
Cathedral-Il:
A Silicon Compiler
fo, Digital S,gnal
Processing
4. D, Man, J. Rabaey, p. Six, and L. Claesen
IMEC

WrH;l',',"?:l"i.iiil;
terms as a software system support-
ing chip ,layout synthesis starting
from a behavioral description at th6
algorithmic level. However, stan-
dardization beyond this simple
definition can be risky. We believe
that "the" silicon compiler simply
cannot exist, any more than ,,the,
software compiler can exist. lt is this
belief that led us to develop an
application-specific si licon compiler
-that is, a compiler necessarily tied
to a particular application, in this
case, digital signal processing.

Our compiler, called Cathedral-l l,
is based on what we call a "meet in
the middle" design method. lts
name describes the separation of
system design and reusable silicon
design and the gradual move toward

a middle ground during the synthe-
sis process.

The specific function of Cathedral-
ll is to synthesize synchronous multi-
processor chips for digital signal
processing. lt was developed follow-
ing a series of five steps:

1. Define a wide, but concise,
class of system design appli-
cations.

2. Define, based on manual de-
sign exercises, a target silicon
architecture and its associated
layout style.

3. Define a design strategy based
on available designer skills.

4. Define the behavioral language
and the silicon modules.

5. Then and only then develop
the CAD tools, with emphasis
on the "D" and the ,,A.,,

EI
-/ he article describes the status of
work at IMEC on the Cathedral-ll
silicon compiler. The compiler was
developed to synthesize synchronous
multiprocessor system chips for digi-
tal signal processing. lt is a continua-
tion of work on the Cathedral-l
operational silicon compiler for bit-
serial digital filters.

Cathedral-ll is based on a "meet in
the middle" design method that en-
courages a total separation between
system design and reusable silicon
design. The CAD system includes a

rule-based synthesis program, a pro-
cedural program, and a controller
synthesis environmbnt. Processors are
synthesized in terms of modules
called from automated reusable
module generators. Chip layout is

done on a floor planner, An expert
subsystem verifies correctness during
silicon design and generates func-
tional and timing models for verifica-
tion at the module and chip levels.

December 1986 07 10-7 47 5/86/ 12@{01331.00 c tEEE 13

THE APPLICATION
Cathedral-ll is based on complex

algorithms in digital signal process-
ing, which is playing an increasing
role in modern VLSI-based systems.
DSP spans data throughput from 1K
bps up to 100M bps. Therefore, even
this area is too wide for a single
design style or silicon compiler.

The low-throughput end of DSP is
well served by the new generations
of general-purpose DSP chips. How-
ever, while the first implementable
algorithms addressed such simple
cases as digital filtering, today's ap-
plications require throughput from
audio sample range up to 1M-bps
sampling rates. Consequently, we
need very high precision or highly
complex algorithms involving block
data processing, matrix manipula-
tions, multiple data rates, and a lot
of decision making besides number
crunching. Examples are digital
audio, speech processing, smart
modems, and robotics. Also, these
applications would be a lot more
attractive if they included adaptable
l/O periphery on the same chip.

Ceneral-purpose digital signal
processors are not very well-suited
for the implementation of these
algorithms. On the other hand, a
full custom solution is too costly in
design time and, more important, in

time to enter a highly competitive
market.

Because of the highly specialized
nature of such algorithms, we
assume that the algorithm designer
is able to do the silicon implementa-
tion. Therefore Cathedral-ll ad-
dresses highly complex, block-
oriented DSP algorithms in the
audio to near video frequency
range.

Figure 1 shows a pitch extraction
algorithm for speech.r This example
has been used to study the design
process and to define the tools in
Cathedral-ll. Real and imaginary
parts of blocks of 64 frequency com-
ponents from a discrete Fourier
transform processor are first trans-
formed into an amplitude spectrum.
By averaging, a threshold is com-
puted to eli minate. irrelevant spectral
components. From the remainder,
the maxima in the spectrum are com-
puted and then compared to 49
sieves with meshes at octave dis-
tances. Finally, the best match is
computed as the pitch value. As the
figure shows, this problem, typical
for third-generation DSP algorithms,
naturally decomposes into a number
of subprocesses, which are fairly in-
'dependent of each other.

These algorithms give rise to
communication bottlenecks, which
occur from the accumulation of the
sequentially generated data needed
to create new samples for the next
subprocess. As Figure 1 shows, we
combat the problem by putting a
data storage element between two
subprocesses. Based on a careful
study of these effects we have there-
fore defined a target architecture in
which each subprocess is assigned
to a dedicated processor, and the
interprocessor communication, in its
most general form, is taken care of
by switched RAMs.

THE ARCHITECTARE
We have selected a flexible,

tailorable multiprocessor architec-
ture as the target for our design syn-
thesis. Thc architccture is flexible
enough to evolve into a single, gen-
eral processor at the lower end of
the frequency spectrum and into a
set of parallel, hard-wired data paths
at the upper end. As such, it spans
many applications-speech, audio,
robotics, telecommunications, and
image processing. The basic idea of
the proposed architecture is to add
enough flexibility to attack the three
basic bottlenecks that normally limit

llll

Amp. specb.
& hreshold
computation

B'
U

F

Amotituae I I la
ma"it" l,4u

computation f I f
Oplimal

harm. slero
determinat.

B
U
F

Pitch
estimat.

-+k

AtkI

T

k
4 t

lxl(a) x[41 xIsl
*

fieqrency

et
1I 8

ka

x[61x[31I x[21

u .64 64

\k" kt

Fundamental of
optimal sleve &

frequency values
Frequency

rralues
Fourler

(b) coefficienb
Threshold &

squared amplitudes

1. Typical example of a third-generation
analysis (a). The block structure of the algorithm (b) consists of independent processes, each of which is assigned to
a dedicated processor.

14 IEEE DESIGN & TEST

Figure 2. A multiprocessor architecture.

Figure 3. A custo
extraction algorithm in Figure 1.

processor path for processor 1 the, pitchside world is over an l/O frame that
can support a large range of l/O
protocols (parallel to serial, syn-
chronous to asynchronous).

