
t,

Defining Recursive Functions in HOLI

W.Ploegaerts', L.Claesent, H.De Mant

IMEC vzw.
Kapeldreef 75, 8-3001 Leuven, BETGIUM

Phone +32116128L525

rhe timiterr ,"ro"t?:!il!""trnn*n of rcc*doc
fanctiont and thc gcncration of iniluction rchcmet it
a major thortcoming of the EOtr tydcm uhcn applicil
for haniluarc, ocrification. In thir papcr d theory of
prtmifioc rccurdoeftncliont anil a toolthat minimizct
the proof effoil reqaireil for the ilefnition of a uiile
clau of primitioc recursioe finctiont il preccnteil. Duc
to ih flcaibility anil ilcgrce of automation it offcu a
ueful edendon of the EOL cydem.

1 Introduction
Thc correctness of hardware designs is onc of the

4ajor unsolved problcms dcsign cngineers currcntly
havc to copc with. Scvcral synthcsis tools such as thc
CATEEDRAL system [1] offcr & means for a ncarly au-
tomatic design of very complcr circuits. As error-ftcc
software still docs not erist, bugs or evcn conceptual
crrors in thc CAD tools are likcly to occur. Thc func-
tional corrcctncss ofthe gcnerated designs is t6 bc dis-
trustcd, and vcrification is csscntial. Formal hardwarc
vcrification, in principlc a methodology lcading to a
full-proofcorrcct design, offers a valuable alternative
to classical vcrification mcthods such as simulation.
Thc latter can only partially validatc the correctncss
of a dcsign.

Though thc idca of formal verification has bccn
grolnd for scverel years now, it has not bcen acceptcd
in thc world of the dcsign engineers. Therc are three
important rcasons for this:

1. thc lack of real-world results proving that thc
approach works for anything but toy-circuits

2. thc largc cffort rcquired for both the formal dc-
scription ofa design and the construction ofthe
proofitsclf [2]

3. most importantly, the large gap between the way
of thinking rcquired for formal verification and
thc way design cngineers think [3]: design engi-
ncers arc no logicians and most of the time even
refuse to try to be so

In thc EOL hardwarc vcrification communitn thc lat-
tcr issuc is of growing importance. Scvcral approaches
to hclp bridgc this gap can be found in litcrature.
Some cramplcs arc thc scmantic embcdding of hard-
warc dcscription languagcs in EOL 14] I5]. This aims
to providc thcorem proving tools for reasoning about
hardware dcsign in a formalism thc dcsigners fccl com-
forteblc with. Othcr approachcs arc thc inclusion of
design-\in3s in thc verification proccss to guidc thc
ptoof [6] and thc hierarchical approach to hardware
vcrification based on thc idea ofabstraction [?] [8] [9].All thcsc issues are of major importancc for the
hardwarc verification community as it provides mcans
to menagc thc inhcrent complcxity of thc prooG. How-
cvcr, thcy still do aot makc thc trOL system acccpt-
ablc for thc dcsign cnginccrs. Thcsc arc looking for
ccanncd solutions' and do not vant to bc bothcrcd
with thc thcorctical mattcrs a EOL uscr gets involvcd
with. Thc lattcr is pertly due to the naturc of thc
EOL systcm itsclf. Duc to the lack of automation and
support currcntly availablc, thc user can hardly bcn-
cfit Aom thc high erprcssive powcr inhcrent to the
highcr ordcr logic: facts thet arc intuitively clcar of-
tcn rcq.irc a major proof cffort in thc IIOI systcm [3].
Altlough thc logic is e good formalism for spccifying
cnd vcrifying hardwarc [10] [11], systcurs such as thc
Boyer-Moorc systcm [12] bascd on a less crpressivc
logic but ofcring a higher degree of automation might
easier bc occcptcd by thc dcsign cngineers.

Thc lack of support for thc definition of recursivc
functions and thc gcneration of induction schemes is
a major shortcoming of the EOL system in this re-
spcct. Induction, thc mcans of function abstraction
aud rccursive function dcfinitions arc thc main po-
tential advantagcs thc thcorem proycr based approach
offcrs co_mparcd with an classic (and fully automatic)
approach to hardware vcrification. Thc HOL systcni
though hatdly ofcrs any support for the defiuition
of rccursive functions end thc gencration of induc-
tion strategies. Even the modeling phase thercfore
becomcs a burden to thc user: he is intcrestcd in the
verification of a design and nol in the tedious, oftcn
highly theorctical HOL prooG inherent to definition of
recursivc functions and induction schemes.

Thc goal of thc work dcscribcd in this paper is to
hclp the uscr bridgc the gap bctwcen the intuitivc un-
dcrstanding ofthe wcll-foundedncss ofa recursion and
thc definition of a rccursive function in HOL. A tool

'Rcroa,rch crristst with thc Bclgim National Fud for Sci-
ontiff.c Rcroarch

I Profcrror at K.U,Louvcn
lWorkputly fundodby thc ESPRfT 2 BnA CEEOPS(S216)

is provided such that thc rclatcd proof efort is mini-
mircd. Thc tool offcrs support both for thc proof of
thc wcll-foundcdness of the rccursive schcmc and for
thc dcfinition ofa spccific rccursive function.

