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Abstract.

In this paper a novel methodology for the formal correctness verification of digital (VLSI) designs
is presented. This methodology aims at bridging the gap from transistor switch level circuits, as
obtained from circuit extraction, up to high level specifications. The SFG-Tracins verification
methodoic,gy inherits il,s power from the exploitation of the inherent algorithmic information
the high level (signal flow graph level) specifications. Given the fact that the circuit designer
provides the appropriate reference signals and mapping functions, the methodology is intended
to operate automatically on VLSI circuits of up to 100,000 transistors and more.

L fntroduction.
The possibilities offered by the steadily increasing complexities offered by the VLSI technology
has resulted in the fact that more and more complex systems can be built on integrated circuits.
The realization of complex systems has become design limited,instead of technology limited. The
challenge is indeed to design electronic systems first time right. This is required to avoid costly
redesign, and delays in market introduction of new products. These economic reasons are the
drive behind a lot ofeffort to check the correctness ofdesigns with respect to their specifications.

Traditionally simulation (at multiple levels of design abstraction) is used, and is standard
industrial practice, to verify the correctness ofelectronic designs before they are produced. It is
however very well known that for even moderately sized circuits it is not possible to try out all
possible input excitations in these simulations, due to the combinatorial explosion problem in the
number of possible patterns. Therefore designers have to choose an appropriate subset of input
stimuli for verification by simulations. This method however leaves open the possibilities for
undiscovered design errors. This motivates the need for analytic verification techniques that are
input pattern independent. The technique of static timing aerification is an analytic technique
that has currently gained industrial acceptance for the verification of the speed performance of
circuits.

The analytic verification of the behauioral corcectness of digital designs with respect to tireir
specifications is however still in its infancy. It is mainly hindered bv the problems of combina-
torial explosion in handling the mathematical formulas describing the systems at hand.

Formal correctness verification techniques have been investigated already for a few decades
in theoretical computer science. Although better insights have been gained in the mathematical
modeling of computer programs, no full correctness proofs of practical computer programs can
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be done in a realistic way. Formal verification techniques derived from these deveioped in
theoretical computer science have been applied in hardware designs and have been illustrated
by the cortectness proofs of smali microprocessors using mechanical theorem proving methods
[11' 12]. Even for these small sized appiications, the correctness proofs require several months of
(mechanical theorem proving) expert interaction for conducting the correctness proof. It is also
not obvious how design specific theorems and proof strategies can be automatically generated
from specifications or how they can be reused in new designs.

In the inaugural session of ECCTD'83, Dr. C.F. Kurth of Bell Labs USA gave a presentation
on the impact of the evolution in circuit theory and technology on the design of comrnunication
systems. He presented circuit and systems theory as the basis for system analysis, CAD, VLSI,
signal processing, DSP simulation a.nd network synthesis. The technological evolution towards
more economic solutions is going more and more digital. He pointed out that the mature circuits
and systems theory is not appropriate for figital signal processing systems. He stressed that
"the foundation of a, neut binary system theory wiII be a challenge for the next d,ecailes',.

Nearly one decade later, we are at a point where a number of promising theories have evolved
and are under further development that are part of such a useful ttbinary system theoryt,. For
the representation and manipulation of Boolean formulas, the ordered binary d.ecision diagrams
(OBDD's) [20] is currently the hest kn.own technique. It is currently used in the vcrification
of combinatoriai logic and in logic synthesis. Several additional techniques are still being pro-
posed that improve the efficiencies that can be obtained. Ana,lytic methods [14, 1b, 18] have
been developed that allow to extract symbolic equations from MOS switch ievel circuits, that
accurately model bidirectional information flow, multiple strengths of nodes and transistors and
'X' behavior. For the verification of finite state machines (modeling the controlers in digital
systems) promissing techniques have been worked out [2, 3].

The main breakthroughs in formal verification methods for behaaioral correctness have been
achieved by methods that take advantage by exploiting the circuit structure in the verification
algorithms. This is the only way to avoid the problem of combinatorial explosion that results
when trying to formulate the cortectness problem in a general way (e.g. Boolean formulas) and
have a general decision procedure trying to figure out the correctness.

F\rrther along these lines of correctness verification \rye propose a method called SFG-Tracing
that exploits the information available in the signal flow graph level specification that describes
the algorithms to be implemented.

In this paper we present a new method for the automatic verification from the behavioral
signal flow graph specification down to lower implementation levels. These can go down to
the switch level if a suitable symbolic simulator is used. In line with the automatic verification
algorithms, as much as possible the structure available in the problem at hand is being exploited.
The first application target is in the verification of high ievel synthesis results as obtained by
the CATHEDRAL silicon compilers [8, 9], but the methodology is generally applicable.