Each processor consists 6f u d.di-
cated data path and a controller.
The data.path is optimized for the
task(s) it has to perform and is as-
sembled from a set of selected exe-
cution units (EXUs), interconnected
by a restricted number of cus-
tomized buses. Each EXU contains a
register file (of variable size) at its
input side. This structure makes it
possible to avoid the arithmetic and
data transfer bottlenecks. Studies
have shown that the following EXUs
are sufficient to span most of the
target application space :

o a general-purpose (but rather
inefficient) ALU/Shifr unit

o an address computation unit
(ACU) with modulo-counting
capabilities

o a parallel multiplier/accumu-
lator

o a parallel-serial divider
o a comparator (for max-min

computations)
o a scaler,/normalizer (for fixed-

point/f loating-point conver-
sions)

The first two units are general-
purpose blocks, while the others are
accelerators. All these units have
been designed with changeable
parameters and have been imple-
mented in the module generation

December 1986

data throughput in general-purpose
signal processors: arithmetic
throughput, congestion in data
transfer, and controller detays when
performing conditional operations
(frequent in third-generation
algorithms).

At the highest level, the proposed
architecture is composed of a-set of
concurrent operating processors.
Each executes one subtask of the
algorithm and is optimally tuned to
perform just that one task (Figure 2).
Each processor operates reiatively
independently of protocols, ex-
changing only data that is global
among processors.

Depending on the data exchange
rate and the amount of buffer
needed, different protocols can be
selected: synchronously switched
RAM buffers, FlFOs, or request- and
acknowledge-hased synchroniza-
tion. Communication with the out-

environ ment. Typical parameters are
word length, shift dimension, size of
register .files, and size of multiple
array.

An example of a processor data
path built with this strategy is shown
in Figure 3. lt is used to compute the
amplitude spectrum of a signal,
given the complex frequency
domain spectrum, and at the same
time to determine the maximum
amplitude. lt consists of three con-
current units: a multiplier/accumu-
lator, a comparator, and an ACU.
This data path can perform an ampli-
tude computation and a maximum
update in two cycles (average).

We chose a multibranch, micro-
code-based controller to control
data flow through the data path.
This structure can handle a large
span of algorithms flexibly and effi-
ciently. lt can support algorithms
that require heavy decision-making
as well as those that are repetitive.
Some EXUs can also have a local con-
troller to help reduce the complexity
and the size of the central controllei.
An example is the decoder of the
register files. Another controller is
needed at the highest level to con-
trol the flow of data between pro-
cessors and from the processors to
the outside world.

TIIE LANGUAGE
Different_ applications obviously

require different specification lan_
guages; a microprocessor designer
will use conceptual constructs dif-
ferent from those a modem designer
might consider. Therefor" *e 6aue
selected Silage,2 a language op-
timized for high-level descriftion of
signal processing algorithmi, as the
design language for Cathedrat-ll.

The basic object in Silage is the
signal, which is a vector whose com-
ponents are samples in the time
domain from infinity to actual time.
The basic operation is a functional
application of those signals. ln this
w1y, a Silage description of an algo-
rithm resembles a signal flow graph,
where nodes are instances oifunc-
tions and arcs are the signals. Silage
supports time domain operations
such as decimation and interpola-
tion and allows for the description of
equations, decisions, iterations,
hierarchy, and finite word-length
effects. The Silage description of ihe
algorithm implemented on the data
path of Figure 3 is given in Figure 4.

ln some cases, the designer may
want to pass some structural hints to
the compiler to guide the synthesis

15

CTRL

t/o lto
frams frame

MULT
ACC COMP ACU

bus2

busl bus3 bus4

func Amplitudespectrum(AIJ, BIf ; numS)
Ampl[, Max : numt6 =Degtn

Thresh[0] = 6;
Max = Thresh[64];
(i=1..54)
begin

rhreshlil: if (Ampt[i] _ Ampt[i])
. ThreshfLt;
ti;

enAmpllil
= num16 (AI;l*Alil + B[iJ*Blil);

end
pragma Processor (l,AmplitudeSpecrrum);

Figure 4.
tude and
the pitch

Silagedescription of ampti-
threshold computation in
extractor.

process..ln Silage, a construct called

^7i:1y*'is.provided
to pass this type

or tntormation.
A Silage simulator, based on de-rnand-driven simulation technioues.is currently under d"";i";;;;.

3:::^^11" system is successfuily
srmulated, synthesis can start.

fuIEETING IN
THE fuIIDDLE

EXUs of our target architecture. Thesltcon.primitives used at that levelare called modules. Design atih;system level consists or tra"nstaiing'i
:,ry1".r specification inro a structure
rnat rs a net/rst of module instances.
rracement and routing of layout in_
sta.nces of the modul", Ue.oln", tiiechip design.

Silicon modules are reusable. ln this
way- the costly investment in hieh-
performa_nce, advanced silicon telh_nology design is limited, and-the
cost is written off over as many de-
signs as possible.

Silicon- _modules are technolocv
adaptable. Silicon r"d"l"; ;r;;;:i
more complex than standard cells
a.no, to save even more in terms ofsilicon.design cost, these modules
must also be able to survive a num-
ber of technology updates.

level. Silicon designers compose, in
the .usual bottom_up fashion, [Sl_
level modules from functional builJ-
ing blocks, which in turn are com_
pose.d of logic leaf cells .iif,"
transistor level.

Hence,.both parties ,,meet
each

other in the middle,, of the design
abstraction levels. Scarce talent"is
optimally used and the design pro-
cess corresponds to the uiuat
patterns.

-
There are some fundamental de_

viations from classical design it tG
silicon and..system levels, fr;;;;
r nese.usually stem from the fact thatmodule generators are generally
software procedures ,atf,e, thainxed geometrical structures. Also,
we expect system designers to thinIat the algorithmic rather than the
structural level.