In scction 2 the eristing tools end thcorics pcrtain-
ing this subjcct mattcr that arc currcntly available in
EOf, (Vcrsion 1.12) will bc discussed. In scction 3 thc
thcory on which thc tool ig bescd will bc presentcd.
Thia is followcd in scction 4 by a discussion of thc
logic functions providcd. In scction 5 scveral Gxam-
ples will demonctrate thc flcribilitn thc powcr and
thc limitatioug of thc ncw tool.

2 Recursive deffnitions in HOL
In this scction thc dcfinition of rccursivc functions

in f,OL is discussed. Thc tools and thcorics providcd
with thc EOL systcm arc prcscntcd. Thcir limitations
in an hardwarc vcrification cnvironment will be clari-
fied.

2.1 B.ecursive deflnitions
To prcscrve thc consistcncy in thc HOL systcm,

EOL thcorics should only bc ertendcd by ilefinitional
catention [13]: ncw constents and typcs arc to be dc-
fined in terms of cristing oncs. Thc definition in HOL
ofafunction fuz, cheractcriccd byaprcdicatc P, con-
sists out two parts:

t. ctidcnce proof of l\c function /uz, this involvcs
thc construction ofafunction with thc intcndcd
bchavior (and possibly the usc of thc choice op.
crator) and results in thc theorcm 1flu,n.P tun;

2. conttant ryccification: the symbol /uz is sc-
lectcd as thc name of thc function for which thc
propcrty P holds, thc behavior of thc function
fun is specificd by P f un; this is implementcd
by thc logic function gncw-specificationDl

Thc problcms rclated to thc definition of recursive
functions in EOL arc twofold: therc is the purely theo-
tctical issuc rcloted to the existencc ofrecursive func-
tions, and a tcchnical mattcr related to the modeling
of the eristcnce ptoof in the HOL system. The firs[
problem is rclated to thc question why a specific recur-
sive dcfinition is well-founded. This problem cannot
bc solved in its full gcncrality. Therefore, thc defini-
tion ofrecursive function can only bc automated for a
restricted class offunctions. For all other definitions, a
tedious proofis requircd due to the inhcrcnt compler-
ity of thc rclatcd eristencc proofs. The HOL system
provides limitcd support and automation pcrtaining
this subject mattcr. Thc tools and theories supplied
with thc systcm will now bc discussed.

2.2 Automatic deflnitions
Thc logic functions bascd on thc type definition tool

[13] ofer a means for thc automatic definition of rc-
cursivc functions. Thc class of functions that can be
defincd automatically is rcstricted: only primitivc re-
cursive functions dcfined by cases on the type con-
structors uscd for the definition of a new typc arc
directly supportcd [13]. Every recursive typc is ab-
stractly chsracterised by a theorem of the form:

In thcorcm 2.1, C; for i : I .. . m atc thc con-
structors uscd for thc dcffnitiou ofthc type ":op" [13].
lVith thc logic function proyclccurcivc-function-ciirts
thc cristcncc of any rccursivc function, both completc
and pertial functions, dcfined by cascs on thcsc con-
structors C; can be dcrivcd ftom thc thcorem 2.1. This
logic function cat bc uscd with thcorems syntactically
simil6; to theorcm 2.1 for thc dcfinition of rccursivc
functions by cascs on constructors other than the onc
automatically dcrivcd ftom thc typc dcffnition. This is
illustratcd with an cramplc from the thcory liet. The
type ":(*) list" is charactcrircd by thc list-Axiom:

This allows recursivc dcfinitions such as thc length of
a list:

Eowcver, one could also considcr an cquivalent dcfi-
nition of thc lcngth of a list by rccursion on thc last
element of the list:

To dcfine this function IENGTH2 with
tion prove-recursivc-function-exists, the
rem should be provided:

thc logic
following

func-
thco-

This thcorem can bc dcrivcd ftom theorem 2.2. Even
for this simple case, the proof is rather complex and
no support is provided.

