
Abstract. Theorem proving based techniques for formal haldwa,re ver-

ification have beea
""olriog "oortantly

and resea.rchers a,re getting able

to reason about more "o-pl"*
issues than it was possible or practically

feasible in the past. It is ofteu the case that a model of a system is

built in a formal logic and 1[qa lgasoning about this model is ca,rried

oot i" tl" logic. Coicern is growing on how to consistently interface a

model built il a format logic with an informal cAD environment. Re.

sea^rchers have been investigating how to define the formal semantics of

iura*.". description languages so that o''e can formally reason about

models informally deatt with in a CAD environrnent' At the University oI

Ca^rnbridge, the embedding of hardware description languages in a logic

is classified in two categories: deep embedding and shallow embeddiag.

In this paper we
"rgo"

thrt there a,re degrees of formality in shallow

u*b"ddi"g a language in a logic- The choice o{.the degree of formality is

a trade'o# between thu .*o*y of the embedding and the amount and

complexity of the proof efort in the logic. we also argue that the design

of.iroguoge could consider this verifiability issue. There are choices in

the desiln Jf ,l*gorg" that can ma^ke it easier to improve the degree of

formaft!, without i-plyr"g serious drawbacks for the CAD environment.

1 Introduction

To interface theorem proving frameworks with cAD environments, researchers

have been formalizingihe semantics of hardware description languages. The two

"ppror"h*
for embedding EDLs in _the

TIOL system lll, ileep embedding and'

"iitto,,
embeilding,are des-cribed in [2]. In ileep embediling,the abstract syntax of

an HDL is represented in the EoL logic and, within the logic, semantic functious

*"G" *"roiog, to the prograrns. The syntax of the EDL is represented by a

HOi type. Forlnstance, on"-could define in the HOL logic atype for the syntactic

cl"ss ofe*pressions of ihe UOl, and then define in the logic a function giving

meaniug to tle expressions. Deep embedding allows oue to reason about classes

of progiams because it is possible to quantify over syntactic structures [3]' Fot

i*i"oi", one could quantify over expressions of the HDL. The type defiuition

p""kag" developed by tom Melham [4] provides automation and support for

il" ,rJ, to define " "i.."
of recursive iypes and to make proofs involving them'

Degrees of Formality in Shallow Embedding
Itirdware Description Languages in HOL"

Catia M. Angelo, Luc Claesen, Hugo De Man

IMEC vzw, Kapeldreef ?5, 83001 Leuven, Belgium

* This research was sponsored by CNPq (Brazilian Government) and CEEOPS Project

(ESPRIT BRA "3215")

89

Eowever, defining the types to reprenant the abstract synta:c ofa language and

semantic functions in the logrc can be very complex and timeconsuming' In
shallou embeililing, semantic operators a,re defined in the EoL logic "od ?o
Mt [5] interface i*erprets prcgra,ms into s€mantic structures in lhe loqc- Jhe
abstiact syntax of the EDt is iepresented by a ML type. Since the production

rules of the langUage a,re not modeled in the logic, one cannot reason directly

about the langu"g"ln the logic. Eowever, shallow embedding a language in tfe
logic still allois one to model and reason about a specification written in the

".ib"dd"d
language. One can also prove theorems about the semantic operators

defined in th; logic. Shallow embedding is less secute than deep embedding

because the interpretation ofprograms is outside ofthe logic and therefore one

cannot teason about this interpretation in the logic. Howevet, shallow embedding

is simpler than deep embedding. In general, it is much easier to define ML types

tUan fuOf, typesz. The shallow embedding method in EOL has been used in

[2, g, g, 10, il] and the deep embedding method in HOL has been used in

[12, 13].-
ln lhe shallow embedding style, the semantics of a Ianguage is needed to

consistently maP a specification written in that language into its meaning in the

EOL logic and, once in the logic, to reason about it. The reasoning in the HoL
logic is

