Defining Recursive Functions in HOL!?

W.Ploegaerts*, L.Claesen!, H.De Mant

IMEC vzw.
Kapeldreef 75, B-3001 Leuven, BELGIUM
Phone +32/16/281525

Abstract

The limited support for the definition of recursive
functions and the generation of induction schemes is
a major shortcoming of the HOL system when applied
for hardware verification. In this paper a theory of
primitive recursive functions and a tool that minimizes
the proof effort required for the definition of a wide
class of primitive recursive functions is presented. Due
to its flezibility and degree of automation it offers a
useful eztension of the HOL system.

1 Introduction

The correctness of hardware designs is one of the
major unsolved problems design engineers currently
have to cope with. Several synthesis tools such as the
CATHEDRAL system [1] offer a means for a nearly au-
tomatic design of very complex circuits. As error-free
software still does not exist, bugs or even conceptual
errors in the CAD tools are likely to occur. The func-
tional correctness of the generated designs is to be dis-
trusted, and verification is essential. Formal hardware
verification, in principle a methodology leading to a
full-proof correct design, offers a valuable alternative
to classical verification methods such as simulation.
The latter can only partially validate the correctness
of a design.

Though the idea of formal verification has been
around for several years now, it has not been accepted
in the world of the design engineers. There are three
important reasons for this:

1. the lack of real-world results proving that the
approach works for anything but toy-circuits

2. the large effort required for both the formal de-
scription of a design and the construction of the
proof itself [2]

3. most importantly, the large gap between the way
of thinking required for formal verification and
the way design engineers think [3]: design engi-
neers are no logicians and most of the time even
refuse to try to be so

*Rescarch assistant with the Belgian National Fund for Sci-
entific Research

1Professor at K.U.Leuven

{Work partly funded by the ESPRIT 2 BRA CHEOPS(3215)

i

In the HOL hardware verification community, the lat-
ter issue is of growing importance. Several approaches
to help bridge this gap can be found in literature.
Some examples are the semantic embedding of hard-
ware description languages in HOL [4] [5]. This aims
to provide theorem proving tools for reasoning about
hardware design in a formalism the designers feel com-
fortable with. Other approaches are the inclusion of
design hints in the verification process to guide the
proof [6] and the hierarchical approach to hardware
verification based on the idea of abstraction [7] [8] [9].

All these issues are of major importance for the
hardware verification community as it provides means
to manage the inherent complexity of the proofs. How-
ever, they still do not make the HOL system accept-
able for the design engineers. These are looking for
“canned solutions” and do not want to be bothered
with the theoretical matters a HOL user gets involved
with. The latter is partly due to the nature of the
HOL system itself., Due to the lack of automation and
support currently available, the user can hardly ben-
efit from the high expressive power inherent to the
higher order logic: facts that are intuitively clear of-
ten require a major proof effort in the HOL system [3].
Although the logic is a good formalism for specifying
and verifying hardware TIO] [11], systems such as the
Boyer-Moore system [12] based on a less expressive
logic but offering a higher degree of automation might
easier be accepted by the design engineers.

The lack of support for the definition of recursive
functions and the generation of induction schemes is
a major shortcoming of the HOL system in this re-
spect. Induction, the means of function abstraction
and recursive function definitions are the main po-
tential advantages the theorem prover based approach
offers compared with an classic (and fully automatic)
approach to hardware verification. The HOL system
though hardly offers any support for the definition
of recursive functions and the generation of induc-
tion strategies. Even the modeling phase therefore
becomes a burden to the user: he is interested in the
verification of a design and not in the tedious, often
highly theoretical HOL proofs inherent to definition of
recursive functions and induction schemes.

The goal of the work described in this paper is to
help the user bridge the gap between the intuitive un-
derstanding of the well-foundedness of a recursion and
the definition of a recursive function in HOL. A tool

is provided such that the related proof effort is mini-
mised. The tool offers support both for the proof of
the well-foundedness of the recursive scheme and for
the definition of a specific recursive function.

In section 2 the existing tools and theories pertain-
ing this subject matter that are currently available in
HOL (Version 1.12) will be discussed. In section 3 the
theory on which the tool is based will be presented.
This is followed in section 4 by a discussion of the
logic functions provided. In section 5 several exam-
ples will demonstrate the flexibility, the power and
the limitations of the new tool.

