Correctness Preserving Transformations on the Hough algorithm. *

J.G. Samsom, L.J.M. Claesen, H.J. De Man

IMEC vzw. Kapeldreef 75, B-3001 Leuven, Belgium
Phone +32-16-281525, Fax +32-16-281515, email: samsom@imec.be

Abstract

A formal method for the optimization of a specifi-
cation tn a guaranieed correct way is presented. As an
ezample, the transformation from a behavioral spec-
ification of the Hough transform in an image space,
towards an optimized specification will be presented.
The transformations are meant to be used in an in-
teractive environment. The main result presented is
that, by using a limited set of transformations, an op-
timized description in lerms of a silicon compiler can
be derived in @ guaranteed correct way.

Keywords: trensformational design, guided synthe-
sis, formal verification, correciness preserving trans-
formations, VLSI design.

1 Introduction

Guaranteed correct VLSI design is an increasing
arca of research. Thanks to the improvements in VLSI
processing technology, circuits become more and more
complex and error prone. Post-hoc verification of de-
sign steps is still a time-consuming job and often hints
are needed to help a theorem prover in his proof of cor-
rectness. The hints that are given are often conform
to design steps that are taken during design. Because
of this, more natural constructive approaches are pro-
posed.

A possible solution can be achieved with fully auto-
matic synthesis systems, yielding correctness by con-
struction. However, automatic synthesis will not al-
ways be possible due to high performance require-
ments and will always be restricted to a limited set
of applications. The unbeatable effectiveness of hu-
man intelligence in making design transformations is
often necessary. Especially at a high description level,
complexity can be that high that interaction with an

*Rescarch funded by ESPRIT project SPRITE(3218)

(experienced) designer is needed. The transformation
of an algorithm into an optimised version of the algo-
rithm, the partitioning of an algorithm, or the trans-
formation of an algorithm into a set of general recur-
sion equations implementable in a regular array are
complex design steps that are often done manually
(before entering a silicon compiler).

A guided correctness preserving design system ca-
pable of doing all the transformations a user needs,
would guarantee the correctness while giving the op-
portunity to look in a fast and flexible way at sev-
eral alternatives. In this way, optimisation in terms
of memory usage, I/O bandwidth, number of opera-
tors, parallelism and timing would be possible in an
carly design stage (the result will be dependent on the
experience of the designcr). .

In this paper, an example of the Hough transform
will be worked out. Starting from a naive description
of the behavior of the algorithm (specification) an op-
timised description in terms of a silicon compiler will
be derived. Transformations will all be on a behavioral
level on a hardware description language (SILAGE).
Other approaches [5] make use of graphical interfaces
especially suited for applications with a lot of regular-
ity.

Section 2 defines a subset of Silage. On this subset,
transformation laws are defined in section 3. Section
4 describes the algorithm of the studied example (the
Hough transform). Then in section 5 some transfor-
mation steps applied on this example will be shown.
Finally, section 6 draws some conclusions based on the
results obtained from the example.

2 A subset of Silage

Silage is an applicative (functional) behavioral
specification language especially suited for DSP ap-
plications [4]. During the first stage of the specifi-
cation of a DSP algorithm into a Silage description,
the user should not be bothered by efficiency crite-

ria, but should have an as simple and clear as possible
description of the specification. The only concern of
the designer at this stage should be the correctness of
the specification. In the next design phase, the de-
signer will optimise the specification using a sequence
of correctness preserving transformations. In this way
the specification is optimised in terms of the architec-
ture of the automatic silicon compiler used in the next
stage. (highly multiplexed, lowly multiplexed, regular
array) [1].

In order to ensure the correctness of the transfor-
mations, an unambiguous meaning of all constructs in
Silage should be given. Work is going on in defining
the semantics of Silage in terms of a proof assistant
HOL [2][3]. With the semantics of the Silage con-
structs correctness of transformations can be proven.
In a first step, a subset of Silage is chosen. The main
difference between the subset and Silage is the explicit
appecarance of dependencies in the subset, while Silage
leaves dependencies implicit. The explicit appearance
of dependencies in the subset gives the user a better
insight in the efficiency of the description and transfar-
mation laws are more easily derived. The dependen-
cies are made explicit by introducing two combinators
"seq” and "par”. "Seq” gives a strict (sequential) oz-
der to the following declarations. A "par” combinator
is used when the declarations do not depend on each
other and can be executed in any order.

