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Abstract

This paper presents new rules to derive the signal flow in a
VLSI-design. The method is based on sound logical principles to
guarantee the correctness of the results and a maximal design-
style independency.

The different steps in the taggingprocess are explained and il-
lustrated with examples. An interesting application of the signal
flow results for verification purposes is the concept of Intended
Unilateral Blocks. It reflects the intended behavior of a design
and its use leads to an increased efficiency in electrical as well as
timing verification programs.

1 Introduction

Several VLS| CAD tools, especially in the field of electrical and
timing verification require some knowledge about the signal flow
through MOS transistors (i.e. the propagation of the logic values
through the switch network from external inputs to outputs) in order
to understand the circuit behavior and/or increase the efficiency of
the tools. This knowledge about the signal flow can be provided
manually or it can be derived by expert-systems in an automated
way.

This paper describes new rules, based on simple logical princi-
ples, to derive the signal flow through MOS VLSI-circuits which are
applicable within electrical verifiers and which are independent of
the design methodology. In section 2 the basic aspects of this the-
ory are explained, and the differences with existing flow-derivation
tools are pointed out. Sections 3 and 4 give a brief overview of
the implementation and on the results for various circuit types. In
a further section the application area for the dataflow is discussed.
Concluding remarks are given in section 6.

2 Basic Approach

2.1 Existing Techniques vs. Electrical Verification

Many timing verifiers, such as TV [1] and Chrystal [2] require the
derivation of signal flow through transistors in order to reduce the
number of false paths, and to increase efficiency. Some simulation
programs (CSWAN [9]) also use signal flow partitioning to reduce
complexity.

It was generally experienced that the derivation of signal flow
for VLSI custom design is best performed by combining automated
tagging (by reliable direction-finding rules) with hand-tagging for
difficult transistors. A general technique to derive this signal flow
has been extensively treated in [3]. Recently, an interesting approach
based on electrical properties was proposed in [13]. We think that
the rules that were proposed in [3] may be erroneous in complex
design styles but moreover, the rules are not applicable for our needs
of signal flow :
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Indeed, our aim is to examine the electrical correctness of VLSI-
cireuits statically within the DIALOG-environment [5] based upon a
formal theory of correct electrical behavior of a circuit [6]. In order
to derive the intended behavior of the circuit we need a tool to find
the flow direction through transistors. It is of course vital that the
rules which accomplish this task do not depend upon electrical cor-
rectness of the circuit. In a first stage we implemented the safe rules
of Jouppi [3] in DIALOG, excluding the rule on K-ratio's because
of the explicit requirement of electrical correctness (following the
suggestions in [3]). We concluded that these remaining local rules
are indeed effective in some cases but unsuited for electrical verifi-
cation : Some of the rules implicitly require electrical correctness
and it is therefore impossible to guarantee their safety (e.g. the Al-
ways On Invertor rule is only correct if the composing transistors are
sufficiently large). Moreover, because of the local character of the
rules, feedback cannot be handled properly. A small example of a
register-file (figure 1) in our Cathedral-library Hlustrates these draw-
backs : N1 and N2 can be directed by the Always On Invertor rule.
If N1 is directed first by invertor 11, then this results in an incorrect
tagging, and the rule is not applicable any more for invertor 12, The
Complement Gate Detection rule is not applicable to direct M1 and
M2 because a more complex decoder (instead of a simple invertor)
controls the gates of the passtransistor-network. Many transistors
will remain undirected. Similar problems occur in RAM's (e.g. with
6 transistor CMOS RAM-cell). Finally, the independency of design
style of some of the safe rules may be questioned, since the invertor
K-ratio is explicitly suited for NMOS and the Always On Invertor is
explicitly CMOS.

The method proposed in [13] is more straightforward because
it is strictly based on solid electrical principles. However, it is our
experience that static verification cannot work properly if the sur-
rounding circuitry of local circuit parts is not considered (relations
between circuit nodes, etc...). Since the method also considers tran-
sient effects, we expect many unset transistors in CMOS with pass-
gate circuitry. Moreover, we may expect efficiency problems using
the proposed method with large channel connected components.