2 Recursive definitions in HOL

In this section the definition of recursive functions
in HOL is discussed. The tools and theories provided
with the HOL system are presented. Their limitations
in an hardware verification environment will be clari-

fied.

2.1 Recursive deflnitions

To preserve the consistency in the HOL system,
HOL theories should only be extended by definitional
eztension [13]: new constants and types are to be de-
fined in terms of existing ones. The definition in HOL
of a function fun, characterized by a predicate P, con-
sists out two parts:

1. ezistence proofof the function fun, this involves
the construction of a function with the intended
behavior (and possibly the use of the choice op-
erator) and results in the theorem Jfun.P fun;

2. constant specification: the symbol fun is se-
lected as the name of the function for which the
property P holds, the behavior of the function
fun is specified by P fun; this is implemented
by the logic function “new_specification”;

The problems related to the definition of recursive
functions in HOL are twofold: there is the purely theo-
retical issue related to the existence of recursive func-
tions, and a technical matter related to the modeling
of the existence proof in the HOL system. The first
problem is related to the question why a specific recur-
sive definition is well-founded. This problem cannot
be solved in its full generality. Therefore, the defini-
tion of recursive function can only be automated for a
restricted class of functions. For all other definitions, a
tedious proof is required due to the inherent complex-
ity of the related existence proofs. The HOL system
provides limited support and automation pertaining
this subject matter. The tools and theories supplied
with the system will now be discussed.

2.2 Automatic definitions

The logic functions based on the type definition tool
[13] offer a means for the automatic definition of re-
cursive functions. The class of functions that can be
defined automatically is restricted: only primitive re-
cursive functions defined by cases on the type con-
structors used for the definition of a new type are
directly supported [13]. Every recursive type is ab-
stractly characterized by a theorem of the form:

F Yy v . ! fniop—k.
¥xl ceoxbfn(Cp o LLoh) =
fi (fnxl)...(fnxf) < ...oxke

ik, +eoxbm fn(Cpp X3, - . xEp) =
fm (fnx2) ... (fnxEr)xd, .oxEm

In theorem 2.1, C; for i : 1 -.. m are the con-
structors used for the definition of the type ":0p” [13].
With the logic function prove_recursive_function_exists
the existence of any recursive function, both complete
and partial functions, defined by cases on these con-
structors C; can be derived from the theorem 2.1. This
logic function can be used with theorems syntactically
similar to theorem 2.1 for the definition of recursive
functions by cases on constructors other than the one
automatically derived from the type definition. This is
illustrated with an example from the theory list. The
type ":(«) list" is characterised by the list_Axiom:

[2.2]

F Vx f. 3n.(fnf] = x) A (Vh t. fn(CONS h t) = f(fn t)h t)

This allows recursive definitions such as the length of

a list:
[2.3
Fdep (LENGTH[=0) A
(Vh t. LENGTH(CONS h t) = SUC(LENGTH t))

However, one could also consider an equivalent defi-
nition of the length of a list by recursion on the last

element of the list:
I 2.4
Faes (LENGTH2]] = 0) A

(Vh t. LENGTH2 (APPEND t [h]) = SUC(LENGTH2 t))

To define this function LENGTH2 with the logic func-
tion prove_recursive_function_exists, the following theo-
rem should be provided:

[2.5

|

This theorem can be derived from theorem 2.2. Even
for this simple case, the proof is rather complex and
no support is provided.

A more general case is the definition of functions
simultaneously recursing in different arguments. This
cannot be handled by the current implementation of
prove_recursive_function_exists. This type of definitions
pops up frequently in the specification of hardware
devices. One example is the functional definition of a
two-input n-bit bitwise-and function:

F ¥x f. 3fn.(fn]] = x) A
(vh t. fn(APPEND t [h]) = f(fn t)t h)

Faes (ANDJ I =) A
(AND (CONS x X) (CONS y Y) =
CONS (x A y) (AND X Y))

Following the philosophy of the type definition pack-
age, the existence of the function AND requires the
proof of theorem 2.7:

[27]

I Va f1 12 13.
3! fn.
(fnll] = 2) A
(¥x X. fn(CONS x X)[] = f1(fn X[})x X) A
(Yy Y. fn[](CONS y Y) = f2(fn[]Y)y Y) A
(Yx Xy Y. fn(CONS x X)(CONS y Y) =
fB3(fIn XY)xXyY)

The proof of theorem 2.7 is fairly complex. The defini-
tion of a three-input n-bit bitwise-and function would
require yet another theorem to be proven.

