]Ze article describes the status of
work at IMEC on the Cathedral-li
silicon compiler. The compiler was
developed to synthesize synchronous
multiprocessor system chips for digi-
tal signal processing. It is a continua-
tion of work on the Cathedral-I
operational silicon compiler for bit-
serial digital filters.

Cathedral-1l is based on a “meet in
the middle” design method that en-
courages a total separation between
system design and reusable silicon
design. The CAD system includes a
. rule-based synthesis program, a pro-
[ cedural program, and a controller
synthesis environment. Processors are
synthesized in terms of modules
called fram automated reusable
module generators. Chip layout is
done on a floor planner. An expert
subsystem verifies correctness during
silicon design and generates func-
tional and timing models for verifica-
tion at the module and chip levels.
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Cathedral-II':
A Silicon Compiler

Jor Digital Signal
Processing

H. De Man, J. Rabaey, P. Six, and L. Claesen

IMEC

e can easily define a sili-

con compiler in general
terms as a software system support-
ing chip layout synthesis starting
from a behavioral description at the
algorithmic level. However, stan-
dardization beyond this simple
definition can be risky. We believe
that “the” silicon compiler simply
cannot exist, any more than “the”
software compiler can exist. It is this
belief that led us to develop an
application-specific silicon compiler
—that is, a compiler necessarily tied
to a particular application, in this
case, digital signal processing.

Our compiler, called Cathedral-II,
is based on what we call a “meet in
the middle” design method. Its
name describes the separation of
system design and reusable silicon
design and the gradual move toward

0740-7475/86/1200-0013$1.00 © |EEE

a middle ground during the synthe-
sis process.

The specific function of Cathedral-
Ilis to synthesize synchronous multi-
processor chips for digital signal
processing. It was developed follow-
ing a series of five steps:

1. Define a wide, but concise,
class of system design appli-
cations.

2. Define, based on manual de-
sign exercises, a target silicon
architecture and its associated
layoutstyle.

3. Define a design strategy based
on available designer skills.

4. Define the behavioral language
and the silicon modules.

5. Then and only then develop
the CAD tools, with emphasis
on the “D” and the “A.”
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THE APPLICATION

Cathedral-1l is based on complex
algorithms in digital signal process-
ing, which is playing an increasing
role in modern VLSI-based systems.
DSP spans data throughput from 1K
bps up to 100M bps. Therefore, even
this area is too wide for a single
design style or silicon compiler.

The low-throughput end of DSP is
well served by the new generations
of general-purpose DSP chips. How-
ever, while the first implementable
algorithms addressed such simple
cases as digital filtering, today’s ap-
plications require throughput from
audio sample range up to 1M-bps
sampling rates. Consequently, we
need very high precision or highly
complex algorithms involving block
data processing, matrix manipula-
tions, multiple data rates, and a lot
of decision making besides number
crunching. Fxamples are digital
audio, speech processing, smart
modems, and robotics. Also, these
applications would be a lot more
attractive if they included adaptable
1/0 periphery on the same chip.

General-purpose digital signal
processors are not very well-suited
for the implementation of these
algorithms. On the other hand, a
full custom solution is too costly in
design time and, more important, in

time to enter a highly competitive
market.

Because of the highly specialized
nature of such algorithms, we
assume that the algorithm designer
is able to do the silicon implementa-
tion. Therefore Cathedral-Il ad-
dresses highly complex, block-
oriented DSP algorithms in the
audio to near video frequency
range.

Figure 1 shows a pitch extraction
algorithm for speech.! This example
has been used to study the design
process and to define the tools in
Cathedral-Il. Real and imaginary
parts of blocks of 64 frequency com-
ponents from a discrete Fourier
transform processor are first trans-
formed into an amplitude spectrum.
By averaging, a threshold is com-
puted to eliminate.irrelevant spectral
components. From the remainder,
the maxima in the spectrum are com-
puted and then compared to 49
sieves with meshes at octave dis-
tances. Finally, the best match is
computed as the pitch value. As the
figure shows, this problem, typical
for third-generation DSP algorithms,
naturally decomposes into a number
of subprocesses, which are fairly in-
-dependent of each other.

These algorithms give rise to
communication bottlenecks, which
occur from the accumulation of the
sequentially generated data needed
to create new samples for the next
subprocess. As Figure 1 shows, we
combat the problem by putting a
data storage element between two
subprocesses. Based on a careful
study of these effects we have there-
fore defined a target architecture in
which each subprocess is assigned
to a dedicated processor, and the
interprocessor communication, in its
most general form, is taken care of
by switched RAMs.