2.2 Reformulation of the dataflow-problem

When a circuit has not yet been verified electrically or when electrical
verification is the major goal behind the dataflow problem, the log-
ical principles and the electrical reality can clash. Mixing electrical
and logical principles to obtain meaningful results is excluded. One
possible solution is to direct transistors based on electrical principles
([13]) before switch level simulation. The other solution is dataflow
determination based on logical principles. The following arguments
favor this approach :




o Logical principles are likely to be design style independent be-
cause of their more general character.
o Logical principles can work on a higher level of abstraction

than the actual circuit components. We will show this by
introducing the reduced switch graph. An increased efficiency

results from it.

Static verification requires more than an input-output behav-
ioral description of the circuit. It needs a behavioral description
of lower circuit parts in order to allow for verification of these
parts. The logical dataflow determination is a way to obtain a
part of this behavioral description, and the global rules provide
some of the necessary general information.

When verifying the circuit electrically, the physical (electrical) dataflow
will be checked against the results obtained from the logical prop-
erties, which will allow us to find electrical bugs in designs : the
intended behavior derived from the logical principles is verified
against the electrical behavior.

2.3 The logical principles

Definition 1 A node n; is a source of information for another
node n; if the flow of information goes from node n; to n; via
source-drain connections of transistors, i.e. if the value of node
n; may determine the value of node ny. Node n; is then a sink
of node n; (3].

Definition 2 4 node n; is a 1(0)-source for another node n;
if n; may activate a drain-source path between n; and vdd (gnd)
via the gate of a transistor.

Definition 3 A node n; is a X-source of information for an-
other node n; if it is a 0-source, I-source or source for nj. In
that case n; is an X-sink from n;.

Deflnition 4 A node n; is a bidirectional with another node
n; if it is @ X-source for n; and a X-sink from n;.

A transistor is directed if an assignment of the opposite direction
would create a design that violates the following logical principles :

1. Every node in the network contributes to the functionality.
This implies that all nodes (except for primary inputs and out-
puts) should be source and sink of information. This principle
leads to a set of rules that operate locally on the circuit.

2. A primary input is only a source of information.

3. Every gate node of a transistor should be able to switch the
transistor on and off i.e. every gate node in the circuit (except
for primary inputs) can be driven to 1 and 0. This principle
results also in local rules.

4. Every node in the circuit should have a path to a primary input,
in a direction opposite to the assumed signal flow (via X-sink
relations) and every node should have a path to a primary
output in the signal flow direction (X-source relations). This
statement introduces rules operating on the global circuit.

The principles one to three form the true safe subset of the design
principles defined by [3], but reformulated in a node oriented way
that will enable the use of a smaller search graph. The fourth prin-
ciple allows to cope with feedback circuits and it has an important
influence on circuits with intensive use of passtransistors. It should
be noted that the dual principle of the second principle ('A primary
output is only a sink of information’) is not valid in many cases and
is therefore not used.

3 Implementation

The formulation of the logical principles is node-oriented, but the
application of these rules on all nades of the circuit is unnecessary
and undesirable for efficiency reasons. Indeed, the global principle
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endangers the linear complexity of the problem; this danger is largely
neutralized using reduction rules to decrease the search graph.
Therefore, the switch graph of the circuit is reduced to a partially
directed Reduced Switch Graph on which the logical principles
will be fired in rule-form. An example is shown in figure 2.

o The vertices of this graph are the boundary and connecting
nodes of the biconnected components ([11]) of the switch
graph; in [4] they are called output nodes. If a node is a
vertex of the graph, then it must be connected through in-
dependent paths to three or more distinct vertices or supply
nodes (theorem 4.3 in [4]). The supply nodes are not vertices
of the graph.

