HloW Level SYNTHess oRkSnef HLSL -]2

Formal Verification of High Level Synthesis by means of
SFG-Tracing.

Mark Genoe, Luc Claesen, Eric Verlind, Hugo De Man
IMEC, Kapeldreef 75, B-3001 Leuven

Abstract.

SFG-Tracing is a multi-level formal verification methodology, allowing the behavioral verifica-
tion of VLSI hardware implementations with respect to the specifications. Design levels can
range from SPICE transistor netlist, gate netlist, structural and behavioral Register Transfer
descriptions, and high level algorithmic specifications as they are used in High Level Synthesis.
SFG-Tracing has been used succesfully for the automatic verification of the high level synthesis
results for bit-serial implementations [14] in CATHEDRAL-I and microcoded implementations
[13] in CATHEDRAL-II, from the layout-extracted SPICE transistor netlists up to the high le-
vel algorithmic specifications. A modem chip consisting of over 31,000 transistors is the largest
design that has been fully verified up to now.

Current work is oriented towards automating the verification for high complexity synthesis
results. For this a 230,000 transistor vocoder chip as synthesized by CATHEDRAL-II is the
current driving application.

SFG-Tracing can be used as a feasible verification methodology for the full behavioral ve-
rification of high level synthesis results as well as for the verification of manual, or mixed
manual/synthesized designs.

1 Introduction

High level synthesis [1, 2, 3] is a method which was originally aimed to be correct by construc-
tion. Both design bugs as well as software bugs in tools or their interfaces can result in large
costs. This is caused by costs involved both in VLSI processing iterations as well as by profit
loss due to a late market introduction. Many CAD-tools are involved in current state-of-the-
art high level synthesis systems (scheduling, allocation, bus-merging, memory management,
controller synthesis, data path synthesis, technology mapping, module generation, layout gene-
ration, standard cell place & route, floorplanning, block place & route, layout assembly, mask
generation). There is no doubt that individual high level tools can or will be bug-free. As
many high level synthesis tools are complex software systems and are still under construction
and further elaboration, and due to the complex interaction with CAD tools, the possibility for
errors is still open. Independent verification to cross-check the results from synthesis results is
highly desirable to increase the confidence in design correctness.

Such cross checking of the results of correctness-by-construction CAD tools is not new. Even
such established techniques like schematics entry followed by place and route tools to generated

Algorithm / Instruction Set

Specifications Signal Flow Graph /
Algorithm /

Functional
Specification
(SFQG)

Behavioral
Register
Transfer

(bRT)

Specification

Structural
Register
Transfer

(sRT)

Controller
FSM
i

Asynchronous Fg 5 Controller
FSM struct. : FSM struct. structure

Transistor

Controller layout Module layout Switch
Level

(Switch)

Gate Level
layout

pooooooooo

(=]
=
a
.ni

Figure 1: Aspects and Levels of Abstraction in Hardware Design.

the layouts, are in industrial environments cross checked for potential bugs, by netlist extraction
from layout and netlist comparison with the original netlists as entered initially.

The need for the independent verification of synthesis results is also recognized by IBM [11]
in the HIS high level synthesis system and by Siemens [15] in the CALLAS system.

2 The SFG-Tracing methodology.

SFG-Tracing [12] is a verification methodology which allows to verify lower level implemen-
tations with respect to higher level implementations. To understand the impact of this, the
so-called formal verification map [16] is used.

This map is shown in fig. 1. Horizontally the design aspects are indicated (asynchrounous
versus synchronous aspects). In the synchronous aspects a differentiation is made in the control
dominated and the data path dominated aspects.