THE ARCHITECTURE

We have selected a flexible,
tailorable multiprocessor architec-
ture as the target for our design syn-
thesis. The architecture is flexible
enough to evolve into a single, gen-
eral processor at the lower end of
the frequency spectrum and into a
set of paraliel, hard-wired data paths
at the upper end. As such, it spans
many applications—speech, audio,
robotics, telecommunications, and
image processing. The basic idea of
the proposed architecture is to add
enough flexibility to attack the three
basic bottlenecks that normally limit
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Figure 1. Typical example of a third-generation digital signal processing algorithm, pitch extraction for speech
analysis (a). The block structure of the algorithm (b) consists of independent processes, each of which is assigned to

a dedicated processor.
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data throughput in general-purpose
signal processors: arithmetic
throughput, congestion in data
transfer, and controller delays when
performing conditional operations
(frequent in third-generation
algorithms).

At the highest level, the proposed
architecture is composed of a set of
concurrent operating processors.
Each executes one subtask of the
algorithm and is optimally tuned to
perform just that one task (Figure 2).
Each processor operates relatively
independently of protocols, ex-
changing only data that is global
among processors.

Depending on the data exchange
rate and the amount of buffer
needed, different protocols can be
selected: synchronously switched
RAM buffers, FIFOs, or request- and
acknowledge-hased synchroniza-
tion. Communication with the out-
side world is over an 1/0 frame that
can support a large range of 1/0
protocols (parallel to serial, syn-
chronous to asynchronous).

Each processor consists of a dedi-
cated data path and a controller.
The data- path is optimized for the
task(s) it has to perform and is as-
sembled from a set of selected exe-
cution units (EXUs), interconnected
by a restricted number of cus-
tomized buses. Each EXU contains a
register file (of variable size) at its
input side. This structure makes it
possible to avoid the arithmetic and
data transfer bottlenecks. Studies
have shown that the following EXUs
are sufficient to span most of the
target application space:

® a general-purpose (but rather

inefficient) ALU/Shift unit

® an address computation unit

(ACU) with modulo-counting

capabilities
® a parallel multiplier/accumu-
lator

® a parallel-serial divider

® a comparator (for max-min

computations)

® a scaler/normalizer (for fixed-

point/floating-point conver-
sions)

The first two units are general-
purpose blocks, while the others are
accelerators. All these units have
been designed with changeable
parameters and have been imple-
mented in the module generation
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Figure 2. A multiprocessor architecture.
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Figure 3. A customized processor data path for processor 1 of the, pitch

extraction algorithm in Figure 1.

environment. Typical parameters are
word length, shift dimension, size of
register files, and size of multiple
array.

An example of a processor data
path built with this strategy is shown
in Figure 3. It is used to compute the
amplitude spectrum of a signal,
given the complex frequency
domain spectrum, and at the same
time to determine the maximum
amplitude. It consists of three con-
current units: a multiplier/accumu-
lator, a comparator, and an ACU.
This data path can perform an ampli-
tude computation and a maximum
update in two cycles (average).

We chose a multibranch, micro-
code-based controller to control
data flow through the data path.
This structure can handle a large
span of algorithms flexibly and effi-
ciently. It can support algorithms
that require heavy decision-making
as well as those that are repetitive.
Some EXUs can also have a local con-
troller to help reduce the complexity
and the size of the central controller.
An example is the decoder of the
register files. Another controller is
needed at the highest level to con-
trol the flow of data between pro-
cessors and from the processors to
the outside world.

THE LANGUAGE

Different applications obviously
require different specification lan-
guages; a microprocessor designer
will use conceptual constructs dif-
ferent from those a modem designer
might consider. Therefore we have
selected Silage? a language op-
timized for high-level description of
signal processing algorithms, as the
design language for Cathedral-11.

The basic object in Silage is the
signal, which is a vector whose com-
ponents are samples in the time
domain from infinity to actual time.
The basic operation is a functional
application of those signals. In this
way, a Silage description of an algo-
rithm resembles a signal flow graph,
where nodes are instances of func-
tions and arcs are the signals. Silage
supports time domain operations
such as decimation and interpola-
tion and allows for the description of
equations, decisions, iterations,
hierarchy, and finite word-length
effects. The Silage description of the
algorithm implemented on the data
path of Figure 3 is given in Figure 4.

