Modeling Layout Extracted
MOS Transistor Circuits in VHDL

Ekaterini Gikas, Stefan Hendricx, Luc Claesen

IMEC vzw/Katholieke Universiteit Leuven
Kapeldreef 75, B-3001 Heverlee, Belgium
e-mail: katerina@imec.be

Abstract

The ever-increasing complexity of today’s electronic systems has made the design of
correct circuits a challenging undertaking. The electronic design process could be a lot
easier if designers were able to readily reuse pre-designed modules. In this paper, work is
presented which enables the reuse of pre-designed MOS-transistor circuits in larger
systems. In our approach, low-level layout extracted transistor netlist specifications of
MOS-transistor circuits are modeled in VHDL. The resulting models can then be used
for verification purposes or they can be embedded in more complex electronic system
designs. Our modeling technique is, essentially, style independent and can deal with
detailed characteristics of MOS circuits, such as ratioed logic, charge sharing, bi-
directional pass transistors and pre-charged logic.

Keywords: VHDL, Design Reuse, IP, Intellectual Property, VHDL modeling, Core based
design, Formal Verification -

1 Introduction

Technological advances in microelectronics have enabled today’s digital systems to be of
great complexity, containing possibly millions of transistors. As technology continuously
progresses, this complexity increases day by day, making the design process itself more
difficult, time consuming, costly and error prone. Therefore, it is necessary for design
automation tools to improve and embody design principles helpful for the designers. For
instance, tomorrow’s tools should support “design reuse”, which refers to the use of pre-
designed modules in new designs, and “formal verification”, which refers to a rigid proof of a
system’s correctness. In this paper, we present a pragmatic methodology which promotes
both design reuse and formal verification for systems specified in the hardware description
language VHDL [8].

In essence, our methodology aims to model MOS-transistor circuits, specified at the
layout level, at a higher level of abstraction — i.e. at the structural level — using VHDL. For
this purpose, a transistor netlist is first extracted from the circuit’s layout. From this netlist, a
logic description or [gc-description is then derived for the functional behaviour of the circuit,
using the tool COSMOS (a Compiled Simulator for MOS Circuits) [1]. Finally, this logic
description is compiled into a VHDL model for the given circuit.

In general, existing functional extraction tools are style dependent and operate by
identifying a limited set of transistor patterns. Our methodology, however, is style
independent and, being based on COSMOS, can deal with more detailed characteristics of
MOS circuits — such as ratioed logic, charge sharing, bi-directional pass transistors and pre-
charged logic. Consequently, the VHDL models generated by our approach are accurate
functional models of the original circuits. Our circuit models may also be reused in bigger,
more complex electronic systems. Libraries of such cells and reusable cores can also be

Forum on Design Languages, September 6-11, 1998

Modeling Layout Extracted MOS Transistor Circuits in VHDL

created. Simulation of the systems embedding these models is possible in a standard VHDL
simulation system (e.g. Mentor Graphics, Synopsys, Cadence, etc.).

As we have mentioned before, automatic formal verification becomes essential to verify
electronic designs rapidly and rigorously, because the complexity of today’s electronic
designs has made verification through exhaustive simulation a very tedious — if not
impossible — task. Today, the circuit layout is still mostly being verified using a Layout-
versus-Schematic (LvS) verification technique. Clearly, the usefulness of such a verification
process is strongly impaired by both error prone schematics and slow SPICE simulations. A
tool for Layout-versus-RTL (LvRTL) verification, which gets rid of both the schematics and
the SPICE simulations, can be created by combining a functional extraction tool, like the one
presented in this paper, with a functional equivalence checker. Another functional extraction
tool, that is commercially available, is Laybool [7]. Laybool is implemented by SGS Thomson
Electronics and has been incorporated in VFormal (an equivalence checker from Compass
DA) to enable another LvRTL verification methodology.

In the next section, we present a few basic concepts on the switch-level model of MOS-
transistor circuits. In section 3, we subsequently describe our methodology for the automatic
generation of VHDL specifications for MOS circuits. To illustrate our approach, section 4
introduces a small example. Finally, section 5 presents some experimental results and we
conclude our presentation in section 6.