This discussions suggests the lack of flexibility of
the definition tool. The class of functions that can be
defined automatically is restricted by the availability
of theorems like 2.1. Only functions recursing in a
single argument are currently supported. The HOL
user thus has two possible tracks to follow:

o cast all definitions in a form that is supported
o prove the dedicated theorem of type 2.1

In the field of hardware verification, the first approach
is not attractive. The definition of recursive functions
is mainly a means for modeling. It is therefore not ac-
ceptable for the formal model in HOL to be completely
different from the informal one that is generally used.
Such a formal model increases the proof effort to be
spent when building a theory because of the gap be-
tween intuition and formal model. Moreover, it makes
the approach lose all credit in the eyes of the design
engineers. On the other hand, the second approach
seems to be even a greater burden: it leads the user
to a complex existence proof, which has nothing to do
with the subject matter he is interested in. The neces-
sity to carry out these proofs are an unintentional and
often frustrating confrontation with the HOL system.

2.3 Other theories and tools

As the existing definition tool is too restrictive and
not flexible enough, a more general approach must be
found. The HOL system (Version 1.12) contains sev-
eral contributions offering an elegant theoretical basis
for a theory of recursive functions:

e The Library well-order (T.Kalker): based on the
proof that every set can be well-ordered, the
principle of transfinite induction is derived. A
conversion that transforms a term into the ap-
propriate existence theorem related to the trans-
finite induction theorem is provided.

e The Library fixpoints éM.Gordon): the fixpoint
operator is defined and the validity of computa-
tion induction is proved.

¢ The Contribution CPO (A.J.Camilleri): a theory
of complete partial orderings and fixed-points
that is intended to lead to the fixed point theo-
rem which will allow the definitions of recursive
operators.

Unfortunately, none of these theories have been
worked out up to a level high enough that they can eas-
ily be used for making the recursive definitions. The
gap between the provided theories and their practi-
cal use can only be bridged by a large proof effort,
to a great extent dealing with domain-theoretical is-
sues. Due to its highly theoretical nature, this is again
too much of a burden for the HOL user interested in
hardware verification.

2.4 Discussion
The current status of the support for the definition
of recursive functions can be summarized as follows:

e Automatic definition without a large proof effort
is only possible for a limited class of recursive
functions.

o If an automatic definition is not possible, the
proof effort is not directly related to the correct-
ness of the recursion itself; it mainly involves a
tricky syntactic transformation of theorems sim-
ilar to the output of type definition tool.

e The theories offering a more general solution to
the problem are still too theoretical to be of di-
rect practical use. The main problems the user
is confronted with are domain-theoretical.

This yields some requirements for a tool for automat-
ing the definition of recursive functions:

e automation for a large class of functions

o flezibility in the choice of recursive schemes and
the number of arguments the function simulta-
neously recurses in

e minimal proof obligation

3 A theory of Recursive functions

In this section, the theory of recursive functions
that forms the basis of the new definition tool is pre-
sented. First an informal discussion introduces the
basic theorem of the theory, followed by its formaliza-
tion in the HOL system.