In some cases, the designer may
want to pass some structural hints to
the compiler to guide the synthesis
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func AmplitudeSpectrum(A[], B[] : nums)
Ampl[], Max : num16 =

begin )

Thresh[0] =¢;

Max = Thresh[64];

(i=1..64)

begin

Thresh{i} = if {Ampl(i] ~ Ampl[i})
Thresh[i-1)

fi;
Amplfi) = num16 (A[i] « A[i] + B[i]+B(i]);
end
end
pragma Processor (1,Amplitude$pectrum);

Figure 4. Silage description of ampli-
tude and threshold computation in
the pitch extractor.

Process. In Silage, a construct called
“pragma” is provided to pass this type
of information.

A Silage simulator, based on de-
mand-driven simulation techniques,
is currently under development.
Once the system is successfully
simulated, synthesis can start,

MEETING IN
THE MIDDLE

After choosing the application and
defining the target architecture the
next step is to select a design strat-
egy. We are typically addressing the
quick-turnaround design of com-
plex systems on chips with about
300,000 devices. The complexity of
the algorithms to be implemented
far exceeds that of the circuit or
even the logic gate level. Moreover,
since silicon designers are so scarce,
we cannot exploit the potential of
such systems, unless they are directly
designed by the system engineers,
without detailed knowledge of sili-
con implementation.

Therefore, silicon design knowl-
edge (at the micron level) must be
localized in reusable modules at the
MSIZLSI level familiar to the system
designer. Figure 5 shows a design
scheme that satisfies these require-
ments. We call it meet-in-the-middle
design methodology, and it can be
characterized as follows:

System design is separated from sili-
con design. The interface is located
at the level of arithmetic/logic
operator blocks, data storage, con-
trollers, and 1/0 units. These are the
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EXUs of our target architecture. The
silicon primitives used at that level
are called modules, Design at the
system level consists of translating a
system specification into a structure
that is a netlist of module instances.
Placement and routing of layout in-
stances of the modules becomes the
chip design.

Silicon modules are reusable., In this
way the costly investment in high-
performance, advanced silicon tech-
nology design is limited, and the
cost is written off over as many de-
signs as possible.

Silicon modules are technology
adaptable. Silicon modules are much
more complex than standard cells
and, to save even more in terms of
silicon design cost, these modules
must also be able to survive a num-
ber of technology updates,

Module design has a powerful de-
sign environment. Silicon modules,
however, are not enjoyed by a par-
ticular foundry or CAD vendor.
Since the competitive edge between
system houses will not be in the
technology but in the architectural
technique and in its implementa-
tion, we expect module design to
require a powerful design environ-
ment for a local team of silicon de-
signers. This may not yet be the
case, but we expect it to happen in
the future.

In this method, system design is
top-down to the usual intermediate

_

level. Silicon designers compose, in
the usual bottom-up fashion, LSI-
level modules from functional build-
ing blocks, which in turn are com-
posed of logic leaf cells at the
transistor level.

Hence, both parties “meet each
other in the middle” of the design
abstraction levels. Scarce talent is
optimally used and the design pro-
cess corresponds to the usual
patterns,

There are some fundamental de-
viations from classical design at the
silicon and system levels, however,
These usually stem from the fact that
module generators are generally
software procedures rather than
fixed geometrical structures, Also,
we expect system designers to think
at the algorithmic rather than the
structural level,

THE CAD SYSTEM

Figure 6 shows the CAD toolbox
used in Cathedral-Il. The figure
shows that in the middle of the
design abstraction is a separation
between the silicon and the system
designers. The link between them is
a “call” to a limited set of EXUs as
defined in the target architecture.

The system designer defines the
system at the behavioral level in
Silage. Coupled to this language is
the high-level simulator to verify the
behavioral correctness of the algo-
rithm. Using the throughput require-
ments and a set of expert design
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Figure 5. “Meet in the middle” design methdology.
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rules, Silage code is first optimized
with respect to the functions of the
target architecture. The optimized
code is then compiled directly into
structure (a netlist in terms of the
limited set of predefined EXU silicon
modules). Clearly most of this syn-
thesis is dictated by the target archi-
tecture, and therefore quite a large
part of it is rule-based. In Cathedral-

I, it was implemented in Prolog, .

which is discussed later.

We also, in principle, allow the
designer to specify the design at
intermediate levels, all the way down
to structure, but at the price of in-
creasing the amount of lower level
simulation, the redesign risk, and
the time to the market. When all
calls to the modules are successful,
the chip is ready for floor planning.
This can be done either interactively
or by automatic placement and
routing techniques.