THE CAD SYSTEM
Module-design has a powerful de_
srgn environment. Silicon modules,

l:y,:r.? are not enjoyed by a par_ttcular foundry or CAD vendor.
)tnce the competitive edge between
system. houses will not be i" ih;technology but in the architectural
technique and in it, irpt"reni"_
tion,. we expect module'd"rig; ;;
reqqir-e a powerful design

"nu'iron_ment for a local team of-silic";;;_
signers. This may not yet be the
case, but we expect it to happen in
the future.

.^ln,rht, method, system design istop-down to the usual intermeiiate

Figure 6 shuws the CAD toolbox
u.sed in Cathedral-lt. The fG;;;
shows that in the middle of"th;
design abstraction is a separation
between the silicon ."0 tlniivri",
designers. The link between them is
a."-call" to a limited set of EXUs as
defined in the target architecture.

The system designer defines the
system at the behavioral tevel in
l:l"F:..Coupted ro this l.nsur!" i,
the high-level simulator to vErifithe
behavioral correctness of the ileo_
rithm. Using the throughpu,l."quf,"_
ments and a set of expert design

, lftgr choosing the application andoertntng the target architecture the
next step is to select a design strat_

lil:,I" are typicaily addresiing thuqutck-turnaround design of iom_
plex_ systems on chips with about
100,OOO devices. The'complexity-oi
the algorithms to be irpi"r"ritJ
rar exceeds that of the circuit or
::"1il,g logic gate leu"f. vor"ou"i
s.rnce silicon designers are so scarce,
we,cannot exploit the potential oi
such systems; unless they are directly
.9""-tJq":d,

bv .lh9 system engineers,
wrthout

detailed knowledgJ of sili
con implementation.

.Therefore, silicon design knowl_
edge. (at the micron 1"";i) ;;il;
1991tyea in reusabte,oart", ii-t["MSI/tSl level familiar to the r"rt"rn
designer.- Figure s sho*, a ;;;l_;
scneme that satisfies these requir-e_
ments. we call it meet_in_thu_iiddt"
design methodology, and it .an becnaracterized as follows :

System design is separated from sili-con design. The interface is locatedat the tevel of aritrrrnuiic-ziJgil
operator blocks, data storage, cJn_trolers, and l/O units. Thes6 are the

16

System
design

Floor plan

Procedural
module
design

System &
software

Layout circuit
soflware

engineers

Technology
engineers

-Func
Cell

Rect

Module

Gate

TR

'ldeet in he

Reg

sys

Processor

Sys chip

Lalout
technology rules

Topdown Bottom-up

Figure 5. .'Meet in the middlef' design methdology.

IEEE DESIGN & TEST

-', in
tst-
rild-
om-
the

ach
ign
tis
ro-
ual

rules, Silage code is first optimized
with respect to the functions of the
target architecture. The optimized
code is then compiled directly into
structure (a netlist in terms of the
limited set of predefined EXU silicon
modules). Clearly most of this syn-
thesis is dictated by the target archi-
tecture, and therefore quite a large
part of it is rule-based. tn Cathedrit-
ll, it was implemented in prolog,
which is discussed later.

We also, in principle, allow the
designer to specify the design at
intermediate levels, all the way down
to structure, but at the price of in-
creasing the amount of lower level
simulation, the redesign risk, and
the time to the market. When all
calls to the modules are successful,
the chip is ready for floor planning.
This can be done either interactively
or by automatic placement and
routing techniques.

ln Cathedral-ll, we include the
synthesis of the algorithm directly
into data paths and control logic.
That is, we are aiming at a true
silicon compiler, in contrast to most
commercial systems today, which are
limited to floor planning and to
module generation.

How does this scheme work? First,
just as in a software language com-
piler, success is intimately linked to
a clear definition of the set of
modules. Consequently, we must
generally limit the variability of the
modules and carefully consider the
application when choosing EXUs.

Second, in view of the evolving
technology, we cannot design in i
fixed technology but must be able
to adapt to technology changes.

Finally, we need a lot more in-
formation from a module generator
than just the layout view, which in
itself should consist of a bounding
box view, as well as a full layout
view. Other views include a func-
tional view, a timing view, and a test
view.

A functional view is an RTl-level
function, in case the design was
done at the structural level, requir-
ing simulation. Even if full synthesis
is used, designers will still want to
simulate the actual chip. This simu-
lation is possible in our system by
the Hilarics-Logmos program,3 which
is a register-transfer simulator that
allows modules to be included and

December 1986

1e-
he
er.
lat
llv
an
;Or

rk
re

rX

e
e
n

n

s

s

Figure 6. fhe CAD toolbox in Cathedral-il.

symbolic microcode descriptions to
be defined.

A timing yiew is necessary, since
although the synthesis compiler can
take first-order throughput require-
ments into account, it is only after
placement and routing that a full
performance check can be done.
. ln Cathedral-ll, we are following a
bottom-up hierarchical generati;n
of timing models in a knowledge-
based program, called Slocop, which
closely follows the composition pro-
cedure of a module. At the floor-
plan level, interconnection parasitics
are taken into account to check
global timing. lf unsatisfactory,
buffer sizes are adjusted. lf still not
satisfactory placement is changed,
or a.pragma is formed at the Silage
level to call for higher performanle
modules or to.increase parallelism
in the algorithm.

Finally, although it is not in the
actual Cathedral-ll version, a test
view is needed with each module.
We envision that most modules with
a high degree of structure wiil be
C-testable. That is, depending on
the particular structure, a small set

of word-length-independent pat_
terns will guarantee module test-
ability. .A test assembly program
would then be implemented ai the
level of the floor planner. For the
particular architecture, the program
would g-enerate total testability for
the whole chip.

ln contrast to the traditional Calma
type of fixed layout or even the
tiling of fixed cells, our design styJe
calls for modules to be written'is
procedures with adjustable param-
eters- Parameters range from simple
word length to conditional compo-
sition in terms of functional building
blocks or size of output buffers]
These orocedures should also gen-
erate the other views needed by-the
synthesis programs.