¢ The edges of the graph are defined as follows :

E = {(vi, v;)|v: has a source-drain path to v; without passing a
v, with v, v;,v. vertices of the reduced switch graph V}
1J {< ¥n,¥m > |vn is & 1-source or & 0-source of vm
without passing a v, with v, vm and v, vertices of V'}
() indicate an unordered pair (an unknown relation) and <>
indicate an ordered pair.
The rules direct the graph as much as possible by changing the un-
known edges into source (and sink) edges. Edges which are directed
in the two directions are called bidirectional. When the Reduced
Switch Graph is directed maximally, expansion of the graph to the
original circuit takes place. This can be done without introducing
any conflicts, because of the nature of biconnected components.

Figure 2

The four logical principles resulted in ten basic rules, described
with the LEXTOC language in DIALOG [5]. Rules 3 and 4 reflect
the first principle, rules 5 and 6 resulted from the third principle.
The second principle is repeated in rule 10.

In order to master the complexity of the global principle (which
may involve a long search towards terminal nodes) we introduced
the first two rules : these rules treat nodes that already have a path
to an input terminal as an input-terminal for the global rule. By
firing these two rules regularly during the dataflow determination,
the execution time of the global rules is kept very reasonable. The
global principle itself can be found back in rules 7 and 8.

* For Vi a non-terminal graphnode :
1. Path to input

Conditions : A node Vi has a path to an in-terminal
via X-sink relationa.
Action : Vi is a pseudo-in-terminal

2. Path to output : Dual case of rule 1

* For Vi a non-terminal graphnode :

3. Sink Node .
Conditions : All nodes Vj that have an Edge-relation
with Vi, X-source Vi except one vertex
Vx which is unknown with respect to Vi.
Action : Vx is sink of Vi
4. Source Node : Dual case of rule 3

o

. No path to VDD

Conditions : All nodes Vj that have an Edge-relation
with Vi are 0-sources or X-sinks of Vi
except for one vertex Vx.

Action : Vx is source of Vi (in fact a 1-source)

@

. NBo path to GND : Dual case of rule b




7. No path to output

Conditions : All nodes Vj that have an Edge-relation
vith Vi are X-sources or X-sinks of Vi
except for one vertex Vx which is unknown
with respect to Vi.

None of the X-sink vertices of Vi have
a possible path to a pseudo-out-terminal.
Action : Vx is sink of Vi
8. No path to input

Conditions : All nodes Vj that have an Edge-relation
with Vi are X-sources or X-sinks of Vi
except for one vertex Vx which is unknown
vith respect to Vi.

None of the X-source vertices of Vi have
a possible reverse path to a
pseudo-in-terminal.

Action : Vx is source of Vi

9. Bidirectionality
Conditions : A node Vi is X-source and X-sink of Vj
Action : Vi is bidirectional with respect to Vj.

» For Vi an in-terminal graphnode :

10. In-terminals
Conditions : Graphnode Vj is unknown with respect
to Vi
Aotion 1 Vi is a source of Vj
4 Results
4.1 Experimental Results

The rules have been applied to several real-life examples, different
in style and size, that have been designed within the Cathedral-
Il [8] environment : a 4 bit divider Execution Unit (Exu) of 300
transistors, an 8 and an 24 bit Comparator Exu (with slightly dif-
ferent building blocks in it) of 1500 and 4000 transistors, and a
DES-chip ([7]) containing 11800 transistors. All these designs are
CMOS designs, but they still offer a wide range of different prob-
lems : passgate-logic such as passtransistor-exors, registerfiles with
conditional registers by means of passgates, pseudo-nmos decoders,
tristate buffers, scan-paths, pla’'s, etc... .

