
rn Proc. EUROASTC-91- JiIEE computer science press), ed. c. saucier,Nlay 27 to May 31st, 1991, parais des congies-l-po.te Maillot - paris
ir,.3 I 'i 'i y"t

Application Example of multi-level digital design
verification by the SFc-Tracing Methodology *

Luc claesen j Mat. Genoe, Eric verlind, Frank proesmans, Hugo De i\{ant

IMEC, KlpeJ{r_egf ?I, 8-9001 Leuven Belgium
phone: +32-16-281203, email: claesen@imEc.be

Abstract.
In this paper I novel methodology for the formal correct-
ness verification of digital (VLSI) designs is presented. This
methodology aims at bridging the gap ftom transistor switch
level circuits, as obta.ined from circuit extraction, up to high
level specifications. The SFG-Tracingverification method-
ology inherits its power from the exploitation of the inhcr-
ent algorithmic information in the high level (signal flow
gra.ph lcvel) speciffcations. Given l,he fact that the circuit
designer provides the appropriate reference signals and rnap-
ping functions, the methodology is intended to operate au-

f3:l"ttr
on VLSI circuits of up to 50,000 trulsis{,urs and

1 fntroduction.
The possibilities offered by the steadily increasing complex-
ities offered by the VLSI technology have resulted in the
fact that more and more complex systems can be built on
integrated circuits. The realization of complex systems has
become d,etign limited instead of technology limited. The
challenge is indeed to design electronic systems firfi time
right. This is required to avoid costly redesign, and delays
in market introduction of new products. These economic
reasons are the drive behind a lot of effort to check the cor-
tectness of designs with respect to their speciffcations.

Traditionally simulation (at multiple levels of design ab-
straction) is being used, and is standard industrial practice,
to verify the correctness ofelectronic designs before they are
produced. It is however very well known that for even mod-
erately sized circuits it is not possible to try out all possible
input excitations in these simulations, due to the combina-
torial explosion problem in the number of possible patterns.
Therefore designers have to choose an appropriate subset of
input stimuli for verification by simulations. This method
leaves open the possibilities for undiscovered design errors.
This motivates the need for analytic verification techniques
tlrat are input pattern independent. The technique of static
timing uerification is an analytic technique that has cur-
rently gained industria.l acceptance for the verification of
the speed performance of circuits.

Tlre analytic verification ol the behadoral correctness of
digital designs with respect to their specifications is however
still in its infancy. It is mainlv hindered by the problems of
combinatorial explosion in handling the mathematica.l for-
mulas describing the systems a.t hand.

* llris lcsear<:lr h;rs bccrr sg>,,ns,.,n:<l as par'{. of tlrc Clll-,\lt\lI
arr<l Olll:,()PS 11;SPll I'f [3:rsic Rcsc:rrch r\ctions.

I pr,,fess,,rs al, 11at,h. [.lrrir.. [,t:rrvcrr

Forma.l correctness verification techniques have been in_
ve-.tigated already for a few deca.des in theoretical computer
science. Although better insights ha.ve been gained iir the
mathematical modeling of computer prng.r-r, no fult cor_
rectness proofs of practica.l computer programs can be done
in a realistic way. Formal veriffcation techniques derived
from thege developed in theoretical computer science have
been applied in hardware designs arrd have been illrrstreted
b-y the correctness proofe of small microprocesrors using rrre_
chanical theorem proving methods [10, l1]. Even for ihese
small sized applications, the correctness pioo-fr_r.quire sev_
eral monf,hs of (mechanical theorem provingi expcrt inter-
action for conducting the correctness proofl'It is also not
obvious how design specific theorems and proof strategies
can be automatically generated from specifications or liow
they can be reused in new designs.

For the representation and manipulation of Boolean for_
mulas, the ordered binary decision diagrams (OBDD's) [teJ
is currently the best known technique. It is cuirently

"r"a
i"

the verification of combinatorial logic and in logic synthe_
sis. Several additional techniques are still being proposed
that irnprove the efficiencies that can be obtaio..d.

-Arrr-

lytic methods [13, 14, 1?] have been developed tha.t allow to
extract symbolic equations from MOS switch level circuits,
that accurately model bidirectional information flow, mrrlti_
ple strengths of nodes and transistors and tX'behavior. For
the veriilcation of ffnite state machines (modeling the con_
trolers in digita.l systems) promising tecirniques irave been
worked out [t, 2].

The main breakthroughs in formal verification methods
Iot behaaioral correctnest have been achieved by methods
that take advantage by exploiting the circuit structure in
the verification algorithms. This is the only way to avoid the
problem of combinatorial explosion that results when trying
to formulate the correctness problem in a general .rry (..gi
Boolean formulas) and have a general deiision pro..drrr-.
trying to figure out the correctness.