2 Concepts of modeling MOS circuits

In our approach, MOS-transistor circuits are modeled at the switch level, a level between the
very detailed transistor level and the more abstract gate level. The interested reader may refer
to [2] for a survey of switch-level algorithms. In this section, we present a few basic concepts
of the MOS-transistor circuit model, as it was introduced by R. E. Bryant [3,4] for symbolic
simulation in COSMOS [1].

At the switch level, a MOS transistor circuit is modeled as a network of switches —i.e. a
set of nodes interconnected by transistor switches. The nodes may be presented in three
different states, encoded as ‘0’, ‘1’ and ‘X’. A node is in state ‘O’ when its voltage is low, in
state ‘1’ when its voltage is high and in state ‘X’ when its voltage is invalid (a voltage
between 0 and 1), uninitialized or unknown.

The interconnection structure of a switch-level network can be represented by a channel
graph. The channel graph defines a partitioning of the network in channel-connected
subnetworks. Furthermore, the functional behavior of each of these subnetworks can be
represented by a steady-state response function.

The Dual-Rail Encoding is employed to enable writing of an expression of a MOS
circuit’s functionality in the switch-level model in terms of Boolean formulas. According to
this encoding, a state value y € {0,1,X} is encoded in terms of two Boolean values y.1 and

y.0 € {0,1} as follows:

y [y.1]|y0
1|0

0] 0|1

X |1 1

Table 1: The Dual-rail encoding

Forum on Design Languages, September 6-11, 1998

Modeling Layout Extracted MOS Transistor Circuits in VHDL

Hence, the steady-state response function representing the behavior of a subnetwork can
be described as a sequence of Boolean operations, which define a mapping of the
subnetwork’s inputs and old state to its outputs and new state. The functionality of the whole
circuit is then expressed as a set of systems of Boolean equations.

ANAMOS - one of the subprograms of COSMOS - is responsible for the actual
symbolic analysis of the circuits. For a given MOS circuit, the symbolic analysis procedure
generates a functional description of the circuit in terms of a set of Boolean (or symbolic)
functions. This set of symbolic functions forms the input for our modeling methodology,
which is explained in more detail in the following section.

3 Modeling MOS transistor circuits in VHDL

Although VHDL was not initially intended for modeling at the switch level, there have
already been various approaches to introduce the switch-level model in VHDL [5,6]. In [5],
for instance, a Switch-Level Package has been built, which provides numerous functions for
the support of a 46-value system. This 46-value system is used to model the bi-directional
behavior of MOS switches. Our approach is quite different. We do not attempt to create
VHDL models for transistor switches and use these as primitive components for the design of
MOS circuits. On the contrary, in our methodology, the MOS circuit has been designed in
advance and we want to derive a VHDL model of it. So our methodology relies on a
symbolic analyzer to analyze a layout extracted MOS-transistor circuit netlist and to generate
a symbolic description of the circuit’s functionality. Based on this symbolic description,
VHDL constructs are then used to create a VHDL model of the MOS circuit.

Let us consider our approach in more detail. First of all, a VHDL-package
Dual_Rail_Encoding has been defined. This package declares a new type X0I, which
includes the three values ‘X’, ‘0’ and ‘1’, reminiscent of the three-valued (ternary) logic used
in the switch-level model of MOS-transistor circuits (see section 2). In addition, this package
also defines several functions to implement transformations from the three-valued encoding to
binary encoding, and from binary back to the three-valued encoding. For example, the
functions Low_Rail and High_Rail determine the low rail y.0 and high rail y.1 of a three-
valued signal (or variable) y. Likewise, the function Ternary returns the ternary value
corresponding to a dual-rail encoded value.

A system design in VHDL has one external view and one or more internal views. The
entity describes a system’s external view or interface. The architecture describes the system’s
internal view; it describes either the structure, the behavior or the data flow of the system.
Sometimes an architecture can not be concretely classified in one of the above categories, but
rather it describes the system in a mixed manner.

Our model of a MOS-transistor circuit in VHDL is composed of an entity and an
architecture too. The input and output signals declared in the entity’s port declaration are of
type XO01. These signals take the value ‘0’, 1’ or ‘X’, depending on the voltage in the
corresponding node. Although the input and output signals take the above values externally
(in the entity), internally (in the architecture) we introduce a pair of binary signals for each
input and output signal, as the dual-rail encoding imposes.