The algorithms are intended to operate with as little interaction from the user as possible.
The underlying assumption is that the flow graph specification is synthesized while keeping
track of mapping relationships of a set of well-chosen reference signals of the specifying flow
graph and of the implementation. The global verification problem is reduced to a manageable
size by partitioning the information in the global signal flow graph into acyclic subgraphs and
providing correspondence (mapping) functions between the interface values (reference signals)
in the partitioned graph and the signal values at specific cycle and clock phase times in the
impiementation. The correctness of each individual subgraph is proven by making use of a
(switch-level) symbolic simulator that acts on the actual switch level models of transistor circuits.

To give an indication of the information explosion from high level (SFG) specifications down
to the implementation, consider the modem pulse shaper and equalizer chip inficated in figure
1 and as designed by Vanhoof e.a. [10]. This system implements the filter flow graph indicated
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Figure 1: Design & time abstraction levels from SFG (signal flow graph) d.own to transistor
layout, for a receiver pulse shaper and equalizer, containing 3 ALU's of L4 bits as synthesizetl
bv CATHEDRAL-II



in the top of the figure and can be formally specified in the SITAGE language in 70 lines of
text. The chip impiementation as synthesized by CATHEDRAL-II [10] results in a microcoded
architecture with 3 ALU's of 14 bits and consists of more than 31614 transistors. Near the figure
is shown the time abstraction from sample periods at SFG level over micro-code instruction
cycles, clock phases down to clock waveforms at the switch level. Notice that all the signals
that appear in the SFG specification occur in some form during specific times at specific places
in the transistor implementation of the chip. Operations in the SFG can however occur on the
same hardware blocks such as ALU's at different instances of time. This relationship between
algorithmic SFG signals and signals in space and time of the implementation forms the basis for
the ^9FG Tracing verification methodology.

In this paper we give a short overview of the theoretical background of the SFG-Tracing
methodology. For the relationship with existing formal verification methods and an overview of
the inclusion of the methodology in a CAD environment, we refer to [b].

In the next section, we give an overview of the sFG-Tracing methodology.

2 SFG-Tracing Methodology.

The gual uI' [he verilication plocess is to verify the behavioral input-output correctness of the
lower level implementation with respect to the high level signal flow graph specification. Of
course it would be the most interestirrg to perform the verification from a level as high as
possible to an implementation as detailed as possible. In this paper, we consid.er the SILAGE
SFG levei as the specification, and the transistor switch level as the representation. Higher
levels of the impiementation could also be considered (such as gate level or sRT or bRT level).
The same techniques as indicated below would apply in each of these cases. The switch level
implementation is however preferred, because it reflects the best the circuit implementation.
Appropriate symbolic analysis techniques based on Bryant's method [14, 1b] for the switch level
have been developed and are supported in CAD tools [1g, l_6, 1T].

2.L Flow Graph Specification.

For the SFG-tracing, two aspects have to be considered. The first consists of the verification of
the initialization sequencerand. the second aspect consists of the verification of the stead,y state
behaaior. The initialization sequence is used to bring the implemented system lnto a known
state. Starting from that known state, cycles and clock phases can be defined, which correspond
to the SFG level sample periods. The initialization sequence consists of the sequence following
for example the reset pulse. The symbolic simulator will have to be started from the initialization
sequence in order to be able to bring the implemented system into a known state. The SFG
specification also contains initialization information (initial values at SFG levei registers). The
verification will consist of two phases: the initialization and the steady state. Although similar
techniques can be used for both phases, this paper will concentrate further on the verification
of the steady state behavior.

2.2 Basic SILAGE Signal Flow Graph Semantics.

The basic SILAGE signal flow graph semantics are modered by a graph g(rr., E).
The set of vertices I'' of this signal flow graph g are defined by vertices o; € Iz- correspond-

ing to the primitive operations in SILAGE. Examples are: arithmetic operations (addition,
subtraction, multipiication...), shift, logical operations and conditionals.

The set of edges is E is defined by edges e j € E, where each ey corresponds to a signal in the
SILAGE flow graph. In SILAGE, signals are defined as one-sid.ed infinite streams, characterized
by a specific sampling rate.



Two functions
Inputs : V ---t E* and.
Outputs zV --+ E*

can be defined:
Inputs(u;) = {e*re411 , ...e,,,} and
Outputs(a1) : {u,, e+r,...en!

which describe the inputs and outputs of operators in SILAGE. In SITAGE only one output
is used per operator.

To each edge e; corresponds a SILAGE signal, that is modeled as a stream. However at
specific moments in the algorithm time f"yn, individual element values of the stream can be
considered ei(t"r). The signals can be words representing numeric binary values of a specific
word length !.1. The signal consisting of a binary word can be represented as ei[L..w.r]. ft
is assumed that individual bits in signals representing binary values are ordered. from most
significant bit (MSB) (index 1) to the least significant bit (tSB) (index ru", ). The k'th individual
bit of the signal e; is represented as e;[/c].