This style causes two problems.
First, because silicon designers will
confront the software more often,
and most are not trained to under-
stand the software, we will have to
hide the code generation as much
as possible..second, we must care-
fully restrict the set of modules-a
matter of carefully choosing EXUs
according to the architecture.

17

Behavior, algorithm

- optimizer

Compllr -+

Floor planner
& route

Test Timing
Verifiermodule

(Vpe,

Test
view

Module generating
program

mgdel

Modular generator
programming
environment

Technology
file

Expert rules

Expert rules

Out

System
designer

Silicon
people

based on a

description at
the
transfer
level

It is this careful selection of EXUs
from functional building blocks that
we feel is the key to making Cathe-
dral-ll feasible. lt makes just as much
sense as selecting a language before
constructing a compiler.

The selection is done in the
module generator environment.
EXUs are composed from functional
building blocks like adders, com-
parators, and registers, which are, in
turn, composed of logic cells.

Figure 7 shows the anatomy of the
module generator in Cathedral-ll.
The arrow types indicate clearly the
"create" (silicon designer), "gener-
ate" (call from silicon compiler), and
"adapt" (to technology rules) func-
tions needed for such a program-
ming design environment.

The Cathedral-ll module genera-
tion environment provides not only
the layout environment but also a

first version of an expert verification
systern. The verification system is

needed for the following tasks:

. to generate the functional/
timing and test models during
the "generate" phase

o to verify the modules during
the "create" and "adapt" design
phases

The design of a module is based on
a functional description at the
register-transfer level. This descrip-
tion (and its simulation) can be done
by the Hilarics-Logmos system.s lt is
the documentation link between the
system and the silicon designer.

ln a module generator, the con-
nectivity and relative placement of

cells must be procedural. Code must
be generated to procedurally com-
pose a module out of cells. Cathe-
dral-ll generates this code from
graphics definitions using a Lisp in-
terpretive programming environ-
ment. Only complex mathematical
relationships are directly pro-
grammed in [isp.

The primitive cells themselves are
designed by means of symbolic lay-
out followed by automatic compac-
tion, which also provides for auto-
matic intercell abutment and routing
facilities that can be called directly
from Lisp procedures. We also have
an efficient circuit extraction pro-
gram based on symbolic layout in-
formation. The advantage of sym-
bolic layout is that we can adapt the
system when the technology is

updated.
Finally, design experience is ac-

cumulated and verified in the verifi-
cation box. The box is, to a great
extent, also rule-based and uses the
concepts of expert debugging, rule-
driven simulation, and timing veri-
f ication.

Design synthesis
Architectural synthesis, as envi-

sioned in Cathedral-ll, is based on
two cornerstones:

o the targeting of the synthesis
toward a single (but flexible)
architecture, allowing for con-
siderable pruning of the search
space and making it possible to

, use dedicated optimization
techniques to exploit properties
of the architecture

. the use of the module genera-
tion environment as a module
knowledge database that can be
queried by the synthesis tools,
allowing design decisions to be
based on physical implementa-
tion details (speed, area, power)

This strategy avoids the inefficiency
of previously published design sys-
tems,4,s which attacked synthesis
prohlems in a prrrely top-down
fashion. These cornerstones are re-
flected in the outline of our synthe-
sis system, as presented in Figure L
It consists of several subtasks, which
were initially defined through a

a

a

Figure 7. The module generator software environment has three functions:
create (silicon), generate (system)' and adapt (technology).

IEEE DESIGN & TEST

i
I
I
I

t

i

i
i

I

t'

i.

I

r

I

I

t

i
I
t
t
I

t
I
I

t
t

t
It

t
ft
It
f

Test

Timing

Relative
placement

procedure

ilfi
a Extraction

o Verification

i Sequence

Expert
system

interconnecl
procedure

C€ll
build

Technology
description

eq.
Boolean eq.Sbuctural

logic(m, n)

Create rttt (Sl
Generats

-

(Sys)
Adapt s.r..r'tr*nt*r (Tech)

18

I

I
I

I
t
{
i
i

!

t

number of manual design exercises
on real industrial examples. These
exercises have shown that synthesis
is an iterative and interactive opti-
mization process. Therefore, we en-
vision an open design system that
allows the experienced designer to
interfere with synthesis at various
intermediate levels. Consequently,
we need entry points (description
languages) and verification means
(simulators) at all those levels.
However, user interference, should
be avoided as.much as possible, es-
pecially at the low levels, and the
system should be intelligent enough
to restrict the iteration loops to a
local level (if possible).

As Figure 8 shows, input to the
design system is Silage. The correct-
ness of this description can be veri-
fied using the Silage simulator. The
simulator outputs can also be used
as a reference to verify the effects of
further design steps.

Algorit hm por titioning
The first step in synthesis is to

partition the algorithm. The Silage
description is split into distinct sec-
tions, each of which is mapped onto
a separate processor. Each processor
is then synthesized independently
from the others, which is possible
because the interprocessor com-
munication protocols are transpar-
ent. The partitioning itself is based
on a number of often contradictory
observations, such as load balancing,
data transfer bottlenecks, cut-set
analysis, and computational require-
ments. ln most cases, however, an
educated guess can be made by
simple inspection. Therefore, we
have decided for the first version of
Cathedral-ll to leave the partitioning
to the user by means of pragma
statements in the Silage description.

Data path synthesis
The applicative description of

each processor is transformed into a
procedural one in two steps. First, a
customized data path is synthesized,
and the high-level operations are
mapped onto a set of register-trans-
fer-level (RTL) operations for this
data path (Figure 8). Second, the
optimal timing of the RTs is com-

puted. This is referred to as "micro-
program scheduling" ldiscussed
later). The intermediate RT language
has nonconf licting procedural (f ixed
architecture) and applicative (no ex-
plicit timing specification) prop-
erties.

The synthesis of a processor data
path includes seve?al tasks. A limited
number of EXUs are stored in the
library. Using this knowledge and
the throughput specifications, the
EXUs required to realize the Silage
operations are selected. Dedicated
bus connections between different
EXUs within a single processor are
also chosen.