Vertically the levels of design abstraction are represented. From the bottom up to the higher
levels these are: transistor switch level, structural Register Transfer level (sRT), behavioral
Register Transfer level (bRT) and algorithmic or also called signal flow graph (SFG) level. At
the algorithmic level no specific binding of the operations is made in terms of hardware, neither
there has been done an allocation of specific control steps when operations are executed on the
hardware. It is also well known that the algorithmic specfications can be either implemented
in bit-serial as well as micro-coded as bit-parallel implementations. It is typically from the
algorithmic level (SFG) down to the bRT level that the high level synthesis tasks of allocation
and scheduling are situated. Currently most of the verification methods are located either at
the sRT level, usually directly comparing the Boolean functionality of the combinatorial logic
by means of BDD’s [8]. The current wave of FSM verification based on the symbolic traversal
(by means of BDD’s) is situated at the sRT-bRT levels.

The comparison of complete behaviors from low level implementations up to high level
specifications is too complex to be tackled as black boxes for realistically sized problems.

SFG-Tracing is a methodology [12] that uses the high level specification as a point of re-
ference to verify the lower level implementations against. This has the advantage that the
high level specification are most of the time much more abstract than the detailed low level
implementations (that can contain thousands of transistors). In SFG-Tracing the high level
specification is partitioned in a systematic way and all of the partitions in the specification are
traced and their correct implementation is fully verified by symbolic analysis [5, 6, 7] and ma-
king use of BDD’s for their correspondance with the specified behavior. In order to make this
feasible a number of reference signals and their mapping functions from the implementation in
space and time and under certain conditions have to be used [12]. The amount of signals at the
borders of the partitions in the high level specification is much lower than the amount of signals
in the implementation. E.g. the circuitry of the controller generated in the CATHEDRAL-II
environment is not visible in the high level SILAGE specifications and do not have to be taken
as reference signals. The effect of the controller is implicitly verified by the symbolic analysis
and verification of the data operations on the implementation.

Some definitions:

o Reference signals : the input and output signals of each partitioned signal flow graph.

e Mapping functions : the correspondance of the reference signals between implementation
and specification in space and in time.

3 Partitioning and verification.

In most industrial applications the complexity of the algorithmic specification (called SFG)
is too high to verify only input-output behavior. A partitioning of the complete SFG into
manageable pieces can be derived from intermediate signals out of the specification or given
as references by the synthesis system. The correctness of each partitioned SFG (called pSFG)
can be verified by symbolic analysis and boolean comparison. In practice this means that we
have to verify the correct I/O timing for read and write operations, the correct functionality of
each pSFG, and the non-corruption of stored signals between the pSFG’s. Special constructs
are built to verify conditional operations and iterations in the specification. All these aspects
will be explained in the next paragraphs.

Verification of pSFG’s : The verification of each pSFG can be done by comparing the
bit-true functionality of both the specification and the implementation. The functionality of
the specification can be derived from the semantics of the specification language operators,
the implementation functionality from symbolic simulation with the signals in the datapath
of the implementation. The representation of both formulas within the Cathedral Verification
Environment is done by BDD’s. Verifying the correctness of the pSFG behavior is so reduced
to tautology checking of both derived BDD’s. This can be illustrated by the following example,
which is also the driving example of the other paragraphs.

#define word fix<4,0>
#define N 100

function main(in[N]: word) out:word =

{

temp[0] = word(0);

for (i:0 .. N-1):

temp[i+1] = if (in[i] < temp[i]) -> temp[i]+in[i];
else -> temp[il;

out = temp[N];

}
The partitioning is based on the availability of intermediate signals after high level synthesis.
Let’s suppose that in this case we can distinguish the signals temp[0], i, (infi] < tempfi]),
temp[i+1] and out, and take the pSFG with (infi] < temp[i]) as output under consideration.
The non-corruption of stored values property (see later) claims that the inputs of this pSFG,
which are infi] and temp/i], are available somewhere in the circuit. By symbolic analysis we
can compute the circuit behaviour for this pSFG by making use of the mapping-information.
This means that we know when and where we can find the computed output of this pSFG. The
specification function of this pSFG is as follows: (derived from the semantics of the specification
language)

small_O0 = (!'in[i]_0 && temp[i]_0)

small_1 = ('in[i]_1 && temp[i]_1) || (small_0 && !(in[i]_1 = temp[il_1))
small_2 = ('in[i]_2 && temp[il_2) || (small_1 && !'(in[i]_2 ~ temp[i]_2))
small_3 = (in[i]_3 && 'temp[i]l_3) || (small_2 && !(in[i]_3 ~ temp[il_3))

smaller_than = small_3

Once we have verified the correctness of this pSFG, we reduce this symbolic output expression
to a new unique symbolic variable, which will be an input of one of the following pSFG’s under
examination, or which can also be an external output signal.