2,3 R.cfcren,ce .signals and Ma,p,p'i'rtg furtctions,
In SFG-Tracing we make the following assumptions:

1. There exist a number n,"1 of reference signals e, e Ref Signals(Q(V,,O)) corresponding to
edges in the SFG algorithm specification and signals at specific (cycle and clock) times in
the implementation. The specification SFG is implemented in hardware maintaining the
same behavioral relationships for these reference signals.

For allreference signals e, € Ref Signals(Q(V*E)) the signals e"" in the specification and
e"t in the implementation can be defined:

o The reference signals in the SFG specification e,"(t") have the following semantics in
terms of Boolean bit words:

e,'[k"](t") E B (1)

for all bits &" € {1..u,} in the SFG signal word and for a specific sample time t". B
is the set of Booleans. Often at the SFG level, the individual bits in signal words are
not considered.

r The reference signals in the implementation are characterized by:

e,,i[k;](t;p,) e B e)
for individual bits with index &; e {1..ro;} at specific implementation times t;6-. The
index &; of t;6, indicates that each bit of a reference signal has to be considered at a
specific cycle and clock phase individualiy. This is for example already necessary in
bit-serial implementations of SFG specifications.

2' There exist a set of mapping functions f that describe the behavioral correspondence in
space and time of reference signals in the SFG algorithm specification with respect to the
lower level implementation at the specific implementation times.

OI

f : S witch-signal-semantics --+ S FG _signal_semantics (3)
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Figure 2: Illustration of the concepts of rcference signals and mapping functions that relate
signais in the SFG specification to signals in lower level imple-"ti"tiorrr. (Here down to the
switch level).

(4)

where 6 is the set of Boolean values

The function f is defined as:

e,'(t") : rk,i[L](t;1)...e,.i1w;l(t;*,)) (b)

This is a vector assignment over the individual bits of the reference signal in the SFG.

3' A11 edges and vertices in 9(V,-E) are reachable via directed paths starting at the edges
corresponding to reference signals.

4. The reference signal partitions the graph g(V, E) such that the subgraphs are acyclic.

The most essential form of reference signals would be the input and the output to thealgorithm to be implemented in hardware. The verification effort and complexity can be reducedif more reference signals are available.
The concept of reference signals and. rnapping functionsis illustrated in figure 2.
For the reference signals it is required that mapping relations are available, which state therelationship between reference signals in the rp".lfi..tio., and in the implementation. This could

be in the form of a certain word at a specific sample time in the SFG level begin implementedirl terms of bits in specific registers (at specific time phases) at the lower level implementatio'.
l\{ost of the relationships will be simple correspondences of the logic values in specification andimplementation. Other relationships could include a specific logic function to .onvert the logic
representation in the specification into the logic representation in the implementation or vice
versa' The simplest form of this are signals in the specification that are identical or inverted i'the implementation. However, more complex relationships can be envisioned: e.g. an integer
word at the SFG level represented in the implementation in carry save technique.

The third condition is required so that the .9FG Tracingalgorithm can use a directed graph
traversal algorithm to reach all of the parts in the specificalion SFG in order to do the compar-
ison.
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2.4 Signal Flow Graph partitioning.

The choice of appropriate reference signals and mapping functions allows that SFG graph 8(V, E)
is partitioned into a signal flow graph PSFG (Partitioned Signal Flow Graph) consisting of a set
of disjoint and acyclic subgraphs Qr(Vr*Eo). Each subgraph Qr(VrrEr) consists of a cutset of
vertices of 8(V, E) where the edges between vertices in the cutset and vertices out of the cutset
correspond to the reference signals, related to that subgraph.

2.5 Description of the SFG-tacing method.

The reference signals allow a subdivision of the global SFG in a number of subgraphs in the
PSFG. For each subgraph in the PSFG a verification of the implication of the specification by
the implementation is verified by performing a symbolic simulation of the implementation.

SFG-Tracing( )
t

re ad-ref erenc e-s ignal s -and-rnapping-f unct i ons ( ) ;

init-synrbolic-s imulation ( ) ;

PSFG = Partition_SFGO;
for each subgraph in the PSFG

{
for impl-time = start-time to end-time;
{

symb-init ialize-imp1-s ignal ( impl-t ime ) ;
syrnboli c-s imulate-st ep ( inpl-t ime ) ;

)
synb-compare*signals ( ) ;

)
)

In read-ref erence-signals-and-napping-functions O ; the reference signals and the map-
ping functions are read. Making use of this information the partitioning of the signal flow graph
is performed in Partition-SFG. Hereafter for each subgraph the verification is done by a sym-
bolic simulation . Since reference signals in the implementation can occur in different cycles
and clock phases, (within a global SFG clock period of the system) the values of impiementa-
tion signals have to be initialized in the symbolic simulation at the appropriate implementation
times. Therefore the symbolic simulation has to be done from start-time to end-tine, such
that all the signals that are input to the PSFG subgraph can be initialized and that after that,
all signals at the output of the PSFG subgraph can be evaluated in the appropriate cycle time
and clock phases.