Finally, the chosen EXUs are
stripped of unnecessary operators,
and internal parameter values are
assigned. These decisions are in-
fluenced by area and throughput
specifications, which determine the
choice between multiplication al-
ternatives (hard-wired or shift-add-
based multiplier) or concurrency
levels. During synthesis, Silage vari-
ables are assigned to data path
register files (containing multiple
storage fields). ln this way, the Silage
operations are transformed into RT
operqtions. The result is a "black
box" description of the controller,
which serves as input to the micro-
program scheduler.

An automated synthesis tool sup-
ported by knowledge-based tech-
niques is under development. ln a
first pass, the Silage code is prepro-
cessed. This includes a simplification
of the source code and a number of
local transformations (loop handling,
reorderi.ng of singular variables,
etc.). The preprocessor also preas-
signs operations to EXUs. These pre-
assignments are based on a global
overview of the problem and are
used to guide the data path mapper.
The mapping tool itself, imple-
mented in Prolog, tries to unify the
high-level .silage equations with
internal low-level equations, each
of which represents a fundamental
operation of an available EXU. Suc-
cessful unification may mean fulfill-
ing certain conditions, under the
form of new high-level equations.
Synthesis is governed by a program
called inference engine, which ad-
vises on the unification rule most
appropriate to a given high-level
equation. The architectural proper-

ties of the EXUs are stored as a set of
rules, which keep the tool flexible
with respect to architectural
changes.

Micr opr o gr am scheduling
Register transfers are f u ndamental

operations from a control point of
view, since each is to be realized in a
single machine cycle. ln micropro-
gram scheduling, the optimal map-
ping of RT operations to time
(machine cycles) is computed (op-
timal meaning with a globally mini-
mal cycle count). Conditional RTs
and FOR constructs are allowed in
the RT language. A FOR loop can be
regarded as a pragma.by which the
designer prescribes a limited order-
ing of operations. Loops are
straightforwardly mapped into the
microcode. The algorithms are
schcdulcd statically at compile time,
as opposed to dynamically at run-
time, thus saving complex data-
driven control protocols. The
scheduling tool should take into
account all implications of the actual
controller structure, such as the
amount of pipelining and the type
of controller logic, as well as all
restrictions to prevent conflicts
between RTs. Therefore, a prelimi-
nary choice between alternative con-
troller types is required (we have
selected the multibranch, micro-
code-based controller).

From the scheduling constraints
(data precedence constraints, re-
source conflict constraints, and con-
troller pipelining constraints), a

general integer linear program (lLP)
can be set up, which can be solved
using standard procedures. Sched-
uling is NP-complete; therefore
large problems require the assist-
ance or replacement of the ILP
technique by heuristics. After
analyzing the lifetime of the register
file variables, the optimal schedule
is converted into a readable sym-
bolic microcode.

After scheduling is completed, the
cycle count is evaluated, which may
force backtracking to the data path
synthesis level. Excessive cycle
counts may lead to faster implemen-
tation schemes or changes of the
concurrency level, while low cycle
counts may suggest cheaper data
path structures.

December 1986 19

descdpton DSP - algoithm

Behavloral
level

simuladon

Slmuhlionhbles
communlcalion

System nedist
& spec.

DSP - p€r prcogssorSilage

EXU
LIB

Processor netlist
RTLdesqiption DSP -

algorithm per processor
Microprogram
scheduling

Contoller cfioics

Symbolic microcodeRTL
simulaUon

tables
count

Conbdler psr
conboller

m

Figure 8.
Overview of

functions,
languages,
and simu-

lators in the
Cathedral-ll

synthesis
process.

Figure 9. Overview of
the datapath synthesis
process: translation of

Silage into structure
and register transfer

representation.

Controller synthesis

From the symbolic microcode, the
controller decoding logic is synthe-
sized. To feasibly compare controller
realizations (microcode ROM-based
controllers, multilevel logic imple-
mentations, PlA-based sequencers,
etc.), we have a unified environment
with a single input language. This
environment provides a library of
utilities for synthesis, optimization,
and layout generation of controller
structures such as state assi8nment,
logic minimization, partitioning, and
assembly of regular arrays using
symbolic layout techniques. ln this
way, new controller architectures
are easily introduced. A prototype
version of the environment is being
implemented using the drultibranch
controller as a test case.

This synthesis system has been
used to generate the design of a

high-quality pitch tracker for audio
systems (Figrrre 2). The resrrlt (Figrrre
9) is a tracker with four processors
that occupies only 37 mm2 in a 3p
CMOS process.

lunc amplitudeSpectrum (lr, li: num[]) ampl : num[]; thresh: num =
begin

max[o] =0'
ampl[65] :0;
(i :: 1 . .64) max, ampl =
begin

, ampllil: square(lrlil) + square(lilil);
. max[i]:il(ampl[i] >max[i-1]) -amptlil ll maxli- 1l ti;

end
thresh = max[64];

snd

t/lfT
1

ACU

4

BIJS 1

BIJS2BUS 3

2

PR0GRAM amplitudeSpeckum;
BEGIN

thresh:ram2 - max[64]:reg6 ; comp = pass6, bus2 = thresh;
ampl[65]:reg6 -'0':reg6:
ampl[0]:reg6 -'0':reg6;

FOR i:= 1

BEGIN
64 HOLDS

lr[i]:reg2 - lr[i]:raml I raml =
fr[i]:regl - lr[i]:ram1 i raml :

read, busl = lrlil;
read, busl = lrlil;

ENO
ENO.

RT descriptionProcessor datapalh \

Silage
description

20 IEEE DESIGN & TEST

r, the
rthe-
oller
ased
rple-
:ers,
lent
This
rol
ion,
rller
3nt,
lnd
ing
this
res
tpe
ing
rch

Mo&tle generotor
To.define a module generator, we

need a system that e--nable, ,i to
9grjgl the teaf cett, anJ pr."ij"
high-level commands to

"rpi"rr-ih"composition of a module a! a func-
tion of the parameters. Since the
composition rules may be as com-
plex as

"Fit a number of leaf cells so that
their terminals connect bV alui_
ment"

or
"Route a set of nets,,

the. algorithms to support these
high-level commands -irt .fro Uuprovided in an integrated en_
vironment.