In Cathedral-ll, we include the
synthesis of the algorithm directly
into data paths and control logic.
That is, we are aiming at a true
silicon compiler, in contrast to most
commercial systems today, which are
limited to floor planning and to
module generation.

How does this scheme work? First,
just as in a software language com-
piler, success is intimately linked to
a clear definition of the set of
modules. Consequently, we must
generally limit the variability of the
modules and carefully consider the
application when choosing EXUs.

Second, in view of the evolving
technology, we cannot design in a
fixed technology but must be able
to adapt to technology changes.

Finally, we need a lot more in-
formation from a module generator
than just the layout view, which in
itself should consist of a bounding
box view, as well as a full layout
view. Other views include a func-
tional view, a timing view, and a test
view,

A functional view is an RTL-level
function, in case the design was
done at the structural level, requir-
ing simulation. Even if full synthesis
is used, designers will still want to
simulate the actual chip. This simu-
lation is possible in our system by
the Hilarics-Logmos program,? which
is a register-transfer simulator that
allows modules to be included and
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Figure 6. The CAD toolbox in Cathedral-II.

symbolic microcode descriptions to
be defined.

A timing view is necessary, since
although the synthesis compiler can
take first-order throughput require-
ments into account, it is only after
placement and routing that a full
performance check can be done.

In Cathedral-I1, we are following a
bottom-up hierarchical generation
of timing models in a knowledge-
based program, called Slocop, which
closely follows the composition pro-
cedure of a module. At the floor-
plan level, interconnection parasitics
are taken into account to check
global timing. If unsatisfactory,
buffer sizes are adjusted. If still not
satisfactory placement is changed,
or a pragma is formed at the Silage
level to call for higher performance
modules or to increase parallelism
in the algorithm.

Finally, although it is not in the
actual Cathedral-1l version, a test
view is needed with each module.
We envision that most modules with
a high degree of structure will be
C-testable. That is, depending on
the particular structure, a small set

of word-length-independent pat-
terns will guarantee module test-
ability. A test assembly program
would then be implemented at the
level of the floor planner. For the
particular architecture, the program
would generate total testability for
the whole chip.

In contrast to the traditional Calma
type of fixed layout or-even the
tiling of fixed cells, our design styJe
calls for modules to be written as
procedures with adjustable param-
eters. Parameters range from simple
word length to conditional compo-
sition in terms of functional building
blocks or size of output buffers.
These procedures should also gen-
erate the other views needed by the
synthesis programs.

This style causes two problems.
First, because silicon designers will
confront the software more often,
and most are not trained to under-
stand the software, we will have to
hide the code generation as much
as possible. Second, we must care-
fully restrict the set of modules—a
matter of carefully choosing EXUs
according to the architecture.
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It is this careful selection of EXUs
from functional building blocks that
we feel is the key to making Cathe-
dral-ll feasible, It makes just as much
sense as selecting a language before
constructing a compiler.

The selection is done in the
module generator environment.
EXUs are composed from functional
building blocks like adders, com-
parators, and registers, which are, in
turn, composed of logic cells.

Figure 7 shows the anatomy of the
module generator in Cathedral-II.
The arrow types indicate clearly the
“create” (silicon designer), ‘“‘gener-
ate”” (call from silicon compiler), and
“adapt” (to technology rules) func-
tions needed for such a program-
ming design environment.

The Cathedral-Il module genera-
tion environment provides not only
the layout environment but also a
first version of an expert verification
system. The verification system is
needed for the following tasks:

® to generate the functional/
timing and test models during
the “‘generate” phase

@ to verify the modules during
the “create” and ““‘adapt” design
phases

The design of a module is based on
a functional description at the
register-transfer level. This descrip-
tion (and its simulation) can be done
by the Hilarics-Logmos system. It is
the documentation link between the
system and the silicon designer.

In a module generator, the con-
nectivity and relative placement of
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cells must be procedural. Code must
be generated to procedurally com-
pose a module out of cells. Cathe-
dral-1l generates this code from
graphics definitions using a Lisp in-
terpretive programming environ-
ment. Only complex mathematical
relationships are directly pro-
grammed in Lisp.

The primitive cells themselves are
designed by means of symbolic lay-
out followed by automatic compac-
tion, which also provides for auto-
matic intercell abutment and routing
facilities that can be called directly
from Lisp procedures. We also have
an efficient circuit extraction pro-
gram based on symbolic layout in-
formation. The advantage of sym-
bolic layout is that we can adapt the
system when the technology is
updated.