3.1 The well-foundedness of recursive

definitions

In this work an intuitive approach, has been opted
for, instead of one that starts from the existing math-
ematical theories. A recursive definition for a function
is, roughly speaking, a definition wherein values of the
function for given arguments are directly related to
values of the same function for “simpler” arguments
or to values of “simpler” functions [14]. The notion

“simpler” is to be specified in the chosen characteri-
sation, usually taken as the simplest of all (e.g. the
constant function). The latter are the “base cases” of
the recursion. In the remainder the set BC, say of
type “xset”, will be taken as the set of all base cases
for a given recursion. The predicate IS_BC of type
“x—bool” is the related predicate defining the set BC.
Such a recursive definition uniquely defines a function
f of type “k«— 44" if two conditions are satisfied. First,
it must be defined for every element 2 of type “x”. how
f = is decomposed in its simpler parts. Secondly, for
all z a base case must be reached after a finite number
of decompositions. Consider the class of recursive def-
initions restricted to primitive functions of arity one,
having M base cases BC; and defined by cases on N
constructors C;j. Then, a function f can be defined by
cases on the constructors and the base cases:

(f BC1 =y

:fBCM'—_aM
F(Ciz)=fi(fz)=

o

F(Cre)=fn (Fe) 2

The proof obligation for the existence of the function
f is that every z of type “x” can be constructed in a
finite amount of steps starting from one of the base
cases. As the number of base cases and constructors
are variable, neither the proof obligation nor the ex-
istence theorem itself can be formalised in a closed
formula. The proof strategy can thus not be a sim-
ple transformation of a pre-proven theorem that cap-
tures the correctness in its full generality; instead it
has to be based on conversions. Past experience has
shown that the fulfilment of the proof obligation leads
to rather complex proofs as a case split on the different
base cases and constructors is necessary. A different
approach has therefore been chosen.

As all constructors are functions thal are one_one,
a destructor function D can be defined by cases on the

constructors
D(Ciz)==

:I)(CNZ):E

Using this destructor function, the definition of the
function f can be transformed into

fz=(IS.BCz) = gz | h(f(Dz))z (1)

where for all 1
g BC,' = ;g (2)

For the destructor style of recursive definitions, the
proof obligation can easily be formalized. The func-
tion f exists if for every z of type “+” a finite number
of applications of the destructor D will eventually re-
sult in a base case. The proof obligation can thus be
expressed as follows:

Ve.3k.IS_BC (D* z) (3)

The combination of formulae 1 and 3 yields the fol-
lowing theorem:

VD IS_BC. (22

(Vz.3k.IS_BC (D* z)) =
(Vg hElff e =
(IS_BCz) — gz | h(f(D2))z)

Theorem 3.1is the basis of the definition tool that has
been implemented. An analysis of 3.1 shows that for
this class of recursive definitions, the existence of a
specific function is fully determined by the properties
of the destructor and the set of base cases. Compared
with the constructor style of recursive definitions and
the input format of the definition tool provided with
the system, it has the following advantages

e Closed formula: both the well-foundedness of
recursive scheme and the existence recursively
defined function itself have a fixed format, a
general proof strategy consists of a strategy to
rewrite a specific definition to the fixed format
of 3.1.

¢ There are no limitations on the destructor and
the set of base cases (as long as the implicant
can be proven)

o Theorem 3.1 does not depend on any theoreti-
cal concept, the proof obligation to be fulfiled is
understandable for any HOL user.

o The reason for the existence of a specific func-
tion is fully captured in the implicant of 3.1.
The proof can thus be given separately from the
actual definition (divide and conquer). Special
support for this proof can be implemented

In the next section the formalisation of the theorem
in HOL will be discussed.

3.2 Functions of arity one
Let the function fpw stand for the function power
defined in the following way:

[s.2]

Fadeg (Vix.fpwfOx=x) A
(vf n x. fpw f (SUC n) x = f (fpw f n x))

Then, the implicant of theorem 3.1 can be written as:

vx. 3k . IS_.BC (fpw D k x)

A predicate IS_.BC and a destructor function D for
which this hold are called a recursive pair.

[s3]

Fdes VD 1S_BC. IS_REC_PAIR (D,IS_BC) =
(¥x. Fk. IS_BC (fpw D k x))

Two examples of recursive pairs are:

F IS_REC_PAIR(TLALI=]) ,
+ IS_.REC_PAIR(PRE,An.n = 0)
The basic theorem of the theory on recursive functions

(3.1) states that every recursive pair defines a well-
founded recursion

[54]

F vD IS_BC.
(IS_.REC_PAIR (D,IS_BC)) =
(Vg f. Hun:x— *x . Vx.
(fun x = (IS.BC x) — g x | f (fun (D x)) x))

3.3 TFunctions of a higher arity

Two types of functions with a higher arity can be
distinguished: those that recurse in a single argument
and functions recursing in several arguments.