The order of execution of these rules does not affect the result, but
it affects of course the efficiency of the program. For that purpose,
the focal rules are executed before the global rules. Moreover, all
1-source and 0-source edges can be set in one single pass, and al-
ready drastically reduce the number of edges that have to be tagged
by the rules. Local and global rules are executed alternatively until
no further nodes can be directed. Normally the number of itera-
tions is two or three. Without a conversion to a reduced graph,
the number of iterations would of course increase. Table 1 shows
the experimental results for the 4 circuits : The reduction to the
reduced switch graph and the final dataflow determination of the
transistors take maximally about 30 % of this total time. The tests
were done on a Symbolics 3670 with 2Mword of memory. The ta-
ble also shows the average number of transistors that were set per
CPU-second and the remaining undirected transistors. The second
part of the table focuses on the reduced switch graph. The orig-
inal number of directed and undirected edges are indicated, and
also the final resulting graph. The bidirectional edges in the 8-bit
comparator are caused by the tristate-configuration of figure 3.
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Circuit Div Comp8 Comp24 DES
Circuit Sizse 268 1561 3879 11884
Nodes 192 809 2034 4092
Run time (sec) 21 105 310 1180
tors/sec. 12.9 14.9 12.3 10.0
Start info »
Graphnodes 143 564 1303 3411
(Vi,Vj) 71 307 843 1754
<Vn,Vm> 181 968 2331 8779
Final info :
1-source 104 545 1362 3761
0-source 7 423 969 5018
source 66 290 819 1245
bidir 0 17 0 1245
untraceable 5 0 48 536

Table 1: Experimental results

4.2 Comparative Results

Table 2 gives more detailed information on the rule-spectrum, and
on the comparison with the Jouppi-rules for three difficult circuits :
A registerfile of 4 bit with many asynchronous feedbacks, a 24-bit
CMOS-version of the Mead&Conway ALU, and a 32-bit Adder with
3 passgate-exors in every bitslice, We experienced that the number
of directed transistors is comparable to the number of tagged direc-
tions with the Jouppi rules, and in some designs drastically better
{when omitting the doubtful rule on CMOS-invertersin [3]). In order
to have a fair comparison with [3], we implemented the Jouppi-rules
in DIALOG. The 'directed logic'-row indicates the number of tran-
sistors that were directed using our logical principles. The next row
indicates the transistors that were set with the Jouppi-rules. The
numbers between parentheses indicate the same number when the
'unsafe’ Always On Invertor is used. For the registerflle how-
ever, this resulted in 18 wrong directions ! The table also
shows when the global rules are more effective than the local rules .
The results are less optimai because of the complex circuitry : In
add32 the passgate-exor (fig 4) is responsible for 176 (96 times 2)
remaining edges. In ALUS8 the difficult tagging is caused by the
extensive use of passgates : almost all graphnodes are connected
to four (or more) other graphnodes. In this way even the global
rules do not succeed because there are too many possible ways to
an output.

If electrical verification is not the major goal or if the circuit is
known, there is no objection in entering an AD HOC rule in the
system. By adding one specific rule we were able to direct in total
more than 95 % of all transistors. This rule is a extended, higher
level version of the Always On Invertor-rule. This special rule can
be formulated as follows :

Conditions : Vertex Vi is an output of a fully static
gate and it is unknown with
respect to only one Vj which
is not the output of a static gate
Action : Vi sources Vj

The second number in the 'directed logic' column indicates the
number of directed transistors if this rule is applied.

Circuit Adda2 ALUS Regd
Circuit Size 1428 508 216
Directed logic 1111 (1426) | 344 (508) | 208 (208)
Directed Jouppi || 1072 (1426) | 316 (508) | 174 (216)
(Vi,vj) 292 96 23
local 113 0 3
global 0 60 16
untraceable 179 36 4

Table 2: Comparison: () indicates use of unsafe rules




4.3 Additional Heuristics

Passgate configurations often behave as a multiplexer : one or more
control signals allow one path to be active, while all other passgate-
paths are closed. If this is the case, local or global rules may not have
the desired effect because they do not 'understand’ this (knowledge
of surrounding circuitry). In [3] this was solved unsatisfactory with
the Complement Gate Detection Rule. We try to accommodate
to this difficulty in another way : The user can pinpoint a set of
control nodes (possibly input terminals), and our program will run
through all possible inputcombinations of these nodes, each time
adapting the graph by deleting some edges and executing the rules
on the adapted graph. After each inputcombination the original
graph is restored. In this way we were able to direct all transistors
in shifter-like circuits.