-r"f" bot the pa^rsing of programs written in the EDL and the semantic

iulerpretation (the assiguing of meanings to the programs) are poosible sources of
rror-" b""uu ihuy are implemented in ML and not in the logic. The simpler the

parsing and the semantic interpretation, the safer the whole system. Howevet,

inu **" elaborate the semantic interpretation is, the simpler the model in the

logic can be and, therefore, reasoning about it can be easier'

The shallow embedding style has two informal components (the parsing and

the semantic interpretation) and a formal component (the reasoning about the

meaning of programs in the logic). The degree of formality of the system is de-

fined by the reiative "weights" of these components in the whole system. We

mean that a component /. of the embedding has a heavier "weight" than a com-

ponent B of the embedding if "more issues" about the embedding are addressed

fy / than by B and/or if the issues addressed by 24, are 'mote complex" (ac-

cording to a certain criteria) than the issues addressed by B. The choice of the

degree-of formality is a trade-off between the security of the embedding and

thJ amount and complexity of the proof effort in the logic. The development of
infra-structure to build models and reason about them in the HOL logic can re-

duce the proof effort to reason about comploc issues. This kind of infra-structure

makes it Lasier to formally address complex issues that would otherwise be ad-

dressed by an informal component of the embedding. Therefore, this kind of
infra-structure ma,kes it easier to improve the degree of formality of language

embeddings, which means to move in the scale of formality closer to the logic'

The deep embedding style has one informal component (the parsing) and

two formal components (the semantic interpretation and the reasoning about

the meaning of programs in the logic). one might think of deep embedding as a

' I" I6ft't."datd ML types and HOL types a,re discussed'

90

particular case of embeddingstyle that hasone less informal component than the

shallow embedding "tfl"
;;t-bn the other hand, one might think of informal

programs (based ." ig"rirlrriia "pp-r.no
for the verification of aspects of

a specificatioo do"rit?-;;; il"g";;) T * extreme case of embedding stvle

ln"t Uu. no formal component (no reasoning in a logic)'
- -

The embeddiog or iiogo"g* i" a logic also has to address well-formedness

issues of specifications. WLt[* these issues a,re addressed informally or in the

logicalsohasanimpactonthesecurityofthewholesystemandonthecom-
plexityoftheproot"rortinthelogic.Intheshallowembeddingstyle,well-
formedness i"ro* ..o bi-addressed iiformally by implementin€ an algorithm in

ML to check prope*ies of specificatious described in the embedded language'

These issues can ,t* u" lad.o*a formally by implementing proof procedures

in ML that can pror" ii th" logic properties of specific programs described in the

embedded language. d; prooti.o.uao.o
""o

be based on theorems about the

semantic operators defined ln tne logic. In contrast with the shallow embedding

fi", ; tf" a*p "-tJaing
style o-n" h"s additionally the possibilitv of using

predicatesdefinedoverthetypo,"p,*ntingthesyntaxinordertoaddress
leil-formedness issues in the logic'

In this paper we present a dis=cussion about degrees of formalityin the shallow

embeddingstyle,basedonthedefiuitionofthemulti-ratesemanticsofSilage
trr]. ,o ti" o"xt

"""tion
we give an informal overview of the silage language.

Then we orrtline tn" ursi" pr"inciples of the semantics- of lilFe' focusing on a

particular aspect. Next we discuss the semantic model and the idea of dcgreeo

of formality. Finally, some conclusions are drawn'

2 An Overview of Silage

The Silage Ianguage [14, 15, 16, 17,-18] used as input of the CA-TBEDRAL [19]

silicon compilers i, Jo .ppii"aii*,e-language suitable for describing DSP alge

rithms represented ""
t a"tt-no* g'"pU' Iio assignment operators are allowed'