When the function has two arguments, say x of type
":x1" and y of type ":+x2", and when the function re-
curses on x according to the recursive pair (D,IS_BC),
then theorem 3.4 can be extended:

L35

+ vD IS_BC.
(IS_REC_PAIR (D,IS_BC)) =
(Vg f h. Ifun:x1— *2— ** . Vx y.
(funxy =(ISBCx) —+ gxy|
f (fun (D x) (h x y)) x y))

Note that the function h is universally quantified. The
second argument of the recursive function thus has no
effect on the well-foundedness of the definition. The
existence of f only depends on the recursive pair.

For the definition of functions recursing in n ar-
guments and having m non-recursive arguments, the
types of the variables x and y arc instantiated with
the appropriate product types. For every variable z of
type ":x14t ... #+n" the following holds:

[s.6]

F Vz. 321 ...zn . 2 = (z1,...,zn)

Theorem 3.5 can be transformed into (omiting the
types) the following:

3.7

+ vD IS_BC.
(1S_REC_PAIR (D,IS_BC)) =
(vg f h. 3fun. VxI1 ... xn y1 ... ym .
(fun (x1,...,xn) (y1,...,ym) =
(I1S_BC (x1,...,xn} —
g (x1,...,xn) (y1,...,ym) |
f (fun (D (x1,...,xn)) (h (x1,...,xn) (y1,...,ym)))
(x1,...,xn) (y1,...ym)))

The destructor is a function of the following form:

| s.8

D = A(x1,...,xn). (D1 (x1,...,xn), ... , Dn (x1,...xn))

The definition tool will rewrite a specific recursive def-
inition into the format of theorem 3.7. Tuples and un-
curried functions are extensively. This is not common
practice in HOL and the available support is limited.
A set of conversions dealing with tuples therefore has
been developed.

4 The definition tool

The definition of recursive functions based on the-
orem 3.7 consists of two parts:

1. Fulfiling the proof obligation: given a destructor
and a set of base cases, prove that they form a
recursive pair.

2. Existence proof: rewrite a given definition to the
form of 3.7 to prove its existence

The tool can handle only recursive function defini-
tions that can be transformed into the syntactic for-
mat of either theorem 3.4 or of theorem 3.7.

4.1 The proof obligation
The fulfilment of the proof obligation

[41

IS_REC_PAIR (D,IS_BC)

is left to the user of the tool. This issue cannot be
solved in general and thus cannot be automated. How-
ever, support is essential to make the tool useful for
the HOL user. The tool currently supports two differ-
ent cases:

1. Combination of recursive pairs.

Given a list of recursive pairs,

[F IS_REC_PAIR (D1,IS_BC1) ;
F IS_REC_PAIR (D2,IS_BC2) ;

F IS_REC_PAIR (Dn,IS_BCn)]

the combination of the destructors and the dis-
junction of the base case predicates also form a
recursive pair

 IS_REC_PAIR (A(x1,..,xn).(D1 x1, ..., Dn xn),
A(x1,..,xn).(IS.BC1 x1 V ... VIS_BCn xn))

The tool provides a logic function,
COMBINE IS REC_PAIR.THM. This function
generates from a given list of recursive pair the
related combined recursive pair.

2. Ezistence of a monotonically decreasing “mea-
”
sure”.

A monotonically decreasing measure is a func-
tion of type ":¥— num” having the property that
every base case is mapped to 0 and that for all
other elements of type ":x" the function value
of the element is larger than the value of the
destructed element [12].

[4.2]
t-gep VD IS_BC.IS_MEAS (D,IS_BC) =
IMeas. Vx. (IS.BC x) — (Meas x = 0) |
(Meas (D x) < Meas x)

5 Examples

In this section several examples of the use of the def-
inition tool will be provided. These examples demon-
strate the flexibility and the power of the tool. It also
shows the limitations: only primitive recursive func-
tions that can be cast into the required syntactical
format can be defined.