, Many existing module generators
have a delay between definition and
ex€cution, introduced by the com_
pilation and linking stepj of the tra-
ditional .programming languages
rney are implemented in. To over_
come this problem, we designed an
interactive environment thit gives
graphicalfeedback each time

"
Jorn_

position rule of the module genera_
tor is defined, allowing mistlkes to
be corrected immediaiely after they
were made.

- To describe a module we capture
four types of information.

Structural: The submodules
Topological: The relative place_

ment of the submodules
Connectivityr How the sub_

modules must be interconnected
and

.wh.ere- the input and output
terminals of a module are

Construction: How submodules
fit together and which intercon-
nections are realized by abutment
or routing.

ln the first version of the module
generator in Cathedral-ll, called
MGE, structural and topological
information is entered at ihe ;me
time. Components are added on grid
points to represent their relative
ordering but not their final coordi-
nates. The command (ADD-COMP
ff tt . . N I 1), for example, adds a
horizontal row of length N of FA
cells. As Figure 10 shows, the cells
are represented by their outline at
this stage, resulting in a clear picture
and fast displai,.

December 1986

en
ta
lio
rre
)rs
lp

Figure 10. Struclure and connections of a ripple adder.

_ Connections are also easily de_
fined by specifying a net name, and
the list of terminalJof the connected
components. The command (ADD_
coN (RtPPLE l2.. Nl) (couT
1,1;..(- | 1)l 1) (ctN l/..Nt r))
oelrnes the connections of the ripple
signals in the adder example.'i*lo
assumption is made at this stage as

to how the connections will be
realized.

, lndices of array-like structures can
be expressions; (N_1) is the last
ripple signal, for example. MCE
allows us to associate an expression
with each horizontal or vertical grid
line on the display (see x-axis in
Figure 10). The creator can then, by

.(NEUAD.Ot-P 6 Io

'5

4

3

2

1

p
lf+2 N+3e 3 . -._ -!-_ N:r t{ N+l

I

(a)

(b)

Figure 11. A set of symbolic cells before (a) and after (b) automatic fitting.

2'l

'rn#

Figure 1 2. Add-Shift-Gompare
tor environment

modulc es gencrated by the nrodule genela_

The final step of an editing session
in MCE is to save the commands
into the .module generator pro-
cedure. This is done automatically
each time the designer stops work-
ing on a module. From this pro-
cedure, modules can be generated
for any set of parameteis in the
allowed range.

To. avoid inventing a complete
new language and to take advantage
qf ,!_" interpretative nature of tisi,
the first version of the module gen-
erator environment was imple_
mented as a superset of Lisp. Foi the
more computationally intensive
algorithms like compaction and
routing, Pascal and C programs are
called from [isp. The system has
been_tested. through the design of
five EXUs defined for a parti-cular
a.rchitecture. The resulting layout of
the add-shift-compar€ is-shown in
Figure 12.

The use of lisp as the basis of the
MGE provides the creator with alt
the flexibility of a high-level pro_
gramming language to deiine
module generators that require
more complex composition pro_
cedures. An example is the com_
parator shown in Figure 13.

simply placing cells and pointing at
terminals graphically, automaticaily
generate the Lisp procedure. This is
the first step towards graphical
definition of module glnerator
code.

For the design of the leaf cells we
use_ Cameleon, our symbolic layout
and compaction program.6 Layouts
are assembled from point elements
like transistors and contacts, from
interconnecting wires, and from
areas that need defining, for exam_
ple, the n-well or p-we1l in CMOS
technology. The layout is then
compacted, using a constraint graph
and a longest path algorithir, 'to
minimize cell area. The program
ensures that the layout is'coirect
with respect to the design rules, as
specified in a technology fite, also
taking into account extra constraints
the user may have specified. Tech_
nology changes are easity accommo_
dated by changing the values of
symbolic constants, like Ml N-pOty_
WIDTH or MtN-GATE-OVERHANC,
in the technology file and ,".orn_
pacting the cell.

. Construction rules specify how
the real layout of the modull must

be made starting from the topology,
the connections, and the baslc cel-ls.
Either the cells fit on each other and
are pushed together, or routing must
be added to make the connections.
Both options are available in MGE.
The ROUTER command allows the
user to define a horizontal or vertical
channel and the nets that have to be
routed. River and channel routers
are available.,The COMpACT com-
mand moves components together
in the x or y direction as speiified.
The designer can combine these
construction rules to first route some
channels and then compact the
globalmodule.

ln a traditional layout environ_
ment, cells can be abutted only
while designing the layout of a celi.
ln our system, the designer can ex_
press this requirement by the com_
mand (ABUT XORY (CELL-UST)).
The module generator environment
will then call the compactor, load
the cells specified in CiLt:ttst and
compact the internals of the cells,
taking into account the constrainti
imposed by their neighbors. Figures
l1a and l1b show a set of cells
before and after applying the ABUT
command.

Module verification
One of the problems with module

generators is how to prove their cor-
rectness. The traditional way is by
simulation. However, simulation is i
subjective test method that dependi
entirely on the patterns defined by
the. designer to detect

"^p".t"dproblems. tt is costly in CpiJ time
and is not guaranteed to capture un_
expected problems.

. To overcome these drawbacks we
have. developed Dialog,T ;-;;i-;;
rute-based analysis tools that allows
us to detect violations against basic
design principles. We

-haue
also'developed Slocop for timins analv_

sis. These tools are based
-on

the
Lisp-like Lextoc language,T which
provtctes powerful facilities to ex_press rules about MOS circuits.
Figure 14 gives an overview of the
verification system.

We begin with MOS network ex_
traction. To verify the design we first
nave to extract from the layout a

IEEE DESIGN & TEST
22

t

t

t

I

model for the cell on the circuit
level. This can be done very easily,
since the stick diagram contains the
devices and the interconnection
wires. The internode capacitances
can be found by detecting the points
where elements cross.