A basic concept of the languug" i.1n" notiou of a signal. A signal is an infinite

stream of data ioa"J Uv"diJcrete aad periodic time instants' Signals are- de'

fined by function rppii"Jio"t. The single assignment principle allows signals to

be defined ooty oo"J.-A definition involving signals is a set of equations about

the samples of tU"
"ig".fs

involved. The opirations ar€ vectorial and the index-

ing is implicit. previou,
""mplo

of the
"ign9.ls

can be referred to in a signal

definition. Arrays of "r*plo'can
be manilulated. There are iterators and an

ifconstructinSilage.Nostatementsaremadeabouttheorderorconcurrency
of the operations ."a ,n" parallelism of computation can be exploited by the

synthesis tool by analyzing the data flow dependencies'

There are operators in silage that cau generate signals- with periods that
-are^

different from the p"rioa. of ihe signals 6uy ur" derived from' The period of

3 This does not mean that the deeP embedding style is a particular case of the shallow

embedding stYle, which is not true'

91

siEnals a^re implicit in Silage progranr and they a're derived by the synthesis

;T;;;;'"; "xpri"itrvi"io"
th" periods of the signals'

In Silage d"fi"iti";;ig"als or sampll on the left-hand side of the equality

symbol a,re defined i";';;tn" "*p'Lio*
on the right-hand side' The order

of the definitions is irfivant. For instan"e
"onsider

ile 9iy.of Silage code

below. The s€cond d"fi;i;i;" i" r""rr"i"e. tUe nrst definition initiatizes the second

one.Theoperator@isusedtoaccessprevioussamplesofasignalandthe
operator @@ is o."a tol"no" the values oith" ioitioli

'itioo
samples' The second

definition means turiii" *it r"orpru of the sigual * i" d:fr":9.bv the addition

of the n-th sample
"f

.]ig""if"HtU the prevlous sample of the sigual x' The

period of the signat *;;ib" ;qual to the period of the signal in'

I :0;
=in*

T\rples of the form (a,"',2) inSilage aggregate signals that may have different

periods. T\rples cannot'be oot"d. on tue othler hand, the aggregate constructor

of the form {a,...,21.8g;;gt*;gu"t'.*itl the same period' Functions in Silage

returning multiple ,ifid; can b-e called using tuples.{he two pieces of code

below (wher" tu" ioitiittioir.L "*itt"a)
illustiate Silage fulctions and mu-

tually recursive d"firi;;;i;silrg". Bothfunctions take as argument a signal in

and return a sigual ;;;lr; ,ig"?fr a ond b are inl,ernal signals' When a Silage

function has more t; ;"; arlume1t signal' it is implicit.th* thev have the

same period- Unlike il ;;;;;; ot
"oai'

the second one is illformed because

"i"t"ii"
data dependencies between samples'

So far, orcePt for the tuPles and function definitions, onlY the Silage oPerators

that handle signals with identical Periods have beeu cousidered' When a signal

is defined using these operators, it is imPlicit that the Periods of all the signals

involved a,re the same' Next we consider the decinate, the interpolate and

the switch functions, that handle signals with different periods
sourceS and

The decimate function takes as a,rgument a source sigaal

returns alist ofn signals listS. The signal sourceS is decomposed into n signals

with a Period n times greater than the Period of sourceS. The samPles of

sourceS a^re distributed among the outPut signals in the order theY aPPear rn

listS.
TheinterpolatefunctiontakesasargumentalistlistSofnsignalswith

equal periods and returns a destination signal destS' The samples of the signals

b=a-b@2;
out=b*a@1;
3=in+a@2+b;

out
b:word;

b=a-b@2;
out=b+a@1.;
3=in*a@2*b@1;

a:word; b:word;

ot

in lists are interleaved generating the signal dests with a period n times smaller

than ihe period of the sigaals in listS'
The followin8 i" ." "';ple of illformed Silage proglam b.ec1se of incon-

sistencies with the p"iiodr. Tie first definition aennes the period of the signal

outl as half of tU" p"rioa oi lhe signal in1 and the definition of out2 is only

possible if the periods of in1 and outl are equal'

The switch function tales as arguments u signals and returns m signals'

The n argument signals a^re interpolald generating 3'
tgmporaly signal and this

is decimated into m "ijoJ..
In particular, if (m - 1), then switc| is equivalent

lo iot""p"rate and if"(n = t), then switgh is equivaleut to decimate.