5.1 Functions of arity one
A first example is the definition of the factorial
function.

[5.1]

fac="facn=((n =0) = 1| n* (fac(n — 1)))"

It can be proven that every monotonically de-
creasing measure defines a recursive pair

] 4.3
+ vD IS_BC.
IS_.MEAS (D,IS_BC) =
IS_.REC_PAIR(D,IS_BC)

The tool provides a logic function,
MEAS_TO_REC_PAIR. This function starts from
a measure and proves that the destructor and
the base case predicate form a recursive pair.
Several input formats are allowed. This will be
illustrated in the examples.

4.2 The existence proof
The existence proof is implemented in the function
prove_function_exists:

[4.4

prove_function_exists :
(thm —> term —> term list —> thm)

prove_function_exists
F IS_REC_PAIR (D , IS_BC)
"fx=ISBCx— gx|h(f(Dx))x"
"x:*"]

The first argument is a theorem stating that a given
destructor D and a given base case predicate IS_.BC
form a recursive pair. The second argument is term
that defines the function f. The same destructor and
base case predicate as in the recursive pair must be
used. The last argument is a list that contains the
names of the arguments in which the function f re-
curses. The function prove function_exists proves the
existence of a function f as specified in the second ar-
gument.

[L45]

FIf.Vx.fx=1I1SBCx— gx|h(f(Dx))x

From this theorem the function f can be defined by
means of a new_specification.

This function definition is legitimate, since for every
natural number n the recursion will eventually end in
the base case n = 0. The proof uses the approach of
the monotonically decreasing measure. The measure
is the identity function An.n. The base case predicate
is An.n = 0. The proof obligation to be fulfiled is:

[5.2]

thmli=FVn.(n=0)Vv(n-1)<n

The following HOL session shows how the definition of
the factorial function proceeds.

[5.3]

let rpl = MEAS_TO_REC_PAIR thm1;;
rpl = F IS_REC_PAIR((An. n — 1),(An. n = 0))

let Fac = "Fac n = (n=0) — 1| n¥(Fac (n—1))";
let FAC_exist = prove_function_exists rpl Fac ["n:num”];;
FAC_exist =

F JFac. Vn. Facn = ((n = 0) — 1| n * (Fac(n - 1)))

new_specification ‘FAC' [‘constant’,‘Fac’] FAC exist;;
b Vn.Facn=((n=0) — 1|n* (Fac(n — 1)))

A less trivial example, which cannot be handled with
the existing tools for defining recursive functions, is
the definition of a logarithm-like function for naturals.
As the current implementation of the tool does not
support the definition of partial functions. This causes
& problem with the logarithm at 0. This can either be
taken to be an arbitrary value of type ":num” or it can
be taken to be 0. The second option has been chosen
for. Let div2 stand for the natural division by 2 in the
following term that will be used for the definition of
the function log2

[5.¢]

log2 = "log2 n = ((n=0) V (n=1)) — 0 |
(log2 (div2 n)) + 1"

This recursive definition is legitimate, since for every
natural number n, a finite number of division by 2 will
eventually result in 0 or 1. The proof uses the con-
cept of the monotonically decreasing measure. This
reduces the proof obligation to the following:

| 5.5

Fvn.(((n=0)v(n=1))—= (n-1=0)]
((div2 n) — 1) < (n — 1))

The function MEAS_TO_REC_PAIR transforms the-
orem 5.5 into this:

I 5.6
rpd =

+ IS_LREC_PAIR((An. div2 n),(An. (n = 0) V (n = 1)))

From theorem 5.6 the existence of the logarithmic
function can be derived:

[s.7]

prove_function_exists rp4 log2 ["n:num”];;
+ Jlog2. Vn. log2 n =
(((n=10) v (n=1)) > 0] (log2(div2 n)) + 1)

5.2 Functions of a higher arity, recursing
in a single argument

The MAP function of the theory list written in the
destructor style is given by:

[5.8

Map =
"Map fX=((X=[)— 0|
CONS(f (HD X))(Map f (TL X)))"

This function recurses in a single argument, i.e. the
list X. The function f is & free variable and theorem 3.5
is used for the definition of Map. Starting from:

[0]

p3 = IS_LREC_PAIR((AX. TL X),(AX. X =1]))

the existence theorem can be generated:

5.10
prove_function_exists rp3 Map ["X:* list"];;
F 3Map. VX . MapfX =((X=[)— []|
CONS(f (HD X))(Map f (TL X)))

The third argument of prove_function_exists states that
the list X is the only recursive argument and thus that
f is not a recursive argument.