Correct I/O timing : The mapping functions do not contain only information about the
reference signals of each pSFG, they also contain the necessary information about the external
read and write operations. Indeed, external read or write signals are at least input or output
of one pSFG. This means, applied to our driving example, we need to know exactly when the
input signals inf0..N-1] are available at the input ports, and when the correct output signal
out can be found at the output ports. When there are no read operations specified, ”don’t
care”-values can be put on the external input ports to verify that these ports have no influence
to the circuit behaviour when it is not expected.

4

Corruption of stored signals : A very important point is that we have to be sure that
the resulting data from a pSFG will be stored correctly during the whole trajectory between
the time that the signals are generated and the time that they are used as input for one of the
following pSFG’s. In SFG-Tracing this is done correctly by using only unique symbolic variables
each time we have verified a pSFG. When we verify a pSFG-function with these variables as
inputs, there is no way that they can come from somewhere else.

Conditional operations : Conditional operations can be verified in one single pSFG by
labeling the results of each branch to the specific condition of that branch, and taking all results
together by a multiplexor function. This is illustrated below for the if-then-else construct of
our example above.

(small_than && add_temp[i]_in[i]_0) || (!small_than && temp[i]_0)
temp[i+1]_1 = (small_than &% add_temp[i]_in[i]_1) || (!small_than && temp[i]_1)
temp[i+1]_2 = (small_than && add_temp[i]l_in[i]_2) || (!small_than && temp[i]_2)
temp[i+1]1_3 = (small_than && add_temp[i]l_in[i]_3) || ('small_than && temp[i]_3)

If the operations are not specified for each possible branch (e.g. if-then without else), the default
case is nothing else than the previous value.

temp[i+1]_0

Loop constructs : By using symbolic boolean variables, we can reduce the number of times
that we have to pass through the loop body to a feasible one. This is a serious advantage in
case of microcoded controller architectures like Cathedral-II. Indeed, in this case we can verify
loop constructs by applying the principles for symbolic induction. Such an induction proof is
based on the correctness of two cases, the base-case and the induction-case.

The syntax of a loop construct can in general defined as follows:

for (Iterator : LowerBoundExpression .. UpperBoundExpression):
{
LoopBodyStatement definitions;

}

The verification of the base-case consists of the correctness of the LowerBoundExpression for
the loop-iterator, and the correctness of the LoopBodyStatements. When all this is proven
correctly, we can replace all results -as it is defined by the SFG-Tracing methodology- by new
symbolic variables expressing that the previous loop was checked correctly.

The UpperBoundExpression of the loop-iterator can be verified symbolically, as well as the
increment operation of the loop-iterator. The UpperBoundExpression has to be replaced by a
'0” in order to handle the induction-case after the base-case.

This induction-case is proven correctly by verifying all the pSFG’s by using the symbolic
values assigned after the correct verification of the base-case. Starting with these symbolic
values of the previous iteration (i.e. n) we can verify the correctness of the next iteration (i.e.
n+1), as it is aimed by the induction principle. The proof that we return each time to the
same identical controller state can be done by comparing symbolically the controller bits after
the base and induction case. Finally the UpperBoundExpression has to be replaced by a ’1’
expressing that we leave the loop construct, and go further on to another pSFG.

When loops are folded, we have to pass an additional number of times through the loop,
convenient with the depth of the folded loop. So we are sure that we take the right inputs which
can be generated a number of iterations before.