In a Silage p"ogr".t)., the periods of all signals depend o1 e3ch other' One

Silage definit-ion atone does not define the period of the signals involved, but it
defines a relation between them. One has to keep track of the period information

i"
"rrry

*f"tioo *od"tiog a Silage definition. Even for the operations that handle

,igoi"-*itU "qo"t
p"rioir, this'information has to be explicit in the semantic

#".pretution.-Mori op"ru.iioo, are only meaningful if l,he periods of thc signals

involvedhavesomeproperty.Forinstance,onlysignalswithequalperiodscanbe
added or iuterpolated. ;"d Silage definition relates the samples and the periods

of the involved signals.

3 Modeling the Period Semantics of Silage

In [11] the formal multi-rate semantics of silage is defined_relationally in the

shallow embedding style. oach silage definition is interpreted separately stating

relations between the samples, the periods, and the phases
-of lhe signals' No

distinction is made b"t;;; the input and output signals of the DSP algorithm'

I" tili, section, we show informally the basic principles of the_multi-rate seman-

tics of silage, with reference to the periods of the signals. we will refer to this

view of silage programs as the per;id setnantics of silage programs. This view

oi Silug" prJgr.*r-*ill be used to illustrate the idea of degrees of formality in

notOkToo (inl :word; ia2 : word) outl :word; out2:word

b€gin

outl = interPolate (inf, in2);

out2:inl*outl;
end;

the shallow embedding stYle

Next we introduce the basic ideas of the model of the periods of the signals in

the multi-rate semantics of Silage, by refining the interpretation of some exam-

ples. In [11], Silage signals are modeled bY a tuPle of three comPonents: samPles

afunction from time to sample values), period (the period of the signal), and the

phase of the signal (the time instant when the first sample happens). Consider

the following Silage definition def: where y and c are signal variables.

Suppose also that PER is a selector in the HOL logic that aPPlied to a

(

!=x

93

signal returns the period component of the signal. Then the period semantics of
the definition del should be:

ly: "I" = ((PER y) = (PER x)l

A signal variable is a particular case ofSilage expression. Silage expressions
are t5ryed in ML. In [11], the period of every kind of Silage expression is defined.
In particular, the period of a signal can be a multiple of the periods of other sig-
nals when the multi-rate Silage constructs decimate, interpolate and switch
are involved. Suppose that the period of a generic Silage expression is [e]r. Then
a first attempt to define the period semantics of the Silage equality between two
expressions eL=e2 could be:

f"t: "rlo: ([erlp = [ezlp)

However, there is a problem with this definition of [e1 = e2]p. In Silage,
there might be constant signals and signals obtained by interpolating constants.
These signals do not have period information. We have defined [e], such that,
whenever an expression does not have period information, [e]o is zero. However,
the interpretation of a Silage definition such as should not define the
period of y as zero. No signal in a Silage program equal to zero. So,
we improve the definition of [e1 = ezlp as below, where T means true in the
logic.

[er : ezlp = (if ([e2]p = 0) then T else ([er!p = [eztrp)

There is still a problem with the definition of [e1 = e2lo. Suppose that we
have a definition such as

we would have:
"_x*U where z, c and y are signal variables. Then

=c* Vlp=(tz\p =[o+

But the period of (c * y) must be either the period of a or the period of y.
whatever it is, there must be a guarantee that the period of e is equal to the
period of 3r. If the periods of every signal in Silage were declared, this could be
checked statically by defining checking rules for each kind of Silage expression.
since this is not the case, whenever an expression is composed of many subex-
pressions, there are implicit constraints about the periods ofthe subexpressions.
In [11] we have defined in ML the check semanlics of expressions [e]" to model
these constraints in the logic for every kind ofSilage expression. So, refining the
definition of [e1 - e2]o we have:

er = e2np = (if ([ez]p = 0) then T else (([er]p = [e2]o) n

In particular, [e]" and [e]o are defined iu such a way that:

I =2

94

fo * vl. = ((PER x) = (PER y))

[c * vL = (PER x)

Then the period semautics of z:o+g is defined as follows:

tfz: x * elp = (((PER z) : (PER x)) n ((PER x) : (PER y))l

The body of a Silage function is composed of a set of Silage definitions. No
external or internal signal in a Silage function has period equal to zero. The
a.rguments of a Silage function (inputs of the DSP algorithm) must have equal
periods. These constraints and the set of period semantics of the definitions in
the body of a Silage function define a linea.r system of equations with natural
numbers. If a Silage function defines consistent periods for the signals, there
must be a solution for this system. For instance, consider the following Silage
function (where the initialisations are omitted):

func exa.rople (inl :word;in2:word) out:word =
a:word; b:word;

bugn
b:inl+(a-b@2);
out = interpolate(a,b);

a: in2 * (a@2 * b@r);

end;

The period semantics of this function is shown below and it is defined iu
terms of the HOL functions NOT-ZERO, SYNC, and MULTIPLE. Given a
list of natural numbers, the predicate NOT-ZERO holds if all elements of the
list are different from zero. The predicate SYNC holds if all elements in a list
are equal to a given element. Given two natural numbers n and m, the predicate
MULTIPLE holds if n is a multiple of m.

V inl in2 out. pER_ex"mple(inl,in2,out) :
(NOT-ZERO[PER inr; PER in2; PER out]) n
(SYNC [PER inl; PER in2] (PER int)) n
(3ab.

(NOTJERO[PER a; PER b]) n
(((PER b) : (PER inl))

^
((PER i"1) - (PER a))

^
((PER a) : (PER b)))

^(((PER out) : ((PER a) DIV (IENGTH [a;b]))) n
(MUITIPIE (PER a) (LENGTE [a;b])) n
(sYNc [PER a;PER b] (PER a))) n

((PER a) = (PER inz)) n ((PER inz) : (PER a)) n ((PER a) : (PER b)))

95

4 Discussing the Model

In this section we discuss the model outlined in the previous section and the idea
of degrees of formality in the shallow embedding style.

The interpretation ofSilage definitions in a relational style is less elaborate
than it is in a functional style because it is less context dependent. In the rela-
tional style, Silage definitions a,re interpreted one for one into terms of the logic
in one step of compilation. In a functional style, a group of Silage definitions
is interpreted all together to define the samples of a signal as a function from
time instants to values. The definitions take as parameters the input signals and
return the output signals. For each signal, the defiiritions about its initialisation
sampla and its algorithmical samples are considered all together to define the
sigual as a function. Such an approach has to handle functions that are not
defined for all discrete time instants and has also to cope with the complexity
of mutually recursive definitions. The interpretation of Silage programs in the
functional style cannot be performed in one step of compilation and it involves
more informal manipulation in ML to derive the meaning of Silage programs in
the logic than the relational style does. Therefore, the choice between a rela-
tional style and a functional style has an impact on the degree of formality of
the shallow embedding of Silage in HOL.

The simpler the semantics of a language in the shallow embedding style, the
lighter the weight of the informal part of the embedding (the ML code) and
therefore the safer is the whole system. There is no formal way to measure the
complexity of a semantic interpretation and the complexity of the verification
to be performed on specific interpretations. However, it is intuitive that the
greater the complexity of a semantic interpretation (in Mt) with respect to
the complexity of the verification to be performed on specific interpretations
(in the HOL logic), the worse is the quality of the embedding with respect to
security. Ultimately, both the semantic interpretation and the verification should
be informal (to have a system that is simpler but not much less safe than the one
built in an unbalanced shallow embedding style) or the deep embedding style
should be used (to have a system that is much safer than the one built in the
unbalanced shallow embedding style).