c.g.
seq (
x =3;
y = x + b);
par (
x =3
y=4+5);

Loops are just a way of grouping several statements.
A loop is a shorthand notation for the expansion of the
loop.

e.g
seq (i: 0..3):
x[i] = x[i—1] + S{i];

is equivalent to:

seq (
x[0] = x[-1] + S[0];
x[1] = x[0] + S[1];
x[2] = x[1] + S[2);
x(3] = x[2] + S[3]);

The abstract syntax of the subset is given in fig 1.

d == (declaration)

| (s=¢) (equation)

| (seq dl d2) (sequential composition)

| (par dl d2) (parallel composition)
e = (expression)

| s (selector)

| s@n (delayed selector)

| el *e2 (* arithmetic operator)
s u= (selector)

x (variable)
| sfi] (subscript)

Figure 1: abstract syntax

8 Transformations

Based on the syntax given in the previous sec-
tion, transformation laws can be defined. Future
work will be the integration of these transformations
in the proof assistant HOL to prove the correctness
of the transformations and to make them available
in a library with correctness preserving transforma-
tions. In this paper, some examples of simple trans-
formations are given whose correctness constraints are
ecasily found. Future work will be the integration of
these transformations in an interactive tool capable of
executing the transformations and the connection to
HOL. First some definitions will be given. Then a list
with a set of transformations will be presented.

o Transformations are described by inference rules. A
term above the line can be rewritten in the term
below the line when the constraints (between square

brackets) are fulfilled.

e For each declaration d, left d is defined as the set of
all selectors (fig. 1) occurring at the left-side in all
declarations d, and right d is defined as the set of
all selectors occurring at the right-side in d.

e.g.
5=Xx+y;
leftd = =
right d = x,y

e d[i]is a declaration d where i is an index used within

d.

{1) the order of declarations in a par construct is unim-
portant. A par construct is a commutative construc-
tor.

pardld2
pard2dl

(2) a par construct is an associative constructor.

par (par d1d2)d3
par dl (par d2d3)

(3) if no selector that is consumed in d2 is produced
in d1, then the order of d1 and d2 is independent and
the seq construct can be replaced by a par construct.

2242 Nefu(d) N right(d) = {1

(4) a seq construct is an associative constructor.

scq (scqdld2)d3
seq dl (seqd2d3)

(5) loop folding

With loop folding, pipelining can be introduced in the
execution of loop bodies. One declaration is shifted to
the previous iteration while the other iteration stays
in the same iteration.

seq(i:z.y)
seq d1[i] d2[i]
seq(dl[z];
seq(i:z+1l.y)::
seq d2[i — 1] d1[i];
d2(y])

(6) associativity 1

The algebraic property of associativity gives the pos-
sibility to reverse the dependencies. f and g are func-
tions dependent on the iterator i and resulting in an
expression. Initialisation of s has changed but is not
shown. Intermediate values differ from original values
of s and should not be necessary at other places in the
program. The final result is s[0] instead of s[N].

seq(i:0..N)::
s[i] = £(i)*9(3)
seq(i:0..N)::
SN il = F(— iy*g(N — i)

[* is assoc]

(7) associativity 2

This is a transformation like transformation 6. The
difference is in the two (instead of one) nested loops. f
and g are functions dependent of both iterators i and j
and result in an expression. The same remarks can be

made concerning initialisation, use of s at other places

and the final result.

seq(i:0..N):
seq(j :0.M)::
sli][j] = £(3,3)*g(i7);
seq(i: 0..N)::
seq(j :0..M)::
s{N-i|[M-j] = f(N-i, M-j)*g(N-i, M-j);

[* is assoc]

(8) A par loop can be executed in any order. Because
of this the description of the loop can be reversed.
par(i:0..N): dfi]
par(i:0.N):: d[N —i]

(9) loop merging

Two loops with the same iterator bounds can be taken
together in one loop when the production in the sec-
ond loop does not depend on productions in the first
loop that are not yet produced.

seq (seq(i:z..y) = d1fi];
seq(j : z..y) 2 d2[j};)
seq(i:2.y) =
seq d1[i] d2[i]
Vi (7 > i) rightd2[i] Nleftdl[j] = {}]

(10) iterator splitting
An iterator can be split into a small loop that is within
another loop.

seq (i:z.y) : dfi]
seq(j:0.m—1) =
seq(i:z+b*j.a+b—1+bxj): dfi;

l+y—~2z=>bxn]

(11) loop interchanging
Dependent on the dependencies in the body of a loop,
the order of two nested loops can be interchanged.

seq(i:0..N) =
seq(j:0..M) :: d[i,j];

seq(j : 0.M)::
seq(i:0..N):: d[i,j];

[Vh,j (k <) A(U> §) ¢ (rightdfijlnleftdlk]]= {})]

Some transformation rules can be derived from
other rules. An example is dependency reversal.