PR,

=

PR R TR

imen
oar e

(1)

miwml e o=
e odoer @3

ihamlzen 12 m 9t
E EvEs 331 Zd|

TIFE P MW i w e

LRI
| TIRC T B

Figure 2: Chip layout of a 32,000 transistor modem receiver pulse shaper and equalizer chip as
synthesized by CATHEDRAL-2. This chip has 3 ALU’s of 14 bits, a multi-branch controller,
micro sequencer, and testability circuitry. This chip has been fully verified w.r.t. high level
specification using the SFG-Tracing methodology.

Parallel verification : The properties of correctness, I/0 timing and non-corruption of stored
data for the many pSF'G’s can in principle be verified in parallel on different machines. Thanks
to the super-symbolic ”don’t care”-value the influence of possible bugs coming from other places
than the one under consideration can be detected.

4 Results

SFG-Tracing has been used to succesfully verify results from the bit-serial CATHEDRAL-I
silicon compiler [14]. Results obtained include a fifth order filter, and a 12,000 transistor 9th
order wave digital filter implementation. No bugs have been reported up to now.

Table 1 summarises the results on the practical verification of CATHEDRAL-II designs as
published in [13]. This includes a 31,614 modem chip as shown in fig 2 which consists of 3
cooperating datapaths of 3 ALU’s, a micro-coded controller and testability circuits.

The cpu times (DEC 3100) include symbolic simulation and the checking by means of
OBDD’s [10] of the proof obligations per member of each partition.

Three bugs in the high level synthesis have been found, which were previously uncovered
by normal simulations of the synthesis results. This motivates the need for the independent
verification of high level synthesis results...

The current research concentrates on the automation of highly complex synthesis results
from CATHEDRAL-IL In this respect a 230,000 transistor vocoder design is being used as a
benchmark. This vocoder is used to convert a speech signal of 8kHz into an 800 bit/sec encoded
signal for applications in satelite communication. In the verification it is the goal to start from

design aplusb | aplusb | count | rec3 | vocoder
-m -8 -8 -3 -s
MOS trans. 1,935 3,592 | 7,108 | 31,614 | 230,000
latches 112 112 230 852 6,526
states 1034 1034 1089 | 10%°6 101960
subnetworks 362 912 1,719 | 7,698 12,067
uniq. subn. 38 21 32 36 38
mach. cycles 3 3 503 19 114,686
sim. cycles 10 10 20 29 1,400
cpu time 11.5s 12's 22s | 567s | 8,000 m
script lines 105 105 640 | 4,782 | 680,000
partitions 1 1 14 68 2,200

Table 1: Results of verification of transistor implementation with respect to high level specifi-
cation for a number of designs synthesized by CATHEDRAL-II on a DEC 3100

as low a level as possible, thus encluding an as large as possible range of the design trajectory.
Therefor the current efforts are mainly concerned with the management of the symbolic analysis
data. The specification of the vocoder consists of 15 pages of SILAGE. It is partitioned in about
2200 partitions. The figures in italic mode of Table 1 are extrapolations from current results.
The implementation of automatic partitioning and nested loop constructs is not yet finished for
designs with complexities such as the vocoder-design.

5 Conclusions.

An automatic method for the formal verification of the results from high level synthesis is
presented. This method starts from the full and flat transistor netlist (or alternatively the gate
netlist) and compares if the high level specification is correctly implemented. To achieve this
some information -the reference signals and mapping functions- is required as hints from the
high level synthesis system. In case the high level synthesis system would give wrong ”hints”,
false negatives can occur, but no false possitives. SFG-Tracing is being automated for the
verification of the results from CATHEDRAL-II. The method is however also useful for the
verification of manual, or mixed manual/synthesized designs. For these designs the essential
hints have to be supported by the designers.

References
[1] D. Gajski (Ed.), “Silicon Compilation”, Addison Wesley, Reading, Mass., 1988.

[2] M.C. McFarland, A.C. Parker, R. Camposano, “The High-Level Synthesis of Digital Sys-
tems”, Proceedings of the IEEE, Vol. 78, No. 2, February 1990, pp.301-318.