Finally, design experience is ac-
cumulated and verified in the verifi-
cation box. The box is, to a great
extent, also rule-based and uses the
concepts of expert debugging, rule-
driven simulation, and timing veri-
fication.

Design synthesis

Architectural synthesis, as envi-
sioned in Cathedral-Il, is based on
two cornerstones:

e the targeting of the synthesis
toward a single (but flexible)
architecture, allowing for con-
siderable pruning of the search
space and making it possible to
use dedicated optimization
techniques to exploit properties
of the architecture

e the use of the module genera-
tion environment as a module
knowledge database that can be
queried by the synthesis tools,
allowing design decisions to be
based on physical implementa-
tion details (speed, area, power)

This strategy avoids the inefficiency
of previously published design sys-
tems,*5 which attacked synthesis
problems in a purely tap-down
fashion. These cornerstones are re-
flected in the outline of our synthe-
sis system, as presented in Figure 8.
It consists of several subtasks, which
were initially defined through a
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Figure 7. The module generator software environment has three functions:
create (silicon), generate (system), and adapt (technology).
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number of manual design exercises
on real industrial examples. These
exercises have shown that synthesis
is an iterative and interactive opti-
mization process. Therefore, we en-
vision an open design system that
allows the experienced designer to
interfere with synthesis at various
intermediate levels. Consequently,
we need entry points (description
languages) and verification means
(simulators) at all those levels.
However, user interference, should
be avoided as much as possible, es-
pecially at the low levels, and the
system should be intelligent enough
to restrict the iteration loops to a
local level (if possible).

As Figure 8 shows, input to the
design system is Silage. The correct-
ness of this description can be veri-
fied using the Silage simulator. The
simulator outputs can also be used
as a reference to verify the effects of
further design steps.

Algorithm partitioning

The first step in synthesis is to
partition the algorithm. The Silage
description is split into distinct sec-
tions, each of which is mapped onto
a separate processor. Each processor
is then synthesized independently
from the others, which is possible
because the interprocessor com-
munication protocols are transpar-
ent. The partitioning itself is based
on a number of often contradictory
observations, such as load balancing,
data transfer bottlenecks, cut-set
analysis, and computational require-
ments. In most cases, however, an
educated guess can be made by
simple inspection. Therefore, we
have decided for the first version of
Cathedral-Il to leave the partitioning
to the user by means of pragma
statements in the Silage description.

Data path synthesis

The applicative description of
each processor is transformed into a
procedural one in two steps. First, a
customized data path is synthesized,
and the high-level operations are
mapped onto a set of register-trans-
fer-level (RTL) operations for this
data path (Figure 8). Second, the
optimal timing of the RTs is com-
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puted. This is referred to as “micro-
program scheduling” (discussed
later). The intermediate RT language
has nonconflicting procedural (fixed
architecture) and applicative (no ex-
plicit timing specification) prop-
erties.

The synthesis of a processor data
path includes several tasks. A limited
number of EXUs are stored in the
library. Using this knowledge and
the throughput specifications, the
EXUs required to realize the Silage
operations are selected. Dedicated
bus connections between different
EXUs within a single processor are
also chosen.

Finally, the chosen EXUs are
stripped of unnecessary operators,
and internal parameter values are
assigned. These decisions are in-
fluenced by area and throughput
specifications, which determine the
choice between multiplication al-
ternatives (hard-wired or shift-add-
based multiplier) or concurrency
levels. During synthesis, Silage vari-
ables are assigned to data path
register files (containing multiple
storage fields). In this way, the Silage
operations are transformed into RT
operations. The result is a “black
box” description of the controller,
which serves as input to the micro-
program scheduler.

An automated synthesis tool sup-
ported by knowledge-based tech-
niques is under development. In a
first pass, the Silage code is prepro-
cessed. This includes a simplification
of the source code and a number of
local transformations (loop handling,
reordering of singular variables,
etc.). The preprocessor also preas-
signs operations to EXUs. These pre-
assignments are based on a global
overview of the problem and are
used to guide the data path mapper.
The mapping tool itself, imple-
mented in Prolog, tries to unify the
high-level Silage equations with
internal low-level equations, each
of which represents a fundamental
operation of an available EXU. Suc-
cessful unification may mean fulfill-
ing certain conditions, under the
form of new high-level equations.
Synthesis is governed by a program
called inference engine, which ad-
vises on the unification rule most
appropriate to a given high-level
equation. The architectural proper-

ties of the EXUs are stored as a set of
rules, which keep the tool flexible
with respect to architectural
changes.