(12) dependency reversal

In this transformation the order of dataflow in a loop
of associative operations is reversed. This rule can be
derived by executing laws 8,3,7,11,8 and 3. Conditions
for this transformation are derived from the transfor-
mation laws defining this transformation.

seq(i:0..N) ::

seq(j : 0..M)

s[i][j] = f(i-a, j-b)*g(s,7);

law3

law8

lawll

law7

lawd

law8
seq(j:0.M)::

seq(i: 0..N):
alil[j] = f(i+a,j+b)*g(i,5);

4 The Hough transform

The method is demonstrated by the optimization
of the Hough algorithm in terms of a regular array
compiler (Cathedral 4 [6]). Although not all steps are
shown, they are all described in transformation laws.
The Hough transform is a projection based technique
for curve detection in images [7]. An important use of
the Hough transform is in applications for straight line
detection. In the Hough transform straight lines are
identified by determining the total number of image
feature points on discrete projection lines covering the
image. The following equation describes this process:

PO(P) = Z f(zliyl) (1)

(®a .)ELa(8,p)

The function f returns a 1 if the pixel at coordinate
(#.,y.) has a value which indicates an image feature
point and a 0 otherwise. The line L4(8, p) represents
an approximation of a straight line. The resulting pro-
jection value Py(p) equals the number of image feature
points on line Ly(8,p). Py(p) gives a measure of the
probability that a line L4(8, p) is present on the image.
This information can be used to identify objects.

4.1 Specification

The initial specification of the Hough transform is
made according to the regularity exhibited in the im-
age space (fig 2). In the first two loops initialization
is done, while the last two loops give the final result.
In the third loop the calculations are done.
Specification:

o par (i: 0.N—1):
xfi+1]{-1] = 0;

par (p : 1.N—1)::
x[N][p—1] = 0;

seq (p: 0..N—1)::
par (i: 0.N—1)::
x[i][p] = x[i+1]{p—1] + I{i][p];

par (p : 0..N—1)::
line[p] = x[0][p];

par (i : 1.N-1):
line[i+N—1] = x[i][N—1];

Figure 2: lines in i,p image space

Like many algorithms and implementation propos-
als for the Hough transform this specification depends
on the regularity the transformation exhibits in the
image space. As a consequence, it requires as many
as N to N processing elements (PE’s) (for an image
of NxN pixels) detecting lines of 45 degrees and an
exorbitant I/O bandwidth. A possible optimization,
is the mapping of the p axis on the time axis, resulting
in N PE’s and still a high I/Q bandwidth.

5 Transformation Steps

In this section some transformation steps that will
lead to an optimized description are described. Opti-
migation is done in terms of memory requirements,
I/O requirements and complexity of the processing
clements (PE’s). For readability and simplicity rea-
sons neither the whole description nor all steps will be

shown fully.

Purpose is to obtain a description in which input
pixels are consumed in scan bands, resulting in a lower
I/O bandwidth, less memory requirements and less
PE’s.

6.1 dependency reversal

As a first step, the order of the dependencies is re-
versed. Transformation law 12 is being used. The as-
sociativity of the summator in the loop body is used to
reverse the direction in which the image is traversed.
Result is the description shown below (initialisations
and finalisation are skipped). The order in which the
loops are traversed is interchanged, and the direction
of the dependencies is reversed. Fig 3 shows the re-
sulting data flow.