In the symbolic simulation, the reference signals and the signals dependent on them will
be evaluated symbolically. External signals that are always recurring during each global SFG
time period will have specific values. This is the case for external clock signals, that will be
used for the specific values in the respective phases. Other signals such as reset signals and
signals to put the circuit in test mode, will be set to the specific constant values. Doing such
a symbolic simulation will result in specific (Boolean 1,0) signals for the control circuits, and
symbolic signals for the other circuitry. Most of the time 'x' signals will be used in the symboLic
simulation. Only for those signals implementing the operations of the subgraph of the PSFG at
hand, symbolic values will be computed.



The controller takes care of the sequencing in time of the hardware operations that have to be
performed on the same hardware operator (e.g. the same ALU). By doing symbolic simulation,
the effect of the sequencing by the controller is removed, and the hardware operators can be
seen as unfolded for the specific operations that they have to perform.

By this symbolic simulation, the micro-code controlier will normally operate with instanti-
ated signal values ('1', '0', 'x') instead of symbolic values in the execution of cycles and clock
phases. These instantiated signal values can directiy be used (and reduced) in the symbolic sim-
ulations. By this fact of unfolding (or unroiling) the algorithm again to its maximally parallel
representation the effect of the controller, and its specific encodings can be tsimulated away,.

After the symbolic simulation, symbolic expressions are obtained for the output signals cor-
responding to the subgraph under consideration. Notice that these symbolic output signals have
to be taken at the appropriate cycle and clock phase times as defined by the reference signals.
As already explained these output signals correspond to the maximally parallel representation
as in the SFG specification, and the correctness has to be verified by comparison.

Fhom the semantic definitions of the primitive operations in the specifying SFG, the mapping
functions for the reference signals (that form the interface for the subgraph at hand), and the
results of the symbolic simulation a comparison is done in symb-compare-signals.

Fl'orn the semantics of thc primitivc operators in the subgraph of the FSFG under colsitl-
eration, the input-output behavior at the SFG level for the subgraph can be derived. This is
cha,racterizecl by the function:

S"yn: B* -+ B* (6)

This function provides the behavioral relationship as extracted from the SFG semantics
between reference signals at the input er,," and at the output ero,r" of the subgraph under
consideration:

€rout" : SrIs(err*") (7)

In the same way the input-output behavior function as derived by the symbolic simulation
of the implementation can be defined:

Ein,pt i B* -'. B* (8)

This function provides the relationship as obtained by the symbolic simulation between
reference signals at the input e,-"i and at the output e,ou,i ofthe subgraph under consideration:

erouri = 3;^pl(err,,;) (g)

The mapping functions for the reference signals at the inputs and outputs of the subgraph
under consideration provide the following relationships:

€r'uur" : F, uur("rou,.') (10)

and:

er,,," = fr,^("rr,,') (11)

From the above relationships, the subgraph behavioral functions and the mapping functions,
tire following condition for the correct behavioral verification of the subgraph under consideration
can be derived:

3 
" 

y n(Fr,,(e,,"')) = f,",,,(Si,,pt (u.,, t)) (12)



The verification wiii normally be done by tautology checking, based on efficient methods such
as OBBD's [20]. In this comparison, one can however also make use of the information available
from the signal flow graph, such as the fact that at the SFG level signals are representing bit-
words' Optimized verification algorithms and vector-based reduction rules such as presented by
Eveking [23] and Simonis [22] can be used to improve the cpu-time efficiency of the verification.

3 Current Results and Future 'Work.

The manual application of the SFG-Tracing digital design verification methodology by means of
an illustrative example of a BCD-recognizer is presented in [6]. The SFG-Tracingmethodology is
currently being worked out for proving the correctness of the synthesis results in CATHEDRAL-I
[8] and CATHEDRAL-II [9]. The feasibility of the full formal verification of both of these silicon
compilers has been demonstrated by representative appiication examples. In l2al a nu:rrber of
full formal verifications of circuits starting fiom their layout-extracted transistor networks are
described. This includes the modem chip in figure 1 which consists of 31,014 transistors. For this
the COSMOS compiled code switch level simulator [14, 1"5] has been used. Future research work
is concentrating on the automatic generation of the reference signals and mapping functions
from the high level synthesis. Is very important to be able to start from the layout extracted
transistor circuits, because they capture the ultimate CAD information before mask making.
Therefore currcnt rcsearch concentrates onsymb,:lic sinrulal,iorr capable of analyzing circuits of
the order of magnitude of 1,000,000 transistors.
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