5 Application Area

Partitioning the network into smaller subnetworks and analyzing
each subnetwork separately is a well known technique to reduce
complexity. Several verification programs divide a circuit into DC-
connected (or channel-connected) components (DCN) [10]. The
interaction between subnetworks is unambiguous (directed interac-
tion graph) and complicated effects due to the bidirectionality of
transistors are handled in the context of these smaller subnetworks.
An example is given in figure 5.

Although many DC-connected components are small, the use
of pass transistor logic can lead to very large subcircuits of a few
thousand transistors. The interaction between DCN's remains un-
ambiguous, but a DCN on itself does not reflect the designer’s orig-
inal gate-level building block. Wrong understanding of the circuit
(e.g. in finding feedbacks) and non linear complexity result from
this. Figure 5 shows a feedback between DCN's 3 and 4.

The knowledge of the dataflow allows us to split up a DCN further
in Intended Unilateral Blocks (IUB’s) :

Deflnition 5 For every graphnode n; :

Every transistor on a source-drain path from n; to any other
graphnode n; that does not violate the dataflow, is in the same
Intended Unilateral Block (IUB). n; is an output of the IUB
if it has a transistor of another IUB connected to it. Every output
of IUB; which gates a transistor of IUB; or which is source or
grain of a transistor of IUB;, is an IUB-input of IU B;.

The interaction between IUB's is unambiguous for the intended (or
logically meaningful) behavior (the designer intended one IUB to
serve as input for another IUB). This interaction is described in the
Data Dependency Graph : The vertices of the graph are the
outputs of the IUB's or primary inputs and the directed edges in-
dicate a relation has-influence-on between circuit nodes (figure 5).
The new graph fully reflects the composition of the basic cells as
the designer conceived them and feedbacks are intended feedbacks.
The original feedback in the data interaction graph changed into
two reconvergent paths between IUB Z and IUB D (fig. 5).

This suggests the use of the IUB concept for timing tools, but the
study of the IUB's instead of the DCN may also be used in elec-
trical verification tools such as [6] : it was proven in [10] that the
electrical correctness approval of IUB's resuits in a correctness ac-
ceptance of the DCN (when using the switch model). In this way
the 'granularity’ of the verification problem is changed drastically,
and the efficiency may improve accordingly. Table 3 compares the
DCN-concept with the IlUB-concept : The largest DCN (IUB) and
the number of DCN's (IUB's) are shown for 3 different circuits. For
our verification program, which involves path searching, generation
of pullup and pulldown functions and tautolgy checking, we gained
a factor of 5 in efficiency for the MCALU24-example. Other appli-
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Circuit Shifts MCALU24 Add32
NR DCN 26 282 448
NR IUB 93 363 448
Max DCN 88 232 8
Max IUB 5 9 8

Table 3: DCN-IUB Size Comparison
cations of our dataflow approach are the elimination of false pathsin
timing verifiers (e.g. shifters), and the generation of simple pullup
and pulldown boolean functions ([10],[12]) which reflect the switch
jevel behavior of output nodes.
‘ 5

Figure 5

6 Conclusions

We have presented a safe method to derive the dataflow in a MOS
circuit. This method is based upon design-style independent logical
principles, which makes the method suitable for circuits which have
not been checked on their electrical correctness. The use of two
global principles has an important influence for more complicated
designs but also results in an efficiency penalty which could be kept
very reasonable by introducing graph reduction rules and heuristics.

The dataflow rules have been integrated in the overall DIALOG-
system to perform electrical verification, and they offered an invalu-
able help to break up the verification problem in subproblems and
to cope with feedback in designs, by introducing the concept of
intended unilateral blocks.
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