A morc general casc is thc dcfinition of functions
simultaneously rccursing in diffcrent arguments. This
cannot be handlcd by the current implcmentation of
provc-rccursive-function-cxists. This type of dcfinitions
pops up frequently in the specification of hardwarc
deviccs. Onc cxamplc is the functional definition of a
two-input n-bit bitwise-and function:

2.1

F Vf1 . . . f-. l! fn:o1>--*.
Vrl ... xl.. tnlCt x!

f1 (fn xf)

Vx;" ... S. fn(C- * ...r*r) :
f- (fn 4) ... (fn rl;") *L xli

(

Ixl
fn rt'

)=
'i')'l

2.2

F Vx f. 3!fn.(fn[: x) n (Vh t. fn(CONS h t) : f(fn t)h t)

2.3
F6"1 (LENGTHI :0)

^(Vh t. LENGTH(coNs h t) : SUC(IENGTH t))

2.1
F6"1. (LENGTH2IJ = 0) A
(Vh t. LENGTH2 (APPEND t [hl) : suc(LENGTH2 r)

2.5
F Vx f. 3!fn.(fn[: x) n

(vh t. fn(APPEND t lhl) : f(fn t)t h)

2.6
F44 (AND II [: [) n

(AND (coNs x X) (coNS y Y) :
CoNS (x n y) (AND x Y))

Following thc philosophy of thc typc dcfinition pect-
agc, the cristcncc of the function AND rcquircs thc
proofoftheorem 2.7:

The proof of thcorem 2.7 is fairly compler. Thc dcfini-
tion of a thrcc-input n-bit bitwise-and function would
rcquirc yct auothcr thcorem to be proven.

This discussions suggests thc lacl of flcribility of
thc dcfinition tool. Thc class offunctions that can bc
dcfincd automatically is rcstricted by the availability
of thcorcms likc 2.1. Only functions rccursing in o
singlc argument arc currcntly supported. Thc f,OL
user thus has two possible tracks to follow:

o cast all dcfinitions in a form that is supported

. proyc thc dcdicatcd theorem oftypc 2.1

In thc ficld ofhardwarc verification, thc first approach
is not attractivc. The definition ofrecursivc functions
is mainly a mcans for modcling. It is thercforc not ac-
ceptablc for the formal modcl in HOL to bc complctcly
different ftom thc informal one that is generally used.
Such a formal modcl increases thc proof effort to be
spent whcn building a theory bccause of the gap be-
twcen intuition and formal model. Moreovcr, it makes
thc approach lose all crcdit in thc eycs of thc dcsign
enginecrs. On thc other hand, the second approach
seems to be cven a grcater burden: it lcads thc uscr
to a compler eristcnce proof, which has nothing to do
with thc subjcct mattcr hc is intcrestcd in. The neces-
sity to carry out thesc proofs arc an unintentional and
oftcn ftustrating confrontation with thc HOL system.

2.3 Other theories and tools
As thc cristing dcfinition tool is too restrictive and

not flexible enough, 8 more general approach must be
found. The EOL system (Version 1.12) contains sey-
eral contributions ofering.an elegant theorctical basis
for a thcory of recursive functions:

o The Library well-ordcr (T.Kalker): based on thc
proof that every set can be well-ordercd, the
principlc of transfinite induction is derivcd. A
conversion that transforms a term into the ap-
propriate eristencc theorem related to the trans-
finitc induction theorem is provided.

o The Library fixpointc (M.Gordon): the firpoint
opcrator is dcfined and the validity of computa-
tion induction is proved.

o The Contribution CPO (A.J.Camillcri): a thcory
of complctc partial ordcrings and fired-points
that is intcndcd to lcad to thc fired point thco-
rcm vhich will allow thc dcfinitions of rccursivc
opcretors.

Unfortunatcly, nonc of thcsc theorics havc bccn
worted out up to a lcvcl high cnough that thcy can cas-
ily bc uscd for maliag thc recursive definitions. The
gap betwccn thc providcd thcorics and thcir practi-
cal usc can only bc bridgcd by e large proof cffort,
to e grcat crtent dcaling with domain-theorctical is-
sucs. Duc to its highly thcorctical nature, this is again
too much of a burdcn for thc f,OL user interested in
hardwarc verificetion.
2.4 Discussion

Thc currcnt stetus ofthe support for thc definition
of rccursivc functions can be summariccd as follows:

o Automatic dcfinition without a large proof effort
is only possiblc for a limited class of recursivc
functions.

o If an automatic dcfinition is not possiblc, the
proofcfort is not dircctly rclatcd to thc correct-
ncss of thc rccursion itsclf; it mainly involvcs a
tricky syntactic transformetion of theorcms sim-
ilar to thc output oftypc definition tool.

o The thcorics offcring a morc gcncral solution to
thc problcm ate still too thcoretical to be of di-
rcct practical usc. Thc main problems thc uscr
is conAontcd with are domain-theoretical.