The architecture describing the MOS circuit can be abstractly divided in three sections
(see Figure 1). In the first section, all pairs of binary signals, encoding the circuit’s input
signals, are computed. Using the inputs’ dual-rail encoding, the second section computes the
dual-rail encoding for each of the outputs. Finally, in the last section, the ternary values of the
output signals are calculated. But how are the signals that comprise the dual-rail encoding of

Forum on Design Languages, September 6-11, 1998

Modeling Layout Extracted MOS Transistor Circuits in VHDL

the output signals computed?

1. Three-valued input signals = Dual-rail input signals
2. Component instances = Compute dual-rail of output signals

3. Dual-rail output signals => Three-valued output signals

Figure 1: Global outline of a MOS circuit’s VHDL-architecture

Our VHDL-models preserve the original partitioning of the MOS circuit as a set of
interconnected sub-circuits — i.e. the channel-connected subnetworks extracted by COSMOS.
Each distinct subcircuit defines a unique VHDL component. In the architecture of our final
VHDL-model, instances of these components are appropriately interconnected among each
other, thus modelling the MOS circuit’s interior structure.

The components’ inputs and outputs are bit signals. These are declared in each
component’s entity port declaration. Output signals may need to be accessed within the
component for some calculation; this is allowed in the Igc language but not in VHDL.
Therefore the component’s output signals are declared as buffers (because in VHDL, this
mode permits reading the value of an output signal within the component). The reader should
note that this doesn’t impose any restriction on the usability of our model, because these
signals are not visible in the MOS system’s interface.

In Igc, the behavior of each subsystem is described by an ordered sequence of Boolean
operations in a leaf module. These operations may be primitive or composite. Primitive
operations are, for instance, the logic and operation (when transistors are connected in series),
the logic or operation (transistors connected in parallel) and simple assignment operations.
Composite operations are simply operations defined in terms of primitive and/or other
composite operations. In VHDL, the concurrent process construct is used to define a set of
actions to be executed in sequence. As such, a VHDL process can be used to model the
behaviour of individual components. Evidently, a process describing a component’s behavior
must be sensitive to all the input signals of the component.

There exist cases where the new value of an output is needed for some calculations
within the component. Inside VHDL processes, however, signal assignments are not
executed immediately; in VHDL, signal assignments merely define a projected value for
signals, which are only updated at the end of the 3-cycle. To solve this discrepancy, we
always define a variable inside a process for each output signal. Since variable assignments
are executed immediately, the desired output value is always available inside the component.
At the end of the 5-cycle, we then update the output signal of the component with the value of
the corresponding variable.

The VHDL model of MOS transistor circuits explained above is in principle the same as
the one used in the symbolic simulator COSMOS. However, the extensive use of VHDL in
system design makes our work valuable. In the next section a small example is used to
further illustrate what has been introduced in this section.

4 A very simple MOS circuit

The simple circuit we consider in this section has three inputs a, b and ¢ and a single output
Output. The desired output of this small system can be specified by the following Boolean
expression: Qutput= a - b+c

Forum on Design Languages, September 6-11, 1998

Modeling Layout Extracted MOS Transistor Circuits in VHDL

A transistor level implementation of this MOS circuit is shown in Figure 2.

Subcircuit B

’D[; A

Subcircuit A

Figure 2: A possible MOS implementation of the function Output = a.b + ¢

At the physical level, we can describe the circuit in Figure 2 by the following transistor
netlist:

|units:150 tech:cmos

p a alpha beta 2 4
p b alpha beta 2 4
P cC vdd alpha 2 4
n a gamma GND 2 2
n b beta gamma 2 2
n c¢ beta GND 2 1
p beta vdd Output 2 2

n beta Output GND 2 1

A OQutput Sim : Output

Figure 3: Transistor netlist for the MOS circuit of Figure 2

Each line in this netlist specifies the transistor type, the names of gate, drain and source
pins, and the relative length and width of the channel of the transistor. Starting from this
netlist description, COSMOS first creates a .ntk file for the switch-level network and then an
gc file, containing the (symbolic) description of the circuit’s behaviour. The lgc-description,
which is the actual input to our own tools, for the example circuit looks like:

suffix H, L ;
prim id, and, or ;

/* Lgc-description of subcircuit A */
leaf sn.A (n_3_0, n 3_1; n 4 0, n_4_1,
n 50, nb51, n6.0, n_6_1)