Microprogram scheduling

Register transfers are fundamental
operations from a control point of
view, since each is to be realized in a
single machine cycle. In micropro-
gram scheduling, the optimal map-
ping of RT operations to time
(machine cycles) is computed (op-
timal meaning with a globally mini-
mal cycle count). Conditional RTs
and FOR constructs are allowed in
the RT language. A FOR loop can be
regarded as a pragma by which the
designer prescribes a limited order-
ing of operations. Loops are
straightforwardly mapped into the
microcode. The algorithms are
scheduled statically at compile time,
as opposed to dynamically at run-
time, thus saving complex data-
driven control protocols. The
scheduling tool should take into
account all implications of the actual
controller structure, such as the
amount of pipelining and the type
of controller logic, as well as all
restrictions to prevent conflicts
between RTs. Therefore, a prelimi-
nary choice between alternative con-
troller types is required (we have
selected the multibranch, micro-
code-based controller).

From the scheduling constraints
(data precedence constraints, re-
source conflict constraints, and con-
troller pipelining constraints), a
general integer linear program (ILP)
can be set up, which can be solved
using standard procedures. Sched-
uling is NP-complete; therefore
large problems require the assist-
ance or replacement of the ILP
technique by heuristics. After
analyzing the lifetime of the register
file variables, the optimal schedule
is converted into a readable sym-
bolic microcode.

After scheduling is completed, the
cycle count is evaluated, which may
force backtracking to the data path
synthesis level. Excessive cycle
counts may lead to faster implemen-
tation schemes or changes of the
concurrency level, while low cycle
counts may suggest cheaper data
path structures.
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level artitioninin

simulation
System netlist
Simulation tables & spec.
communication buffers

(silage description DSP - algorithm per processor )
v

Datapath

structures such as state assignment,
roughput specs logic minimization, partitioning, and

From the symbolic microcode, the
controller decoding logic is synthe-
sized. To feasibly compare controller
realizations (microcode ROM-based
controllers, multilevel logic imple-
mentations, PLA-based sequencers,
etc.), we have a unified environment
with a single input language. This
environment provides a library of
utilities for synthesis, optimization,
and layout generation of controller

assembly of regular arrays using
symbolic layout techniques. In this
way, new controller architectures

— B
] synthesis EXU
(__l'j Na LIB
P S tlist
rocessor netl ' RTL description

Microprogram Lalgomhm per processol

DSP - are easily introduced. A prototype
r version of the environment is being

scheduling

RTL oy
eimulaton Q-(Symbolic microcode )

Simulation tables

Contoller choice

implemented using the multibranch
controller as a test case.

This synthesis system has been
used to generate the design of a
high-quality pitch tracker for audio
systems (Figure 2). The result (Figure
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Module generator

To define a module generator, we
need a system that enables us to
design the leaf cells and provide
high-level commands to express the
composition of a module as a func-
tion of the parameters. Since the
composition rules may be as com-
plex as

“Fit a number of leaf cells so that
their terminals connect by abut-
ment”’

or
“Route a set of nets”

the algorithms to support these
high-level commands must also be
provided in an integrated en-
vironment.

Many existing module generators
have a delay between definition and
execution, introduced by the com-
pilation and linking steps of the tra-
ditional programming languages
they are implemented in. To over-
come this problem, we designed an
interactive environment that gives
graphical feedback each time a com-
position rule of the module genera-
tor is defined, allowing mistakes to
be corrected immediately after they
were made. '

To describe a module we capture
four types of information.

Structural: The submodules

Topological: The relative place-
ment of the submodules

Connectivity: How the sub-
modules must be interconnected
and where the input and output
terminals of a module are

Construction: How submodules
fit together and which intercon-
nections are realized by abutment
or routing.

In the first version of the module
generator in Cathedral-1I, called
MGE, structural and topological
information is entered at the same
time. Components are added on grid
points to represent their relative
ordering but not their final coordi-
nates. The command (ADD-COMP
FA [1..N]| 1), for example, adds a
horizontal row of length N of FA
cells. As Figure 10 shows, the cells
are represented by their outline at
this stage, resulting in a clear picture
and fast display.
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Figure 10. Structure and connections of

Connections are also easily de-
fined by specifying a net name, and
the list of terminals of the connected
components. The command (ADD-
CON (RIPPLE [2..N]|) (COUT
IT..- N )| 1) (CIN |2..N]| 1))
defines the connections of the ripple
signals in the adder example. No
assumption is made at this stage as

aripple adder.

to how the connections will be
realized.