This yields somc rcquircments for a tool for automat-
ing thc dcfinition of rccursivc functions:

o qutomqtion for a large class offunctions

c flcaibility in thc choice of rccursivc schcmes and
thc number of arguments the function simulta-
ncously rccurscs in

o minimal proof obligation

3 A theory of Recursive functions
In this scction, thc theory of recursive functions

that forms the basis of thc new definition tool is pre-
scnted. First an informal discussion introduces the
basic thcorem of the theoty, followed by its formaliza-
tion in thc HOL system.
3.1 The well-foundedness of recursive

deflnitions
In this work an intuitivc approach, has been optcd

for, instead of one that starts Aom thc existing math-
ematical theories. A tccursive dcfinition for a function
is, roughly spcaking, a definition whcrein values ofthe
function for given arguments are directly related to
values of the same function for "simplertt arguments
or to values of (simpler" functions [1a]. The notion

2.7
F Vr ft f2 f3.

l! fn.
(fn[[= e) n
(Vx X. fn(CoNs x X)[: fl(fn X[)x x) n
(Vy Y. fnfi(coNs y Y) : f2(fn[Y)y Y) zr

(Vx X y Y. fn(CoNS x X)(coNs y Y) :
a(fnXY)xxyY)

(simplcr'is to be spccificd in thc chosen characteri-
ration, usually t+tcn as thc simplest of all (c.g. thc
constant function). Thc lattcr are thc *base iascs' of
the rccursion. In the rcmaindcr thc set 8d, say of
typc s*sctt, will bc takcn as the sct of all basc cascs
for a given rccursion. The prcdicatc IS-BC of type**--rbool'is thc rclatcd prcdicatc defining thc sct 8C.
Such a tccursivc dcffnitioa uniquely defincs a function
/ of typc 6*---+**D if two conditions are satisfied. First,
it must bc dcfincd for cvcry clemcnt a of typc **'. how
f a is dccomposcd in its simpler parts. Secondly, for
ell a a bssc casc must bc rcached aftcr a finitc numbcr
of dccompositions. Considcr thc class of rccursivc dcf-
initions rcstrictcd to primitivc functions of erity onc,
having M base cescs BC; and dcfincd by cascs on N
constructors C;. Then, a function;f can bc dcfincd by
cascs on thc constructors and the basc cascs:

The combination of formulae 1 and 3 yields the fol-
lowing thcorcm:

Thcotcm 3.1is thc basis ofthc dcffnition tool that has
bccl implcmcntcd. An analysis of 3.1 shows that for
this clasr of rccursivc dcfinitions, thc cristcncc of a
spccific function ir fully dctcrmincd by thc propcrtics
ofthc dcstructor and thc sct ofbasc cases. Comparcd
with thc constructor etylc ofrccursivc definitions and
thc input format of thc dcfinition tool provided with
thc systcm, it hes thc following advantages

o Closcd formula: both thc well-foundcdncss of
tccursivc schcmc and thc cristcncc recursivcly
dcfined function itsclf havc a fircd format, a
gcueral proof stratcgy consists of a stratcgy to
rcwritc a spccific dcfinition to thc fixcd format
of 3.1.

o There &rc ro limitations on thc destructor and
thc sct of basc cases (as long as thc implicant
can bc proven)

o Thcorcm 3.1 docs not dcpcnd on any theorcti-
cal concept, the proof obligation to bc fulfiled is
undcrstandablc for any EOL user.

o The rcason for the cristcnce of a spccific func-
tion is fully capturcd in thc implicant of 3.1.
The proofcan thus bc givcn scparately from the
ectual definition (dividc end conquer). Spccial
suppott for this proof can be implemcntcd

In thc ncrt scction the formaliration of the thcorcm
ia IIOL will bc discusscd.
3.2 functions of arity one

Let the function fpw stand for the function power
defined in the following way:

Then, thc implicant of theorem 3.1 can be written as:

Vx. fk . IS-BC (fpw D k x)

A prcdicate IS-BC and a destructor function D for
which this hold are called a rccursite pair.

f BC1=a1

tBCu-au
t (4") = fi(f a) a

f(Cxa)=ln(f")"
Thc proof obligation for the cristencc of thc function
/ is that cvcry a of typc (*t can be constructed in a
finite amouut of stcps starting ftom onc of the basc
cascs. As thc numbcr of basc cases and constructors
arc variable, lcither thc proof obligation nor thc cr-
istcnce thcorcm itsclf can bc formaliccd in a closcd
formula. Thc proof strategy can thus not be a sim-
plc transformation of a prc-proycn theorem that cap,
tures thc correctncss in its full gencrality; instead it
has to bc bascd on conversions. Past erpcricncc has
shown that thc fulfilmcnt of thc proof obligation lcads
to rathcr complcr prooG as a casc split on the differcnt
basc cascs and constructors is necessary. A diffcrent
approach has thcrefore bccn chosen.