Next from the extracted MOS
transistor network the user can de-
compile and check clocking rules.
The system first determines if the
network belongs to the class of valid
circuit configurations, such as static
CMOS, using passive multiplexing
trees and prescribed registers. All
parts of the circuit violating these
rules are flagged as errors. The
checking is done by partitioning the
network into the basic subnetworks
that are possible in a given design
style. The description of the
topology of those subnetworks
(static CMOS gates, pass transistor
tress with or without bleeder tran-
sistors, etc.) resides in a knowledge
base. This knowledge base is written
in Lextoc. Therefore, in contrast to
Crystal,s for example, our system is

easily extended with new types of
subnetworks, and is applicable to
any definable class of digital MOS
circuits (Figure 15).

A high-level check on the clock-
ing is now done. Starting from the
primary clock information, the de-
rived clocks are found, and latches
are detected and separated from
combinatorial logic. By assigning the
appropriate properties to the nodes
in the network, illegal combinations
are detected and rePorted. For
example,

A derived clock can only be
formed with signals latched on
the same clock phase

A latch data input must not be a
primary clock

Figure 16 shows the response of
Dialog to a request to verify a clock-
ing rule. The system has identified
and highlighted that a loop exists
containing only a single clock phase,
which could cause a race problem.

From the primitive circuits found
in the previous step, we now search

for illegal configurations like opens,
shorts, and odd NMOS and PMOS
combinations. All acceptable cir-
cuits are checked to see if theY can

guarantee correct logic levels. This
check is not restricted to static situa-
tions but includes dynamic effects
like charge redistribution. An exam-
ple of a possible problem circuit
and the rule involved in the check-
ing procedure are in Figure 17.

To diagnose an error on node B

caused by charge sharing we have to
find the combination of input signals
that creates the worst case con-
figuration. This is done by the
SETUP-INPUTS procedure. Using
these inputs, the part of the circuit

5

Figure 13. tnterpretively generated representation of the structure of a
six-bit comparator (a); the layout of the slx-blt comparator (b), ln whlch
some cells are connected via abutment, some with routing; and the layout
of an eight-bit comparator (cL which demonstrates the flexibility of the
module generator.

Figure 14. Overview of the Dialog expert verification system.

'Gulded simuladon'

Layout

MOSNetwork

Ebcfrical
Rule
base

Timing

Cut
Test

Gdlical pah Compare

cir<ruit

Logic Compare
DFT rule cfteck
Clock rules
Delay

Cap. noise
Gharye rcd.
Open/short
Spikes

December 1986 23

(d.!rul. char9.-rh.rinE-nor.l ()('if ((prop.rty lib.r-.dln .I)
(!rl.tlo Imod.! nt.l)
(ratttid outad.a nl.2)
(Pro9.rty arhr-Pdyo .2)(r.l.tlo qtnd.r o2.l)(!.l..tls <qo,! cq al)
(r.lrt ld lniod.t nl .ce)

)
'th6

(
(tlal.t..l n2 l)

('il
(
(.t @r.alb.t (> t.0) pl)
(.ttribqt. wlt.g. (< a.O) n2

)
'ths
((!rrlgn-idlo ch.!g.-rhring-Gror cqr)
(tru. (loat'phr. r.-dlntt6 r' (trttc. n!)))r))

(a)

a

9r,

(b)

cq)
cq)

(r.l.tlil lddd.r n2
(r.latld lsdar nl

FjSure 15. A sa_mple of the allowed transistor configura-
tion stored in the rule base.

Figure 17. Rule to detect charge sharing (a) and possible
problem circuit (b).

-qtl,--'l--'l-ol- "q'l..'l.=.'

Figure lG Simple clock phase loop detected by Dialog. Figure 1& Hierarchical highlighting of critical delay path
by Slocop.

under investigation is simulated on
the circuit level using the SIMMy
module.e The output waveforms of
the simulation are then checked to
see if the voltage on node N2 drops
below 3.0 volts. lf it does, a message
is issued telling the designer to ex-
pect charge-sharing problems on
node N2. lf the designer does nor
believe this diagnosis, a facility is
called to display the conditions
creating the problem situation and
explain by what successive steps it
was detected.

Even if the circuit has passed all
the general rules, we must check
that it does not violate the timing
specifications for the module. From
the primary clock specifications, the
edges of the clock inputs for the
latches are computed and the maxi-

24

mum allowed delay of the combina-
torial blocks is calculated,

Slocop, the timing verification
program, uses local circuit simula-
tion to calculate delays. This method
is more time consuming than RC cal-
culations, but it is very reliable,
much more accurate, and applicable
to any type of subnetwork that can
be described in the program's
knowledge base. For global analysis,
graph-based algorithms are used,
since the large number of paths
makes an exhaustive path search im-
possible. Figure 18 gives a multiwin-
dow output of Slocop, showing the
hierarchical annotation of the criti-
cal path of an adder module. Slocop
uses a critical path algorithm that
provides the longest signal propaga-
tion paths from inputs to outputs.

CONCLUSION
We have described the concepts

and status of the development of an
application-specific silicon compi ler
for highly complex DSp algorithms.

We have shown that development
of a silicon compiler is only possible
after carefully limiting the target
silicon architecture to a restricGd
application area. Only then can a
CAD system be developed. Most
parts of the synthesis and module
generation system have been suc-
cessfully prototyped, and the first
large chip designs are now being
undertaken. The use of the Al prol
gramming techniques is becoming
more and more important in thii
activity.

Behavioral silicon compilation as
well as the module generators to

IEEE DESIGN & TEST

support it will require new skills
from both system and silicon de-
signers. lt remains to be seen how
thiy will react to it in the future. Ei

ACKNOWLEDGMENTS
We recognize contributions from

many people, but most of all from all the,
members of the IMEC VSDM group, par-
ticularly K. Croes, L. Rijnders, l. Vande-
weerd, M. Pauwels, F. Catthoor, M. Bar-
tholomeus, G. Goossens, J. Vanhoof, E,

Vanden Meersch, and l. Bolsens.
Like Cathedral-1, this work was spon-

sored by the Economic Community's
Esprit 97 project, which involves con-
ributions from IMEC, Philips, Siemens
AG, Bell Telephone Manufacturing,
Silvar-Lisco, and Ruhr University of
Bochum.