5.3 Functions recursing in several argu-
ments

The definition of functions recursing in several ar-
guments will be illustrated by the definition of a sim-
ple bitstring adder. Bitstrings are modeled by a list
of booleans. The most significant bit first (MSB) rep-
resentation of bitstrings is used, as this 1s common
practice in hardware description. This means that the
last bit of a given bitstring denotes the least signifi-
cant bit. The addition of two bitstrings therefore re-
curses on the last elements of the lists that represent
the bitstrings. The list destructing functions LAST
g}nd BUTLAST (5.11) instead of HD and TL have to

e used.

The following non-recursive functions are used

5.11
XOR FVxy.xxory=-xAyVxA-y
ADDB | Vc x y. addb ¢ x y = x xor (y xor c)
COUT HVexy.coutcxy=xAyVyAcVcAX
HADD F Vc x. hadd ¢ x = ¢ xor x
HCOUT | Ve x. hcout e x = ¢ A x
LAST + Vly. LAST(APPEND I[y]) =y
BUTLAST + Vly. BUTLAST(APPEND I[y]) = I

The following recursive pair is used as a starting
point:

5.12
=
F IS_REC_PAIR((Ax. BUTLAST x),(Ax. x = []))

From theorem 5.12 the following recursive pair can be
derived:

5.13

let add_thm = COMBINE_IS_REC_PAIR_THMS [rp;rp];;
add_thm =
+ IS_REC_PAIR

((A(x,x'). (BUTLAST x,BUTLAST x')),

A@x). (x =D v ' =)

Theorem 5.13 states that a recursive definition, simul-
taneously destructing two lists by removing their last
clement, and that ends if one of both lists is empty,
is legitimate. The base case of this recursive scheme
has to handle the case where one or both of the lists is
empty. First, an intermediate function is defined with
the techniques described in section 5.2. This function
defines the addition of a bitstring with a single bit.

5.14
SINGLE_ADD =

F VX ci.
single_add ¢i X =
(X=Dm—
[l |
APPEND
(single_add(hcout ci(LAST X))(BUTLAST X))
[hadd ci(LAST X)])

This function is used in the definition of the addition
itself:

5.16
let ADD_term =

"add ¢i X Y = ((X=[1) v (Y=[])) —
((X=1)— singleadd ci Y |
single_add ci X) |
APPEND
(add (cout ci (LAST X) (LAST Y))
(BUTLAST X)
(BUTLAST Y))
[addb ci (LAST X) (LAST Y)]"

is defined with prove function_exists followed by a
new_specification

that can be re-cast in this format can be defined once
the proof obligation has been fulfiled.

The tool splits the definition of a recursive function
in three parts:

1. prove of the well-foundedness of the recursion
2. prove of the existence of the function

3. constant specification

The first part is left to the user, but support is
provided. It involves the proof that a given destructor
and a given base case predicate form a recursive pair.

The second part is fully automated: any function
that recurses according to a given recursive pair and
that can be reduced into the form of 3.7 can be defined.

The third part uses the logic function
new_specification.

Because of the support the tool provides, and be-
cause of the simplicity of the proof obligation, the tool
offers a high degree of flexibility.

The tool has two major disadvantages. First, only
complete functions can be defined. Secondly, this style
of definitions cannot be used for simple rewriting since
the HOL rewrite strategy will loop.

6 Induction

Every recursive pair also defines an induction
scheme.

5.1
'_def YX Y ci.
addci XY =

(X =M v (Y =0)—
((X=1) — single_add ci Y | single_add ci X) |
APPEND
(add(cout ci(LAST X)(LAST Y))

(BUTLAST X)

(BUTLAST Y))
[addb ci(LAST X)(LAST Y)])

Higher order functions recursing in several arguments
can also be defined. An example is the definition of a
two-argument MAP function:

5.17
Faeg VEX Y .

MAP2 f X Y =
X=Mv(r=M- 01
CONS (f (HD X) (HD Y))
(MAP2 f (TL X) (TL Y))

The definition of MAP2 can be used for a non-
recursive definition of the function AND of 2.6.