Further along these lines of correctness verification we
propose a method called SIG-Irocing t,hat explnits the in_
forma.tion available in the signal florv gra.ph level specifica_
tion tha.t describes the algorithms to be irnplemented.

In this paper we preserrt a nerv nrelhotl fr:r the aul.oma{.ic
verification from the behavioral signal flow gtaph specifi_
ca.tion dorvn to lower implementation levels. These can go
dorvn to the srvitch level if a suitable symbolic simulator is
used. In line with the a.utonratic verification algoril,hms, as
much as possible the structure a.va.ilable in the. problem at
hand is being exploited. The first application target is in the
f:f_.,{ry1 of high level synthesis results as obtajned by the
CATHEDRAL silicon compilers [8], but the methodology is

1

rFfii.t',-
L.lD' ' <j, j

In this paper v/e give a short overview of the theoreti-
cal background of the SFG-Tracing met.hodology. For the
relationship with existing forma.l verification methods alrd
an overview of the inclusion of the rnethodology in a CAD
environment, we refer to [4],

In the next section, rve give an overview of the SFG-
Tracing methodology. The concept will be illustrated by
a practical example in section 3.

Figure 1: Design & time abstraction levels from SFG (signal
flow graph) down to transistor layout, for a receiver pulse
shaper and equalizer, containing 3 ALU's of 14 bits as syn-
thesized by CATHEDRAL-II

genera.lly applicable.
The algorithms are intended to operate with as little in-

teraction from the user as possible. The underlying &ssump-
tion is that the flow graph speciffcation is synthesized while
keeping track of mapping relationshipt of a set of well-chosen
reference signals of the specifying flow graph and of the irn-
plementation. The global veriffcation problem is reduced
to a manageable size by partitioning the information in the
global signal flow graph into acyclic subgraphs and provid-
ing correspondence (mapping) functions between the inter-
face values (reference signals) in the partitioned graph and
the signal values at specific cycle and clock phase times in
the implementa.tion. The correctness of each individual sub-
graph is proven by rnaking use of a (switch-level) symbolic
simulator that acts on the actua.l switch level models of tran-
sistor circuits.

To give an indication of the information explosion from
high level (SFG) specifications down to the implementation,
consider the modem pulse shaper and equalizer chip indi-
cated in figure 1 as designed by Vanhoof e.a. [9]. This
system implements the filter flow graph indicated in the top
of the figure and can be formally specified in the SILAGE
langua.ge in 70 lines of text. The chip implementation as
synthesized by CATHEDRAL-II [9] results in a microcoded
a.rchitecture with 3 ALU's of 14 bits and consists of more
than 12000 transistors, Near the figure is shown the time ab-
straction from sample periods ai SFG level over micro-code
instruction cycles, clock plra.ses down to clock wa.veforms at
the switch level. Notice that all the signals that appear in
the SFG specification occur in some form during specific
times at specific places in the transistor implementation of
the chip. Operations in the SFG can horvever occur on the
sa.me hardware blocks such as ALU's a.t diflerent instances
of time. This relationship between algorithmic SFG signals
and signals in space and time of the implementa.tion forms
tlre basis for the SFG Tracing verification methodology.

2 SFG-Tracing Methodology.
The goal of the veriffcation process is to verify the behavjoral
input-output correctness of the lower level implementation
with respect to the high level signal flow graph specilication.
Of course it would be the most irrteresting to perform the
verification ftom a level as high as possible to an implemen-
ta.tion as detailed as possible. In this pa.per, we consider the
SILAGE SFG level as the speciffcation, and the transistor
switch level as the representation. Higher levels of the im-
plementation could also be considered (such as gate level or
sRT or bRT level). The same techniques as indicated below
worrld apply in each of these cases. The switch level imple-
mentation is however preferred, because it reflects the best
the circuit implementation. Appropriate symbolic analysis
techniques bascd on Brya.ntts method [13, 14] for the switch
level have been developed and are .supported in CAD tools
[17, lb, 16]. :711.

2.L Flow Graph Speclflcation.
For the SFG-tracing, two a.spects have to be considered.
The first consists of the verification of the initialization te-
quencet and the second a.spect consists of the vcriffcation
of the rteadg ilate behaaior, The initializa.tion sequence is
used to bring the implemented system into a known state.
Starting from that known state, cycles and clock phases can
be defined, which couespond [o the SFG level sample pe-
riods. The initialization sequence consists of the sequence
following for example the reset pulse. The symbolic simula-
tor will have to be started from the initialization sequence
in order to be able to bring the implemented system into a
known state. The SFG speciffcation also contains initializa-
tion informa.tion (initial values a.t SFG level registers). The
verification will consist of two phases: the initialization and
the steady state. Although similar techniques can be userl
for both phases, this paper will concentrate further on the
verification of the steady state behavior.