Indices of array-like structures can
be expressions; (N-1) is the last
ripple signal, for example. MGE
allows us to associate an expression
with each horizontal or vertical grid
line on the display (see x-axis in
Figure 10). The creator can then, by
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Figure 11. A set of symbolic cells before

(a) and after (b) automatic fitting.
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Figure 12. Add-Shift-Compare module as gencrated by the module genera-

tor environment.

simply placing cells and pointing at
terminals graphically, automatically
generate the Lisp procedure. This is
the first step towards graphical
definition of module generator
code.

For the design of the leaf cells we
use Cameleon, our symbolic layout
and compaction program.$ Layouts
are assembled from point elements
like transistors and contacts, from
interconnecting wires, and from
areas that need defining, for exam-
ple, the n-well or p-well in CMOS
technology. The layout is then
compacted, using a constraint graph
and a longest path algorithm, to
minimize cell area. The program
ensures that the layout is correct
with respect to the design rules, as
specified in a technology file, also
taking into account extra constraints
the user may have specified. Tech-
nology changes are easily accommo-
dated by changing the values of
symbolic constants, like MIN-POLY-
WIDTH or MIN-GATE-OVERHANG,
in the technology file and recom-
pacting the cell.

Construction rules specify how
the real layout of the module must
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be made starting from the topology,
the connections, and the basic cells.
Either the cells fit on each other and
are pushed together, or routing must
be added to make the connections.
Both options are available in MGE.
The ROUTER command allows the
user to define a horizontal or vertical
channel and the nets that have to be
routed. River and channel routers
are available. The COMPACT com-
mand moves components together
in the x or y direction as specified.
The designer can combine these
construction rules to first route some
channels and then compact the
global module.

In a traditional layout environ-
ment, cells can be abutted only
while designing the layout of a cell.
In our system, the designer can ex-
press this requirement by the com-
mand (ABUT XORY (CELL-LIST)).
The module generator environment
will then call the compactor, load
the cells specified in CELL-LIST and
compact the internals of the cells,
taking into account the constraints
imposed by their neighbors. Figures
T1a and 11b show a set of cells
before and after applying the ABUT
command.

The final step of an editing session
in MGCE is to save the commands
into the module generator pro-
cedure. This is done automatically
each time the designer stops work-
ing on a module. From this pro-
cedure, modules can be generated
for any set of parameters in the
allowed range.

To avoid inventing a complete
new language and to take advantage
of the interpretative nature of Lisp,
the first version of the module gen-
erator environment was imple-
mented as a superset of Lisp. For the
more computationally intensive
algorithms like compaction and
routing, Pascal and C programs are
called from Lisp. The system has
been tested through the design of
five EXUs defined for a particular
architecture. The resulting layout of
the add-shift-compare is shown in
Figure 12,

The use of Lisp as the basis of the
MGE provides the creator with all
the flexibility of a high-level pro-
gramming language to define
module generators that require
more complex composition pro-
cedures. An example is the com-
parator shown in Figure 13,

Modlule verification

One of the problems with module
generators is how to prove their cor-
rectness. The traditional way is by
simulation. However, simulation is a
subjective test method that depends
entirely on the patterns defined by
the designer to detect expected
problems. It is costly in CPU time
and is not guaranteed to capture un-
expected problems,

To overcome these drawbacks we
have developed Dialog,” a set of
rule-based analysis tools that allows
us to detect violations against basic
design principles. We have also

‘developed Slocop for timing analy-

sis. These tools are based on the
Lisp-like Lextoc language,” which
provides powerful facilities to ex-
press rules about MOS circuits.
Figure 14 gives an overview of the
verification system,

We begin with MOS network ex-
traction. To verify the design we first
have to extract from the layout a
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model for the cell on the circuit
level. This can be done very easily,
since the stick diagram contains the
devices and the interconnection
wires. The internode capacitances
can be found by detecting the points
where elements cross.