Ag all cousttuctots are functiols lhat are onc-onc,
a dcctl'tu,ctor function D can bc defined by cases on thc
constructors

t D(CLa)=z
).\:(a(co'r)=e

Using this destructor function, thc definition ofthe
function / can bc transformed into

la=(IS-BCa) + sa I h$@")) " (1)

wherc for all i
s BCi = ai (2)

For thc dcstructor stylc of recursivc definitions, the
proof obligation can easily bc formalised. Thc func-
tion / erists if for every a of type s*' a finite number
of applications of thc destructor D will evcntually re-
sult in a base case. Thc proof obligation can thus be
cxprcssed as follows:

Y a.1k.IS-BC (D' a) (3)

4.1
V D IS-BC.

(Y a.ah.ISBC (DL ")) +(Vch.3f.l a=
(IS-BC d) ---+ s a I h (f (D a)) e)

3.2
tsa.1- (Vfx.fpwf0x:x) n

(Vf n x. fpw f (SUC n) x = f (fpw f n x))

3.8
tsa"7 vD ls_Bc. ls_REc_PAtR (D,ts_Bc) :

(Vx. 3k. IS-BC (fpw D k x))

Two eramplcs of recursive pairs arc:

F rs_REC-PAtR(TL,lr.r: [) ,

F IS-REC-PAIR(PRE,In.n : 0)

Thc basic thcorcm ofthc theory on tccutsive functions
(3.1) statcs that cvery recursive pair defincs a wcll-
foundcd recursion

3.3 Functions of a higher aritlr
Two typcs of functions with a higher adty can bc

distinguishcd: those that recursc in a singlc argument
and functions rccursing in scveral argumcnts.

When thc function has two argumcnts, say x of typc
":{.1" and y of type "2,*2", and when the function rc-
curscs on x according to thc recursivc pair (D,IS-BC),
then thcorem 3.4 can be cxtendcd:

Notc that the function h is universally quantificd. The
second argumcnt ofthe recursive function thus has no
effect on thc wcll-foundcdness of thc dcfinition. The
cxistence off only dcpends on thc recursive pair.

For the dcfinition of functions recursing in n ar-
guments and having m non-rccursivc arguments, thc
types of the variablcs x and y arc instantiated with
thc appropriate product types. For evcry variable z of
type ":+1f ... #*n" thc following holds:

Theorcm 3.5 can bc transformed into (omiting thc
typcs) the following:

The dcstructor is a function of thc following form:

Thc dcfinition tool will rcwritc a specific rccursivc def-
inition into thc format of thcorcm 3.?. Tuplcs end un-
curricd functioas are ertcnsivcly. This is not common
practicc in HOL and thc available support is limitcd.
A sct ofconvcrsions dcaling with tuples thcrefore has
bcen dcvelopcd.

4 The deftnition tool
Thc dcfinition ofrccursivc functions based on the-

orcm 3.? consists of two parts:

1. Fulfiling thc proofobligation: given a dcstructor
and a set of base cascsr prove that they form a
rccursive pair.

2. Eristcnce proof: rewrite a givcn definition to the
form of 3.7 to prove its cxistence

Thc tool can handlc only rccursivc function dcfini-
tions that can bc transformcd into thc syntactic for-
mat of cithcr theorcm 3.4 or of theorem 3.7.
4.L The proof obligation

Thc fulfilment of thc proof obligation

is lcft to the uscr of thc tool. This issue cannot be
solved in gcneral and thus cannot bc automated. How-
cyer, support is esscntial to make thc tool uscful for
thc IIOL user. The tool currently supports two difcr-
cnt cascs:

1. Combinalion ol recurdte pairt.
Given a list of recursive pairs,

[F ls_REC_PArR (Dr,|S_BC1) ;

F rs_REC_PA|R (D2,|S_BC2) ;

F ls-REC-PAIR (Dn,lS-BCn)l

thc combination of the destructors and the dis-
junction of the basc casc predicates also form a
rccurslvc pant

F lS-REC-PAIR (l(xl,..,xn).(Dl xl, ... , Dn xn),
l(xl,..,xn).(lS-BCl xl v ... v lS-BCn xn))

Thc tool provides a logic function,
COMBINEIS-REC-PAIR-THM. This function
gencratcs ftom a given list of recursive pair the
related combined recursive pair.

3.8

D : l(x1,...,xn). (Dt (xl,...,xn), ... , Dn (xl,...xn))

t.4
F VD IS_BC.

(ls-REc-PAIR (D,ls-Bc)) +
(Vg f. 3fun:*--+ ** . Vx.

(fun x: (IS-BC x) - s x I f (fun (O x)) x))

3.5
F VD IS-BC.

(IS-REC-PAIR (D,ls-Bc)) =+
(Vg f h. :lfun:*l--+ *2--+ ** . Vx y.

(fun xy : (IS-BC x) ---+ g xy I

f (fun (D x) (h x y)) x y))
4.t

ls_REc_PAIR (D,tS_BC)

3.6
F Vz. frl ... zn . z : (21,...,2n)

3.7
F VD IS-BC.

(ts_REc_PArR (D,|S_BC)) =>
(Vg f h. lfun. VxI ... xn yl ... ym

(fun (xl,...,xn) (yl,...,ym) :
(lS-BC (xl,...,xn) *

g (xl,...,xn) (y1,...,y-) I

f (fun (D (xl,...,xn)) (h (xl,...,xn) (vl,...,y.)))
(xI,...,xn) (yt,...vln)))

2. Eaidence of a monotonically decrcating umea-

arfcf.
A monotonically decreasing measure is a func-
tion of type " :{,---+ ng6" having the property that
cvcty basc cesc is mapped to 0 end that for all
othcr elements of type ":*" the function valuc
of thc clcmcnt is larger than the value of thc
destructcd clcment [1.2].