Not only the way meaning is attached to programs afiects the degree of for-
mality in shallow embedding languages in HOL. Consistency issues also have to
be addressed informally or formally, affecting the degree of formality. Next we
discuss how one could address in the logic the well-formedness issue of consis-
tency of the periods in Silage. Let X, be the relational model of the period seman-
tics of a Silage function c. For instance, the relational model of the period seman-
tics of the Silage function slrrnple of the previous section is PDR-xample.
The Silage function c defines consistent periods for its signals only if there are
signals for which X, holds. This is not the case, for instance, of the Silage func-
tion notOkToo defined in a previous section. This consistency issue can be
addressed informally by an algorithm implemented in ML but it can also be
addressed more formally in the logic, improving the degree of formality of the
embedding. Although we have not automated the proof that a Silage program

96

defines consistent periods for its signals, we have proved theorems about the con-
stants defined to handle the periods ofSilage expressions that allow us to prove
automatically that the period semantics of a Silage function is equal to a iinear
system of equations about the periods. we will call this system x_systema. The
proofabout the consistency ofthe periods can be reduced to a first-order proof
about natural numbers. If x-system can be solved informallyusing conventional
techniques, the solutions of this system a^re the witnesses necessary to prove in
the logic that the periods are consistent. Addrcssing uell-formeilness isucs in
the logic, mther than informallg, is a wa! ro mote close,r to the logic in the
scale of formalitg. A system built in the shallow embedding style that addresses

consistency issues both in its informal components (Mt code) and in its formal
component (HOt logic) is a hybrid verification system.

The main motivation for the definition of the multi.rate semantics of Silage
was to prove the correctness of source.to-source transformations [20, 2L, 2i],
These transformations are used to optimize the results of the silicon compilation
but they should not change the input-output behavior of the DSp aliorithm
specified in Silage. To prove the conectness of the transformations, one has
to prove that the period semantics of a Silage function is equal to the period
semantics of a new Silage functions. In partiiula^r, to prove ihe correctness of
some trausformations, it would be easier to have a more compact model of the
periods of the signals. This simpler model could be obtained by trying to solve the
x-system with conventional informal tectrniques. For instance, rupplr" that, for
the Silage function example of the previous section we would have the following
model:

inl in2 out. PERexample'(inl,in2,out) = f 3. f.
(NOT-ZERO[PER int; PER in2; PER out;pER a; pER b])
(SYNC [PER inl; PER in2; PER a; pER b] (2 * (pER out))

one can prove in BoL the theorem below and then use it to prove the
correctness of transformations on the silage function s:(aynple.

V inl in2 out. PBR-example(inl,in2,out) = pER_example,(in1,in2,out

If the semantic interpretation were more elaborate so that pB11-scaynple',
rather than PER-e;nvnpl€, would be the period semantics ef o(rynple, the
effort to prove the equivalence between these two models would be saved, but
we would be moving away from the logic in the scale of formality. This is because
the equivalence between the two models would have to be done informally by
implementingan algorithm in ML. A proof procedure that formalizes the steis of
this algorithm could prove in the logic, rather than informally, the equivalence
between the two models in general. In the shailou embeilding stgle, to moae
s_implification algorilhms frorn the semanlic interpretation to proof proceilures
fortnalizing them neans ro moae closer to the logic in the scile if-formalitg-
{ This system should be possible aud not determined.5 This is necessary but not suff.cient.

97

This move implies more safety for the system but it also implies more reasoning
in the logic.