{

and(\0; n_4_1, n_5_1)

or{n_3_0; n_6_1, \0)

or{\l; n_4 0, n 5_0)

and{(n_3_1; n_6_0, \1)

Forum on Design Languages, September 6-11, 1998

Modeling Layout Extracted MOS Transistor Circuits in VHDL

/* Lgc-description of subcircuit B */
leaf sn_B(n_1_0, n_1_1; n 2_0, n_2_1)
{
id(
id(
}

1. 0; n_2_1)
1. 1; n_2_0)

ja s

/* Final Structure Body */

{
beta, a, b, c, Output;
sn_A'"sn_A/0/" (beta:L, beta:H; a:L, a:H, b:L, b:H, c:L, c:H)
sn_B”sn_B/1/" (Output:L, Output:H; beta:L, beta:H)

}

In the Igc-description, leaf sn_A describes subcircuit A and leaf sn_B describes
subcircuit B. The argument list for each leaf-definition denotes the dual-rail encoding for the
outputs and the inputs correspondingly. The final structure body calls these modules with the
actual node names. The LGCC* program (the revised Igc-compiler LGCC as it has been
extended by our work) is used to generate the VHDL-model for the above circuit. A part of
this model, consisting of the entity and the architecture of the component corresponding to
leaf sn_A and the final body, has been included in appendix A.

Despite its limited size, the example above displays all concepts of MOS-circuit
modeling that we have presented in the previous sections. The generated VHDL code clearly
illustrates how VHDL processes model channel-connected subcircuits. One can also observe
how the functions Low_Rail, High_Rail and Ternary, defined in the Dual_Rail_Encoding

package, are used.

5 Experimental results

We have generated VHDL models for a number of different MOS-transistor circuits, ranging
from a simple carry ripple full-adder to a BCD-recogniser, a simple microprocessor and a
cryptographic coprocessor. Each of these models has been simulated in the Mentor Graphics
design environment, and were shown to be fault-free with respect to the original behaviour.
Table 2 illustrates some practical data for these experiments: the number of transistors for
each of the circuits, and the CPU time (in seconds) needed to generate the VHDL model on a
DEC 5000/120.

Numbers of | CPU time

Transistors (sec)
Carry ripple full-adder 184 0.4
Simple ALU 70 0.3
BCD-recogniser 104 0.2
Tamarack microprocessor 15034 1.2
Subterranean [9] 43000 2.1
(a cryptographic Co-Processor)

Table 2: Some experimental results for generating VHDL-code
for various transistor-level circuits

Forum on Design Languages, September 6-11, 1998

Modeling Layout Extracted MOS Transistor Circuits in VHDL

6 Conclusions

This paper illustrates a method for automatically generating VHDL-descriptions for MOS-
transistor circuits, starting from layout extracted transistor netlists. The software
implementing the above method has been used for modeling systems with varying size and
functionality, with satisfactory results in simulation. This gives us the certainty that the
outcome of our work is useful to designers, who need to incorporate pre-designed MOS
circuits in their designs. Furthermore, the derived functional models can be used for a Layout
versus RTL equivalence checking.

We should admit, however, that because of maintaining the dual-rail encoding and the
excessive amount of signals it imposes, our model is rather cumbersome and therefore its
utilisation is restricted. For instance, it is difficult to use it for purposes like re-synthesis,
documentation etc. unless it is further refined. Because of the same reasons, refinement is
necessary for the use of our models in existing equivalence checking programs.

Although the simulation time of the derived models is not as short as the simulation
time of the RTL-equivalents, it is nevertheless worthwhile to have at our disposal these
accurate models automatically, instead of designing them from the beginning each time.
Hence, to reduce design time, hardware design companies could use this methodology to
generate VHDL models for MOS circuits they need to incorporate in specific designs.
Alternatively, they could build libraries of VHDL models for MOS circuits, which they have
at their disposal, for later use.

Using our tool in combination with an equivalence checking program, designers can
verify that their RTL-model before synthesis is equivalent to the model extracted from the
final generated layout. An important advantage is that our methodology does not try to
identify specific patterns of transistors in the extracted netlist; on the contrary, it can deal with
more general transistor interconnections and it can account for transistor characteristics, such
as dynamic pass transistors, pre-charged logic etc.