It can bc provcn that cvery monotonically dc-
creasing mcasurc dcfincs e rccursive pair

Thc tool providcs a logic function,
MEAS-TO-REC-PAIR. This function starts ftom
a measure and proves that the destructot and
the basc casc prcdicatc form a rccursive pair.
Scvcral input formats arc allowed. This will bc
illustratcd in the eramplcs.

4.2 The eristence proof
The eristencc proof is implemented in the function

provc-function-exists:

The first atgumcnt is a theorcm stating that a given
destructor D and a given basc case prcdicate IS-BC
form a rccursive pair. The second argumcnt is term
that defincs thc function f. The samc destructor and
base case prcdicate as in thc recursive pair must be
used. The last argumcnt is a list that contains the
names of thc argumcnts in which the function f re-
curses. The function provc-function-cxists proves the
existence of a function f as specified in the second ar-
gument.

From this theorem the function f can be defined by
means of a new-specification.

5 Examples
In this scction scvcral eramples of thc usc of thc dcf-

inition tool sill bc providcd. Thcse examples dcmon-
strate thc flcribility and the power ofthc tool. It also
showg thc limitetions: only primitive recursive func-
tions that can bc cast into thc rcquircd syntactical
format can bc dcfined.

5.1 Functions of arity one
A fitst crample is the dcfinition of the factorial

function.

Thic function dcfinition is lcgitimatc, sincc for cvcry
natural numbcr n thc rccursion will cventually cnd in
thc basc case n = 0. Thc proof uscs thc epproach of
thc monotonically dccrcasing mcasure. Thc mcasure
is thc idcntity function lz.a. Thc basc case predicate
is .lz.a = 0. Thc proof obligation to bc fulfilcd is:

Thc following EOL scssioa shows how thc dcfinition of
the factorial function proceeds.

A lcss trivial erample, which cannot be handled with
the eristing tools for defining rccursive functions, is
thc dcfinition of a logarithm-likc function for naturals.
As the current implemcntation of thc tool docs not
support the definition ofpartial functions. This causes
a problem with thc logarithm at 0. This can either bc
takcn to be an arbitrary value oftypc ":num" ot it can
be takcn to bc 0. The second option has been chosen
for. Let div2 stand for the natural division by 2 in the
following term that will be used for the definition of
the function log2

1.2

ts6"1vD ts_Bc.ts_MEAs (D,ts_Bc) :
fMcar. Vx. (IS-BC x) + (Mcer x: 0) I

(Mcar (D x) < Mcar x)
6.7

ftc = "fic n = ((n = 0) -+ r I n * (fec(n - 1))I'

{.E

F VD IS-BC.
lS-MEAS (D,!S-BC) "+

rs_REc_PArR(D,rSJC)
8.2

thml : F Vn. (n : 0) v (n - 1) < n

4.4
provc-function-cxirtr :
(thm -> tcrm -> tcrm list -> thm)

provc-function-cxirtt
F rs_REC_PAtR (D , |S_BC)
"f r = IS-BC x -+ g x I h (f (D x)) x"
["'t*"'

5,S
lct rpl : MEAS-TO-REC-PAIR thml;;
rpl : F IS-REC-PAIR((In. n - 1),(tn. n = 0))

lct Fec : "F.c n * (n:0) + 1 | n*(Fac (n-1))";;

lct FAC-cxirt : ptovc-function-cxirtr rpl Fac ["n:num"l;;
FAC-exirt :
F lFec.Vn. F:c n :((n : 0) + 1 | n * (Fac(n - 1)))

ncw-rpccification'FAC' l'conrtant','Fec'l FAC-cxirt;;
F Vn. Fec n : ((n : 0) * I I n * (Fac(n - 1)))

4.8
F lf. Vx. f x : IS-BC x -+ I x I h (f (D x)) x

5.4
log2 : "log2 n : ((n:0) v (n:1)) --+ 0 |

(log2 (div2 n)) + t"

This recursivc definition is legitimatc, sincc for every
natural numbcr n, a finitc number of division by 2 will
cventually rcsult in 0 or 1. Thc proof uses thc con-
cept of thc monotonically decreasing measure. This
reduces the proof obligation to the following:

The function MEAS-TO-REC-PAIR transforms the-
orem 5.5 into this:

5.8 Functions recursing in several argu-
ments

Thc dcfinition of functions rccursing in several ar-
guments will bc illustratcd by thc dcfinition of a sim-
ple bitstring addcr. Bitstrings arc modeled by a list
of boolcans. Thc most significant bit first (MSB) rcp
rcsentation of bitstringr is uscd, as this is common
practicc in hardwarc dcscription. This mcans that thc
last bit of a givcn bitstring dcnotcs the lcast signifi-
cent bit. Thc addition of two bitstrings therefore rc-
curscs on thc last elcmcnts of thc lists that rcprescnt
the bitstrings. Thc list destructing functions LAST
and BUTLAST (5.11) instead of HD and TL have to
bc uscd.

