

comparison between classification using X1 and X2
possible, the decision threshold has been defined as the
logarithm of the average probability density per variable
for both types of classification. Clearly, the separation
between original signatures and forgeries is more evident
using stability information as described in this paper than
without using this type of information.
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Figure 4: Comparison of verification results with
and without using stability information.

6. Conclusion.

We have built a signature verification system that
combines the benefits of DTW and the use of local
stability information for a certain reference signature.
The crucial point for its success has to be found in the
decoupling of the DTW-algorithm and the actual feature
extraction step. By using the feature extraction
procedures explained, we are not confronted with the
problem of finding the real segments in a signature.
Consequently, we do not need special heuristics to deal
with an unequal number of segments in both signatures
that have to be compared.

The major drawback of our approach is that we use

each of the 5 signals available individually, instead of
using a higher dimensional approach. Acting like this
we lose the link between the signals. Furthermore, better
transformations than the Gabor-transform to decorrelate
the form classification features are possible. A last
weakness is that the Mahalanobis-classification we use is
definitely not optimal. Optimal classification requires
the use of probability density information of all classes
(originals as well as forgeries) involved.
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