Figure 3: dataflow in i,p image space

seq (i: 0..N-—1)::
par (p: 0.N—1):
x[i][p] = x[i~1][p+1] + I[i][p];

5.2 iterator splitting

In this step the scan bands are introduced. The i
axis is split into (N/n) bands "bc” of n pixels high
according to transformation law 10. In the resulting
description the image is scanned in bands that are
traversed in n rows (fig 4).

seq (be : 0..(N/n)—1)::
seq (i: 0+bc*n..n—1+bc*n):
par (p : 0.N-1):
x[i][p] = x[i—1][p+1] + Ii][p];

Figure 4: dataflow in i,p image space

6.3 dependency reversal 2

To diminish the number of necessary process ele-
ments (PE’s), the row oriented traversal (N PE’s) will
be transformed in a column oriented traversal of the
bands. Again a dependency reversal transformation
(12) is applied, but this time without affecting the or-
dering of the scanbands (bc), only the ordering within
the bands is reversed. This results in a traversal of
the image in bands that are traversed columnwise (fig

5).

Figure 5: dataflow in i,p image space

seq (be : 0..(N/n)—1):
seq (p : 0..N—1)::
par (i: 0.n—1):
x[be]fi+be*n](p] =
x[bc][i4+bc*n+1][p--1] + I[i+bc*n][p];

5.4 flnal result

Other transformations like loop-folding (5) and
loop-merging (9) have been applied in other steps. Fi-
nally a description could be derived consisting of an
array of process elements "PE”, a register "inter” stor-
ing intermediate values of the computations, and an
output array "out” storing the results of scanning the
image. Instead of N combined process/memory ele-
ments now only n process elements are necessary. I/0
requirements did improve by the same factor by intro-
ducing the scan bands.

inker

Figure 6: resulting implementation

6 Conclusions

In this paper a gradual improvement of an algo-
rithm is shown. The improvements are done in small
transformation steps, described in transformation laws
that are based on the abstract syntax of the chosen
subset of Silage. Intermediate results very often result
in large descriptions most of the time caused by initial-
isation or finalizsation of new variables or by unfolding
of loops. In this report these parts of the description
are skipped for readability reasons. An interactive sys-
tem should be able to make the same abstraction to
prevent the designer for getting to much unnecessary
details. Using an interactive tool to do these transfor-
mations could prevent a lot of work (and faults) while
still being able to use directly the ideas and experi-
ence of the designer. The example of the optimisa-
tion of the Hough transform shows the usability of an
interactive tool giving the designer the possibility to
do his ’own’ transformations and make a trade off in

I/0, memory requirements and datapaths at an early
stage in a consistent way. Future work will be in the
description of the semantics of Silage, the description
of more transformations that will be imbedded in an
interactive design system.

References

(1] H.De Man, F.Catthoor, G.Goossens, J.Van Meer-
bergen, J.Rabaey, J.Huisken, “Architecture-driven
synthesis techniques for mapping digital signal
processing algorithms into silicon”, special issue on
comp. -aided design of Proc. of the IEEE, Vol.78,
No.2, pp.319-335, Feb. 1990

[2] A. Gordon, "The definition of Tiny—Silage”,
Cheops Period progress Report PPR-2, 1991

[3] M. Gordon, "HOL: A Proof Generating Sys-
tem for Higher Order Logic”, VLSI Specifiac-
tion, Verification and Synthesis, Ed. G.Birtwistle
and P.A.Subrahmanyam (Academic Pres, Boston,
1988), pp 78-127

[4] P.N.Hilfinger, J.Rabaey, D.Genin, C.Scheers,
H.De Man, “DSP specification using the Silage
language”, Proc. Int. Conf. on Acoustics, Speech
and Signal Processing, ‘Albuguerque, NM, April
1990

[5] A.A.J.de Lange, AJ. van der Hoeven, E.F. De-
prettere, P.M. Dewilde, "HIFI: An Object Ori-
ented System for the Structural Synthesis of Signal
Processing Algorihms ,and the VLSI Compilation
of Signal Flow Graphs”, IMEC-IFIP International
Workshop on Applied Formal Methods for Correct
VLSI Design, Nov 1989, pp {62-481

[6) M.F.X.B. van Swaaij, J. Rosseel, F.V.M.
Catthoor, H.J. De Man, "Synthesis of ASIC Regu-
lar Arrays for real-time image processing systems”,
to be pubdlished in Journal of VLSI Signal Process-
ing

[7] M.F.X.B. van Swaaij, F.V.M. Catthoor, H.J.
De Man, "Deriving ASIC architectures for the
Hough transform”, Parallel Computing 16 (1990)
118—121 North Holland