Thc following non-rccursivc functions are used

From theorcm 5.6 thc cxistence of the logarithmic
function can bc dcrivcd:

6.2 Functions of a higher arity, recursing
in a single argument

Thc MAP function of the theory list written in the
destructor style is given by:

This function rccurses in a single grgument, i.e. the
list X. The function f is a free variablc and theorem 3.5
is used for the definition of Map. Starting from:

thc cristence theorem can bc generated

Thc third argumcnt of prove-function-exists states that
the list X is the only recursive argument and thus that
f is not a recursive argument.

Thc following recursive pair is used as a starting
point:

From theorem 5.12 thc following recursive pair can be
derived:

Theorem 5.13 states that a recursive definition, simul-
taneously dcstructing two lists by rcmoving their lest
element, and that cnds if onc of both lists is empty,
is legitimetc. The base case of this recursivc scheme
has to handle the case where one ot both ofthc lists is
empty. First, an intcrmediate function is defined with
thc techniques described in section 5.2. This function
defines the addition ofa bitstring with a singlc bit.

6.6
F Vn. (((n - 0) v (n : r))-- (n - r :0) |

((div2 n) - 1) < (n - t))

6,4

F |5-REC-PAIR((fn. div2 n),(ln. (n : 0) v (n : 1)))
rPtl :

5,7
provc-function-cxistr rp4 log2 ["n:num"l;;
F 3log2. Vn. log2 n :

(((n : o) V (n = 1)) -+ 0 | (log2(div2 n)) + t)

E,t7
XOR F Vx y. x xor! : -x A y V x n -y
ADDB l-" Vc x y. eddb c x y : x xor (y xor c)
COUT FVcxy.coutcxy:xn yVyn cVcAx
HADD F Vc x. hedd c x: c xor x
HCOUT F Vc x. hcout c x: c n x
tAsT F Vl y. IAST(APPEND llvl): v
BUTLAST F Vl y. BUTLAST(APPEND lb/l) : I

5.t2
tp=
F IS-REC-PAIR((rx. BUTIAST x),(rx. x : [))5.8

Map -"MapfX:((X:[)- fl
coNs(f (HD x))(Map f (rL x)))"

8.9
rp3 : F ls-REc-PAIR((rX. TL X),(rx. X : [))

E',.1E

lct edd-thm : COMBINE-IS-REC-PAIR-THMS lrplp];;
edd-thm :
F Is-REC-PAIR

((r(x,x'). (BUTLAST x,BUTLAST x')),
(r(x,x'). (* : [) v (x' = [)))

6,70
provc-function-cxistr rp3 Map ["X:* lirt"l;;
F 3Map. VX f. Map f X : ((X : [) * ll I

coNs(f (HD x))(Map f (rL x)))

5.t4
SINGLE-ADD:
F VX ci.

ringlc-edd ci X :
((x : [)--+
kil I

APPEND
(ringlc-edd(hcout ci(LAST X)XBUTLAST X))
fhrdd ci(LAST X)l)

This function is uscd in thc definition of thc addition
itself:

is defincd with provcJunction-cxists followed by a
new-specification

Higher order functions recursing in scvcral argumcnts
can also be dcfincd. An example is the definition of a
two-argument MAP function:

The dcfinition of MAP2 can be used for a non-
recursivc definition of thc function AND of 2.6.

5.4 Discussion
The eramples show how thc tool can be used for

defining primitive recursive functions in HOL. The
class of recursive functions that can be defined is re-
stricted by the syntactic format of 3.7: only definitions

that can be re-cast in this format can be defined once
the proofobligation has been fulfiled.

The tool splits the definition ofa recursive function
in three parts:

1. prove ofthe well-foundedncss ofthe recursion

2. prove of the existcncc of the function

3. constant spccification

The first part is left to the user, but support is
provided. It involvcs thc proofthat a givcn dcstructor
and a given basc casc prcdicatc form a recursivc pair.

Thc sccond part is fully automated: any function
that recurses according to e givcn rccursive pair and
that can be rcduced into the form of3.7 can be defined.

Thc third part uscs the logic function
ncw-epecification.

Bccause of the support thc tool provides, and be-
causc of the simplicity of the proof obligation, the tool
ofcrs a high degrec offlcribility.

The tool has two major disadvantages. First, only
completc functions can bc dcfincd. Secondly, this style
of definitions cannot bc uscd for simple rewriting sincc
thc IIOL rewrite strategy will loop.

6 Induction
Evcry recursive pair also defines an induction

schcme.

By propcr instantiations, the theorem can be used for
an induction on any numbcr of arguments as lonS as
the proofobligation has been fulfiled. The proofobli-
gation is the same as for rccursive pairs. This means
that cvery rccursive schemc can bc used an induction
schemc. A function for the generation ofthe appropri-
ate induction schemes will be provided in thc future.