Next from the extracted MOS
transistor network the user can de-
compile and check clocking rules.
The system first determines if the
network belongs to the class of valid
circuit configurations, such as static
CMOQS, using passive multiplexing
trees and prescribed registers. All
parts of the circuit violating these
rules are flagged as errors. The
checking is done by partitioning the
network into the basic subnetworks
that are possible in a given design
style. The description of the
topology of those subnetworks
(static CMOS gates, pass transistor
trees with or without bleeder tran-
sistors, etc.) resides in a knowledge
base. This knowledge base is written
in Lextoc. Therefore, in contrast to
Crystal ? for example, our system is
easily extended with new types of
subnetworks, and is applicable to
any definable class of digital MOS
circuits (Figure 15).

A high-level check on the clock-
ing is now done. Starting from the
primary clock information, the de-
rived clocks are found, and latches
are detected and separated from
combinatorial logic. By assigning the
appropriate properties to the nodes
in the network, illegal combinations
are detected and reported. For
example,

A derived clock can only be
formed with signals latched on
the same clock phase

A latch data input must not be a
primary clock

Figure 16 shows the response of
Dialog to a request to verify a clock-
ing rule. The system has identified
and highlighted that a loop exists
containing only a single clock phase,
which could cause a race problem.

From the primitive circuits found
in the previous step, we now search
for illegal configurations like opens,
shorts, and odd NMOS and PMOS
combinations. All acceptable cir-
cuits are checked to see if they can
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Figure 13. Interpretively generated representation of the structure of a
six-bit comparator (a); the layout of the slx-blt comparator (b), in which
some cells are connected via abutment, some with routing; and the layout
of an eight-bit comparator (c), which demonstrates the flexibility of the

module generator.

MOSNetwork

Electrical

Rule
base

| Timing

Logic Compare
| DFT rule check
Decompilation

|— Critical path

Clock rules
Delay

Cap. noise
Charge red.
Open/short
Spikes
lllegal circuit

C
|"Gulded simulation” K~ Test
Compare

Figure 14. Overview of the Dialog expert verification system.

guarantee correct logic levels. This
check is not restricted to static situa-
tions but includes dynamic effects
like charge redistribution. An exam-
ple of a possible problem circuit
and the rule involved in the check-
ing procedure are in Figure 17.

To diagnose an error on node B
caused by charge sharing we have to
find the combination of input signals
that creates the worst case con-
figuration. This is done by the
SETUP-INPUTS procedure. Using
these inputs, the part of the circuit
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Figure 15. A sample of the allowed transistor configura-

tion stored in the rule base.

Figure 17. Rule to detect charge sharing (a) and possible

problem circuit (b).
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Figure 16. Simple clock phase loop detected by Dialog.

under investigation is simulated on
the circuit level using the SIMMY
module? The output waveforms of
the simulation are then checked to
see if the voltage on node N2 drops
below 3.0 volts. If it does, a message
is issued telling the designer to ex-
pect charge-sharing problems on
node N2. If the designer does not
believe this diagnosis, a facility is
called to display the conditions
creating the problem situation and
explain by what successive steps it
was detected.

Even if the circuit has passed all
the general rules, we must check
that it does not violate the timing
specifications for the module. From
the primary clock specifications, the
edges of the clock inputs for the
latches are computed and the maxi-
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by Slocop.

mum allowed delay of the combina-
torial blocks is calculated.

Slocop, the timing verification
program, uses local circuit simula-
tion to calculate delays. This method
is more time consuming than RC cal-
culations, but it is very reliable,
much more accurate, and applicable
to any type of subnetwork that can
be described in the program’s
knowledge base. For global analysis,
graph-based algorithms are used,
since the large number of paths
makes an exhaustive path search im-
possible. Figure 18 gives a multiwin-
dow output of Slocop, showing the
hierarchical annotation of the criti-
cal path of an adder module. Slocop
uses a critical path algorithm that
provides the longest signal propaga-
tion paths from inputs to outputs.

Figure 18. Hierarchical highlighting of critical delay path

CONCLUSION

We have described the concepts
and status of the development of an
application-specific silicon compiler
for highly complex DSP algorithms.

We have shown that development
of asilicon compiler is only possible
after carefully limiting the target
silicon architecture to a restricted
application area. Only then can a
CAD system be developed. Most
parts of the synthesis and module
generation system have been suc-
cessfully prototyped, and the first
large chip designs are now being
undertaken. The use of the Al pro-
gramming techniques is becoming
more and more important in this
activity,

Behavioral silicon compilation as
well as the module generators to

IEEE DESIGN & TEST




support it will require new skills
from both system and silicon de-
signers. It remains to be seen how
they will react to it in the future. &i
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