7 Acknowledgments

The authors would like to thank Randal E. Bryant and the members of the COSMOS team for
making the COSMOS system available to them. The Research presented in this paper was
partially supported by a scholarship from the Flemish Institute for the promotion of Scientific-
Technological Research in Industry.

8 References

1. D. Beatty, K. Brace, R. E. Bryant, K. Cho, L. Huang. User’s Guide to COSMOS a
Compiled Simulator for MOS Circuits.

2. R. E. Bryant. A Survey of Switch-Level Algorithms. IEEE Design & Test of
Computers, August 1987.

3. R. E. Bryant. A Switch Level Model and Simulator for MOS Digital Systems, IEEE
Transactions on Computers, Vol C-33, No 2, February 1984. pp.160-177.

4. R. E. Bryant. Boolean Analysis of MOS Circuits, IEEE transactions on computer aided
design vol. CAD-6, No 4, July 1987.

Forum on Design Languages, September 6-11, 1998

Modeling Layout Extracted MOS Transistor Circuits in VHDL

5. A. G. Stanculescu, A. S. Tsay, A. N. D. Zamfirescu, D. L. Perry. Switch Level VHDL
Descriptions, ICCADg9.

6. R.D. Acosta, S. P. Smith, Jeff Larson. Mixed-Mode Simulation of Compiled VHDL
Programs, ICCADS9.

7. Dino Caporossi and Geof Barrett. Formal Verification of a Large Design.
http://www.eedesign.com/ditorial/1996/CoverStory9601.html

8. R. Lipsett, C. Schaeffer and C. Ussery. VHDL: Hardware Description and Design.
Kluwer Academic Publisher, 1989.

9. L. Claesen, J. Daemen, M. Genoe, G. Peeters. Subterranean: A 600 Mbit/sec
Cryptographic VLSI Chip. Proceedings ICCDY93, International Conference on
Computer Design, VLSI in Computers & Processors, Cambridge Massachusetts,
October 3-6, 1993,

9 Appendix A

In this appendix, the VHDIL-model generated by our methodology for the example in section
4 is listed. In order to contain its size, the definition for component sn_B has been omitted

from this VHDL-description.

-- VHDL description “circuit.vhd” generated from LGC-file “circuit.lgc”
ENTITY sn_A IS

PORT (

1 : BUFFER bit;
1, n.50, nb51, n60, n6_1: IN bit);

END sn_A;

ARCHITECTURE sn_A_behavior OF sn_A IS

BEGIN

PROCESS
variable n_3_0_new, n_3_1_new : bit;
variable tmpvarl : bit;

BEGIN
tmpvarl := n_4_1 AND n_5_1;
n_3_0_new :=n_6_1 OR tmpvarl;
tmpvarl :=n_4.0 OR n_5_0;
n_3_1 new := n_6_0 AND tmpvarl;
n 3 0 <= n_3_0_new;
n 3_1 <= n_3_1_new;
WAIT ONn 4 0, n.4 1, n. 50, n_5_1, n_6_0, n_6_1;

END PROCESS;
END sn_A_ behavior;

LIBRARY D R E;
USE D_R_E.Dual_Rail_Encoding.ALL;

ENTITY circuit IS

PORT (
beta : OUT XO01;
a, b, c : IN XO01;
Ooutput . OUT X01);

END circuit;

Forum on Design Languages, September 6-11, 1998

Modeling Layout Extracted MOS Transistor Circuits in VHDL

ARCHITECTURE Structure of circuit IS

SIGNAL beta_L, beta_H : BIT;
SIGNAL a_L, a_H : BIT;
SIGNAL b_L, b_H : BIT;
SIGNAL c_L, c_H : BIT;

SIGNAL Output_L,Output_H : BIT;
-—- Component declaration statements

BEGIN
a_L <= Low_Rail(a);
a_H <= High_Rail(a);
b_L <= Low_Rail(b);
b_H <= High_Rail(b);
c_L <= Low_Rail(c);
c_H <= High_Rail(c);

UQ : sn_A PORT MAP(beta_L, beta H, a_L, a_H,
b_ L, b_H, c_L, c_H);
Ul : sn_B PORT MAP(Output_L, Output_H,
beta_L, beta_H);
beta <= Ternary(beta_L,beta_H);
Output <= Ternary (Output_L,Output_H) ;
END Structure;

Forum on Design Languages, September 6-11, 1998