We recognize contrihutions from all
our Esprit 97 partners, especially Philips,
Siemens, Bell, and Silvar-Lisco, particu-
larly J. Van Meerbergen of Philips who
greatly influenced Cathedral-ll's target
architecture.

REFERENCES
1. R, Sluyter, H. Kotmans, and A. Van Leeu-

waarden, "A Novel Method for Pitch
Extraction from Speech and a Hardware
Model Applicable to Vocoder Systems,"
Proc. IEEE ICASSP Conf., Apr. 1980,
pp.45-,18.

2. P. Hilfinger, "A High-Level Language
and Silicon Compiler for Digital Signal
Processing," Proc. IEEECICC Conf., May
1985, pp.213-216.

3. E. Marien et al., Manual ol LOCMOS
V4.2: A Simulatot Covering Register
Transf er-Functional-Cate and Switched
Ievel, available from Silvar-Lisco,
Kapeldreef 75, B-3030 heverlee, Belgium.

4. D. Thomas et al., "Automatic Data Path
Synthesis," Computer, Vol. 16 No. 12,

Dec. 1983, pp.59-70.

5. P. Marwedel, "The MIMOLA Design Sys-

tem: Tools for the Design of Digital Pro-
cessors," Proc. Design Automation
Conf ., 1984, pp.587-593.

6. L. Rijnders et al., CAMELEON Version
7.7, l.)sers Cuide, report 5-C1-3 of EEC

proiect MR-03-KUL, available from
IMEC.

7. H. De Man et al., "DIALOG: An ExPert
Debugging System for MOS VLSI De-
sign," IEEE Trans. Computer-Aided De'
sign, Vol. CAD-4, No. 3, luly 1985, PP.
303-311.

L J, Ousterhout, "Switch Level Delay
Models for Digital MOS VLSl,,' proc. De-
sign Automation Conf .,198d pp.542-5,{8.

9. J. Cockx, User's Manual for SIMMY,KI)
Leuven, project MR03KUL repoit 5-81-1,
Oct. 1984.

ADDITIONAL READING
Catthoor, F., et al., "General Datapath,
Controller and lnter-Communication
Architectures for the Creation of a Dedi-
cated Multi-Processor Environment," Proc.
ISCAS-86, Vol. 2, May 19t36, pp.73F732.

Catthoor, F., et al., "lnvestigation of Finite
Word-Length Effects on Arbitrary Digital
Filters Using Simulated Annealing," Proc.
ISCAS-86, Vol. 3, May 1986, ppJA6:1297.

De Man, H., et al., "CATHEDRAL-Il: A Syn-
thesis and Module Generation System for
Multiprocessor Systems on a Chip," NATO
summer course on logic synthesis and sili-
con compilation for VLSI design, July 1986
(to be published).

tettweis3, A., "Wave Digital l'ilterr: Theory
and Practice," Proc. IEEE, Vol. 74, No. 2,
Feb.1986, pp.270-327.

Goossens, G., et al., "A Computer-Aided
Design Methodology for Mapping DSP-
Algorithms Onto Custom Multiprocessor
Architectures," Proc. ISCAS-&Q Vol.3, May
1986, pp.924-926.

Jain, R., et al., "Custom Design of a VLSI
PLM-FDM Transmultiplexer from System
Specifications to Layout Using a CAD Sys-

tem," IEEE I Solid-State Circuits, Vol. 5C-21,
No. 1, Feb. 1986, pp.73-85.

Van Ginderdeuren, J., et al., "A Digital
Audio Filter Using Semi-Automated De-
sign," Digest of technical papers of l55CC
conference, Feb. 1986, pp.88-89.

fan Rabaey heads the
Architectural and Algo-
rithmic Strategies
group of IMEC's Design
Methodologies for VLSI

Systems Division. His
research interests are
computer-aided analy-
sis and automated de-
sign of digital signal

processing circuits and architectural syn-
thesis. Previously, he was a visiting research
engineer at the University of California at
Berkeley, where he developed an auto-
mated synthesis system for multiprocessor
DSP architecture. Rabaey holds a PhD in
applied sciences from Katholieke Univer-
siteit Leuven.

Six heads the Silicon
plementation Tech-

niques group at IMEC,
where his interests are
symbolic layout and
compaction, module
generators for data
paths and controllers,
and graphical user in-

headed the CAD
Manufacturing in
responsible for the development and inte-
gration of CAD tools for design and verifi-
cation of lCs, Six received a PhD in applied
sciences from Katholieke Universiteit
Leuven.

Hugo De Man is vice
president of the VLSI

Systems Design group
at IMEC. His research
interests are lC design
and CAD. Previously,
he was an ESRO-NASA
research fellow work-
ing on computer-aided
device and circuit de-

sign, a research associate of the Belgian
National Science Foundation, a professor
at the University of Leuven, and a visiting
professor at the University of California at
Berkeley.

De Man holds a PhD in applied sciences
from the Katholieke Universiteit Leuven.
He has been an associate editor for /fff
Journal of Solid-State Circuits and IEEE

fransactions on CAD, He is a fellow of the
I EEE,

luc l.M. Claesen heads
research in the Design
Management and Veri-
fication group within
IMEC's Design Meth-
odologies for VLSI
Division. His interests
are CAD and integrated
digital signal processing
circuits. Previously, he

was a research assistant at.the ESAT Labora-
tory at Katholieke Universiteit Leuven,
where he worked in CAD of integrated
systems for digital and analog signal pro-
cessing. Claesen holds a PhD in applied
science f rom Katholieke Universiteit.

Questions about this article can be
directed to H. De Man, IMEC, Kapeldreef
75, 8-3030, Belgium.

December 1986 25