[3] R. Camposano, W. Wolf (Eds.), “Trends in High-Level Synthesis”, Kluwer Academic
Publishers, Norwell, MA, 1991.

[4] H. De Man, J. Rabaey, P. Six, L. Claesen, “Cathedral-II: A silicon compiler for digital
signal processing”, IEEE Design & Test of Computers, December 1986, Vol. 3, No. 6,
pp.73-85.

[6] R.E. Bryant, “Algorithmic aspects of symbolic switch network analysis”, IEEE Transac-
tions on Computer-Aided Design, Vol. CAD-6, No. 4, July 1987, pp. 618-633.

[6] R.E. Bryant, “Boolean Analysis of MOS Circuits”, IEEE Transactions on Computer-
Aided Design, Vol. CAD-6, No. 4, July 1987, pp. 634-649.

[7] R.E. Bryant, D. Beatty, K. Brace, K. Cho, T. Sheffer, “COSMOS: A Compiled Simulator
for MOS Circuits”, 24th Design Automation Conference, pp. 9-16, 1987.

[8] R.E. Bryant, “Graph Based Algorithms for Boolean Function Manipulation”, IEEE
Transactions on Computers, Vol. C-35 No. 8, August 1986, pp. 667-691.

[9] S. Bose, A. Fisher, “Automatic Verification of Synchronous Circuits using Symbolic Logic
Simulation and Temporal Logic”, Formal VLSI Correctness Verification, ed. L.Claesen,
ISBN 0 444 88688 5, North-Holland Elsevier Science Publishers, 1990, p.151-158.

[10] K.S. Brace, R.L. Rudell, R.E. Bryant, “Efficient Implementation of a BDD Package”,
Proc. 27th ACM/IEEE DAC, 1990, pp. 40-45.

[11] F. Corella, R. Camposano, R. Bergamashi, M. Payer, “Verification of Synchronous Se-
quential Circuits Obtained from Algorithmic Specifications”, Proc. International Confe-
rence on Computer Hardware Description Languages and their Applications, ed. D. Bor-
rione, R. Waxman, Elsevier Science Publishers, (North-Holland), IFIP 10.2, Marseille,
France, 22-24 April 1991, pp. 229-247.

[12] L.Claesen, F.Proesmans, E.Verlind, H.De Man, “SFG-Tracing: a Methodology for the
Automatic Verification of MOS Transistor Level Implementations from High Level Be-
havioral Specifications”, Proceedings ACM-SIGDA International Workshop on Formal
Methods in VLSI Design, ed. P.A. Subrahmanyam, January 9-11, 1991.

[13] M. Genoe, L. Claesen, E. Proesmans, E. Verlind, H. De Man, “Illustration of the SFG-
Tracing Multi-Level Behavioral Verification Methodology, by the Correctness Proof of a
High to Low Level Synthesis Application in CATHEDRAL-II”, Proc. IEEE ICCD-91,
Conference, Cambridge MA, October 14-16, 1991.

[14] F. Proesmans, L. Claesen, E. Verlind, M. Genoe, H. De Man, “Verification Strategy of the
CATHEDRAL-1 silicon compiler based on the SFG-Tracing methodology”, Proc. IEEE
CompEuro-92 conference, The Hague, The Netherlands, 4-8 May, 1992.

[15] M. Payer, T. Filkorn, “Symbolic Verification of Sequential Circuits Synthesized with
CALLAS”, IFIP Workshop on Application Oriented Synthesis, Dresden, March 23-25,
1991.

[16] L. Claesen, D. Borrione, H. Eveking, G. Milne, J.L. Paillet, P. Prinetto, “CHARME:
Towards Formal Design and Verification for Provably Correct VLSI Hardware”, in Cor-
rect Hardware Design Methodologies, ed. P. Prinetto, P. Camurati, 1992 Elsevier Science
Publishers (North-Holland), pp. 3-25.