If Silage had specific constructs to define explicitly the periods of every sig-
nal in Silage, the interpretation of these constructs would be a straightforward
and clean period semantics of Silage programs in the logic. The interpretation
of these constructs would be the only information necessary to prove the equiv-
alence of the periods of the input/output signals of two well-formed Silage pro-
grarns. Proving the equivalence of the period semantics of two Silage programs
would then be simple for any kind of transformation. As far as the periods a,re

concerned, there would be no need to elaborate the ML interpretation to get a
simpler model such as PDR-xample'or to prove intermediate theorems about
the period semantics of two Silage programs in order to prove the correctness
of the transformations in a straightforwa^rd way. Requiring that Silage programs
have explicit period information might be a drawback for the CAD environment.
However, this is not a serious drawback and explicit period information in Silage
programs could reduce the proof efort to verify the correctness of transforma-
tions in Silage without deteriorating the quality of the embedding.

Whether or not there is explicit period information in Silage progra^ms, the
consistency of the periods has to be addressed somewhere, either informally in
ML or in the logic. The diference is that, with the explicit period information,
the check is simpler than without the explicit period information. Therefore,
with the explicit period information, addressing the consistency of the periods
informally, rather than in the logic, means less loss in the degree of formality
than it would mean without having the explicit period information. With the
explicit period information, the checking rules of the ciec& sernantics could be
used in a straightforwa^rd way to verify informally the consistency of the periods
in Silage prograns, rather than be used to define in the logic what the periods
of the signals a^re. The explicitness of the period information in Silage would also
make it simple to address the issue of consistency of the periods formally in the
logic without much proof efiort. There are choices in the design of a language
that can make it easier to move closer to the logic in the scale of formality,
without implying serious drawbacks for the CAD environment.

5 Conclusions

We have discussed that there a,re degrees of formality in shallow embedding a
language in HOL. The choice of the degree of formality is a trade-off between
the security of the embedding and the amount and complexity of the proof
efort in the logic. The design of a language could consider this verifiability
issue. There are choices in the design of a language that can make it easier
to improve the degree of formality, without implying serious drawbacks for the
CAD environment. We have illustrated these ideas with the multi-rate semantics
of Silage.

98

References

l. M. Gordon. .EOL: A Proof Generating System for Eigher-Order Logic". In
G. Birtwistle and P.A. Subrahmanyam, editors, VLSI Specifcation, Veification
and Synthesis, pags 73-128. Kluwer Acadenic Publishers, 1988.

2. R. Boulton, A. Gordon, M. Gordoa, J. Ea.rrison, J. Herbert, and J. Van Tassel.

"Experience with Embedding Hardware Description Languages in EOL". In
V. Stavridou, T.F. Melham, and R. Boute, editors, Proceedings of the IFIP In-
teraational Conterence on Theorcm Proaers in Circuit Design: Thenry, Practice
and Experiencc, pages 129-156. Nijmegen, The Netherla^nds, North-Eolland, Am-
sterdrm, June 1992.

3. T.F. Melh"-. "Using Recursive Types to Reason about Ha^rdware in Eigher Order
Log.c". In G.J. Milne, editor, The Fusion of Hatduarc Design and Verificotion:
Proceeilings of the IFIP WG 10.2 Working Contercnce, pages 27-50. Glasgow,
North-Holland, Amsterdrm, July 1988.

4. T.F. Melham. "Automating Recursive Type Definitions in Eigher Order Logic". In
G. Birtwistle and P.A. Subrahmaayam, editors, Cunr-nt Trcnds in Hardwarc Ver-
ificotion and Automated Theorcm Prcuing, pages 341-386. Springer-Verlag, 1989.

5. G. Cousineau, M. Gordon, G. Euet, R. Miher, L. Paulson, and C. Wadsworth.
The ML Handbook. INRIA, France, 1986.

6. E.L. Gunter. "Why We Can't Eave SML Style Datatype Declarations in HOL". In
L. Claesen and M. Gordon, editors, Proceeilings ol the IFIP Internatiomal Work-
shop on Higher Order Logic Theorem Proting and its Applications - EOL-92,
pages 561-568. IMEC, Leuven, Belgium, Elsevier Science Publishers B. V. (North-
Eolland), Amsterd"-, September 1992.