7 Conclusion
In this documcnt, a theory on rccursive functions

has been prcsented. Thc theory forms the basis of a
tool that minimices the proof effort for the definition
ofwide class ofrecursivc functions and the derivation
of induction schemes. The basic idea is the concept of
ttrecursivc pairst, stating that a givcn destructor and a
base casc predicate define a valid rccursion. Once this
proofobligation has becn fulfiled, the function defini-
tion can be dcrived eutomatically. In all application
domains whcre ertensive use of recursive functions and
induction is madc, the tool offcrs a useful extension of
the HOL system.

References
[1] H.Dc Man et al., Catheilral-Il: A dlicon com-

piler for digital cignal proceuing, IEEE Design
and Test of Computers, December 1"986, Vol. 3,
No. 6, pp 73-85.

E,7E
lct ADD-tcrm :

"edd ci X Y: ((X:[) v (Y:[)) +
((X = [)--+ ringlc-add ci Y I

ringlc-add ci X) |

APPEND
(edd (cout ci (LAST X) (LAST Y))

(BurLAsT X)
(BurLAsr Y))

[addb ci (LAST x) (LAST Y)1"

6.t6
F6"1 VX Y ci.

add ci X Y:
(((x: [) v (Y: [)) -
((X : [) --+ ringlc-edd ciY I ringlc-add ci X) |

APPEND
(edd(cout ci(LAST XXIAST Y))

(BUTLAST X)
(BUrLAsr Y))

[addb ci(LAST XXLAST Y)l)

6.t
F VQ (D:*-r *) IS-BC. (IS-REC-PAIR (D,|S-BC))

(Vx. (ls-Bc x) =+ Q x) =+ (Vx. (a (o x) + Q x))
+ (Vx. Q x)

E,t7
ts6,1 Yf XY.

MAP2fXY:
(x:[)v(Y:[)- fl

coNs (f (HD x) (HD Y))
(MAP2 f (rL x) (rL Y))

[2] B.Brock, W.A.Hunt,Jr, Eeport on the For-
mal Specification anil Pailial Verification of thc
VIP En Microproceuor, Tcch.Rep. 46, Jananuary
15r 1990, Computational Logic, Inc.

[3] P.Lowcnslein, Eapercriencec Uting a Theorem
Proocr for Eariluarc Vcrification, 1991 Interna.
tional Workshop on Formal Methods in VLSI Dc-
sign, January 1991, Miami.

[4] R.Boulton ct al., The frOL Verification of ELLA.
Dcdgnq 1991 International \ilorkshop on Formal
Methods in VLSI Design, January 1991, Miami.

[5] A.Gordon, The ilefinition oITINY-SEAGE, Uni-
vcrsity of Cembridge Computer Laboratory, Au-
gust 1991.

[6] S.Kalvala, A Methoilology for Integrating Earil-
uarc I)ctign and Verification, 1991 International
'Workshop on Formal Methods in VLSI Dcsign,
January 1991, Miami.

[7] J.J.Joycc, Multi-I'eoel Verifcation of Micropro-
ce.to? Barcil Sydcmt, Ph.D. thcsis, Computcr
Laboratory, Cambridgc Univcrsity, Dcccmbcr
1989, Report No 195.

[8] T.F.Mclham, Abdraction Mechanitmt
for Eariluare Vcrification, in: G.Birtwistlc and
P.Subrahmanyam, cds., VLSI Spccification, Vcr-
ification and Synthcsis, Kluwer Acadcmic Pub.
lishcrs, 1988, pp. 267-29L.

[9] P.J.Windlcy, Abctract Eariluare, 1991 Intcna.
tional Workshop on Formal Methods in VLSI Dc-
sign, January 1991, Miami.

[10] M.J.C.Gordon, Why Eigher-Order I'ogic it a gooil
formalirm for Specifying anil Verifying Earduare,
in:G.Milnc end P.Subrahmanyam, eds., Formal
Aspects of VLSI Dcsign, Proceedings of thc 1985
Edinburgh Confcrcncc on VLSI, North-Holland,
1986, pp.153-177.

[11] J.J.Joycc,, More Eearonr Why frigher-Orilcr Logic
ia a gooil formalirm lor Specifying anil Verifying
Earduarc, 1991 International Workshop on For-
mal Mcthods in VLSI Design, January 1991, Mi-
ami.

[12] R.S.Boyer and J.S.Moore, A Computational
Logic, Acad.emic Press, Inc., 1979.

[13] M.J.C.Gordon et al., The EOL Sydem: DE-
SCBIPTION, Cambridge Research Ccntrc, SRI
Intcrnational, Dccember 1989, Version 1 (for
HOr88.1.10).

[14] H.Rogcts, Jr., Theory of Recwdae Functiont and
Eficctite C omputability, McGraw-Hill, 1967.