5.4 Discussion

The examples show how the tool can be used for
defining primitive recursive functions in HOL. The
class of recursive functions that can be defined is re-
stricted by the syntactic format of 3.7: only definitions

L6.1]

- ¥Q (Ds#— +) IS_BC. (IS_REC_PAIR (D,IS_BC)) 5
(vx. (IS.BCx) = Qx)= (Vx. (Q(Dx)=> Qx))
= (Vx. Q x)

By proper instantiations, the theorem can be used for
an induction on any number of arguments as long as
the proof obligation has been fulfiled. The proof obli-
gation is the same as for recursive pairs. This means
that every recursive scheme can be used an induction
scheme. A function for the generation of the appropri-
ate induction schemes will be provided in the future.

7 Conclusion

In this document, a theory on recursive functions
has been presented. The theory forms the basis of a
tool that minimizes the proof effort for the definition
of wide class of recursive functions and the derivation
of induction schemes. The basic idea is the concept of
“recursive pairs”, stating that a given destructor and a
base case predicate define a valid recursion. Once this
proof obligation has been fulfiled, the function defini-
tion can be derived automatically. In all application
domains where extensive use of recursive functions and
induction is made, the tool offers a useful extension of
the HOL system.

References
(1] H.De Man et al., Cathedral-II: A silicon com-
piler for digital signal processing, IEEE Design
and Test of Computers, December 1986, Vol. 3,
No. 6, pp 73-85.

2]

[5]

[6]

(7]

(8]

[9]

[10]

(11}

B.Brock, W.A.Hunt,Jr, Report on the For-
mal Specification and Partial Verification of the
VIPER Microprocessor, Tech.Rep. 46, Jananuary
15, 1990, Computational Logic, Inc.

P.Lowenstein, FEzpereriences Using @ Theorem
Prover for Hardware Verification, 1991 Interna-
tional Workshop on Formal Methods in VLSI De-
sign, January 1991, Miami.

R.Boulton et al., The HOL Verification of ELLA
Designs, 1991 International Workshop on Formal
Methods in VLSI Design, January 1991, Miami.

A.Gordon, The definition of TINY-SILAGE, Uni-
versity of Cambridge Computer Laboratory, Au-
gust 1991.

S.Kalvala, 4 Methodology for Integrating Hard-
ware Design and Verification, 1991 International
Workshop on Formal Methods in VLSI Design,
January 1991, Miami.

J.J.Joyce, Multi-Level Verification of Micropro-
cessor Based Systems, Ph.D. thesis, Computer
Laboratory, Cambridge University, December
1989, Report No 195.

T.F.Mclham, Abstraction Mechanisms
for Hardware Verification, in: G.Birtwistle and
P.Subrahmanyam, eds., VLSI Specification, Ver-
ification and Synthesis, Kluwer Academic Pub-
lishers, 1988, pp. 267-291.

P.J.Windley, Absiract Hardware, 1991 Interna-
tional Workshop on Formal Methods in VLSI De-
sign, January 1991, Miami.

M.J.C.Gordon, Why Higher-Order Logic is a good
formalism for Specifying and Verifying Hardware,
in:G.Milne and P.Subrahmanyam, eds., Formal
Aspects of VLSI Design, Proceedings of the 1985
Edinburgh Conference on VLSI, North-Holland,
1986, pp.153-1717.

J.JJoyce, More Reasons Why Higher-Order Logic
is a good formalism for Specifying and Verifying
Hardware, 1991 International Workshop on For-
mal Methods in VLSI Design, January 1991, Mi-
ami.

R.S.Boyer and J.S.Moore, A Computational
Logic, Academic Press, Inc., 1979.

M.J.C.Gordon et al.,, The HOL System: DE-
SCRIPTION, Cambridge Research Centre, SRI
International, December 1989, Version 1 (for
HOLS88.1.10).

H.Rogers, Jr., Theory of Recursive Functions and
Effective Computability, McGraw-Hill, 1967.