7. R. Boulton, M. Gordon, J. Eerbert, and J. Van Tassel. "The HOL Verffication of
ELLA Designs'. In Proceedings ol the ACM/SIGDA International Workshop in
Fonnal Methods in VLSI Design.l\{i:mi, FL, Janua,ry 1991.

8. R. Boulton. A HOL Semantics tor a Subset ol ELLA. Technical Report 254,
University of Cambridge Computer Laboratory, April 1992.

9. A.D. Gordon. A Mechaniseil Defnition ol Silage in HOL. Technical Report 287,
University of Cambridge Computer Laboratory, February 1993.

10. A.D. Gordon. "The Formal Definition of a Synchronous Hardware'description
Language in Eigher Order Logic". In ICCD92: 1992 IEEE Interaational Con-
fercnce on Computer Design: VLSI in Compvters I Processors, pag6 531-534.
Cambridge, Massachusetts, IEEE Computer Society Press, October 1992.

11. C.M. Angelo, L. Claesen, and H. De Man. "The Formal Semantics Definition of a
Multi-Itate DSP Specification Language in EOL'. In L. Claesen and M. Gordon,
editors, Proceedings of the IFIP Intentational Workshop on Higher Order Logic
Theorcm Prouing and its Applications - EOL-92, pages 375-394. IMEC, Leuven,
Belgium, Elsevier Science Publishers B. V. (North-Holland), Amsterdam, Septem-
ber 1992.

12. J. Van Tassel. A Formalisotion oJ the VHDL Simulation Cgcle. Technical Report
249, University of Cambridge Computer Laboratory, March 1992.

13. J. Van Tassel. "A Formalisation of the VEDL Simulation Cycle". In L. Claesen
and M. Gordon, editors, Proceedings ol the IFIP International Workshop on Higher
Order Logic Theorem Prouing anil its Applications - HOL-92, pages 359-3?4.
IMEC, Leuven, Belgium, Elsevier Science Publishers B. V. (North-Holland), Am-
sterdarn, September 1992.

99

14. P.N. Effinger. "Silage, a EighJevel Language and Silicon Compiler for Digital
Signal Processiag". In Prcceilings ol the IEEE 7985 Custom Integrcteil Cirtuits
Confercnce - CICC-&|, pages 213-216. Portland, OR, May 1985.

f5. P.N. Eilfinger. Silage Retercne Manual, December 1987.

f6. D. Qsnin, P.N. Eilfinger, J. Rabaen C. Scheers, and E. De Man. "DSP Speci-

fication Using the Silage Language". In Proeedings of the IEEE Interaational
Confercnca on Accoustics, Speech anil Signal Prccecaing, pages 1057-1060. Albu-
querque, NM, April 1990.

17. L. Na.fitergaele. A Silage Tutorial. IMEC, Leuven, Belgium, May 1990.
18. L. Nachtergacle. User Manual for the S2C Silage to C Compiler. IMEC, Leuven,

Belgium, May 1990.
19. E. De Ma,n, J. Rabaey, P. Six, aad L. Claesen. "Cathedral-Il: a Silicon Compiler

for Digital Signal Processtad'. IEEE Design 6 Test of Computers. 3(6):?3-85,
December 1986.

20. P. Lippers. Defining Contrcl FIou fiom an Applicative Specification. Technical
report, Philips Resea^rch Laboratories, Eindhoven, December 1988.

21. I. Verbauwhde. VLSI Design Methoilolqieslor Appliation-spu'ific Cryptographic
anil Algebrcic Systems. PhD thesis, Katholieke Universiteit Leuven - IMEC, Leu-
ven, Belgium, 1991.

22. J. Vanhoof.. Multi-rate Expnsion lor-CATflEDRAL-n/IIL A tutorial. Technical
report, IMEC, Leuven, Belgium, October 1992.

100

The university of British columbia

_ Departrnent of Computer Science,
Centre for Integrated Computer Systems Research

and Continaing Studies

present

HUG'93
HOL User's Group Workshop

August 70-73, Igg3
VancouveF, B.C.