2.2 Basic SILAGE Signal Flow Graph Semantics.
The basic SILAGE signal flow graph semantics are modeled
by a graph g(V,E).

The set of vertices I/ of t.his signal florv graph f are.lefined
by vertices 1)i e 1'conesponding to ihe primitive operations
in SILAGE. Examples are: arithmetic operations (addition,
subtraction, multiplica.tion...), shift, logical operations and
condit,ionals.

The set of edges is E is defined b"v edges e; € .8, rvhere
each e.; corresponds to a signal in the SILAGE florv graph.
In SILAGE, signals a.re defined as one-sided infinit,e streams,
clraracterized by a. specifi,c sam.pling rate.

Trvo functions
Inputs: I/ + E- a.nd
Outputs;V + Er

can be defined:
Inputs(a;) : {er, e*+r, ...e,,,} and

Outputs(a 5) : {e 1, e 11 1, ...e n}

which describe the inputs and outputs of operators in
SILAGE. In SILAGE only one output is used per operator.

To each edge e; corresponds a. SILAGE ilgnal, that is
modeled ag a stream. However at specific moments in the
algorithm time dr7o, individual element values of the stream
can be considered e.;(t"y.r). The signa.ls can be words repre-

1e-ntin-g
nurneric binary va.lues of a speciffc word length tu"r.

The signal consisting of a binary word can be represented
as e;[1..rr".,]. It is assumed that individual bits in signals
representing binary values are ordered from most signiffcant
bit (MSB) (index 1) to the least signiffcanr bit (LSB) (index
u.r). The k'th individual bit of the signal e; is represented
as e;[&].

2.3 Reference signals and ll[apping Junctions,
lt SFG-Tracingwe make the following assumptions:

1. There exist a number nTey of reference rignals e, e
Ref Signals(q$,E), corresponding to edges in the
SFG algorithm specification and signals at specific
(cycle and clock) times in the implementation. The
specification SFG is implemented in ha.rdware main-
taining the same behaviorol relationships for therc ref-
erence signals.
For all reference signals e" € Ref Signats(Q(V,E))
the siguals e,t in l,he specillcation and e,i in the im-
plementation can be defined:

o The reference signals in the SFG specification
e,'(t") have the following semantics in terms of
Boolean bit words:

e."[&,](r") € B (t)
for all bits ft" e {l..to,} in the SFG signal word
and for a specific sample time 1". B is the set of
Booleans. Often at the SFG level, the individual
bit,s in signal 'words are not considered.

r The reference signals in the implementation are
characterized by:

e,;[k;)(t;*,) 6 B (2)

for individual bits with index fr; € {l..to;} ai
specific implementation times t;1-. The index k;
of t;s- indicates that each bit of a. reference signal
has to be considered at a specific cycle and clock
phase individually. This is for example already
necessary in bit-serial implementations of SFG
specifications,

2. Tlrere exist a set of mapping Junctions f that describe
the beha.vioral correspondence in space and time of
relerence signals in the SFG algorithm specification
with respect to the lower level implementation at the
specific implementation times.

f : S ut itch -s ign -s enzant. + S F G _s ign -t "^ont. (r)

Figure 2: Illustration of the concep ts of rejerence dgnah ancl
rnapping lunctiou tha.t rela.te signals in the SFG specifica-
tion to signals in lower level implementations. (Here down
to the switch level).

Re{ercrce sbnals Mapping lurclbns.

where B is the set of Boolean values
The function f is defined as:

SFG

oDooDDotrtroo
0
o
o
o ffiil

m tr
o
tr
o
o
D
o
o
D

m

Effi%

e,'(t") : F(e,.ipl(tir)...u"i[u,r](r;,,,)) (s)

This is a vector assignment over the individual bits of
the reference signal in the SFG.

3. All edges and vertices in. Q(V,.E) are reachable via
directed paths starting at the edges corresponding to
reference signals.

4, The reference signal partitions the graph g(lz, E) such
that the subgraphs are acyclic.

The most essential form of reference signals would be the
input and the output to the algorithrn to be imptementerl
in hardware. The veriffcation effort and complexity can be
reduced if more reference signals are availa.ble.

Tlre concept of reterence signak arrd mapping functionsis
illustrated in ffgure 2.

_ For the reference signals it is required tha.t mapping re-
lations are ava.ilable, which state the retationship between
reference signels in the specification and in the implementa-
tion. This could be in the form of a. certain word at a specific
sample time in the SFG level begin implemented in terms
of bits in specific registers (at specific time phases) at the
lower level implementation. Most of the relationsliips wilt
be simple correspondences of the logic values in specifica.-
tion and implementation. Other relationships could include
a specific logic function to convert the logic representa.tion
in the specffication into the logic representation in the im-
plementation or vice versa. The simplest form of this are
signals in the specification that are identical or inverted in
the implementation. However, more complex relationships
can be envisioned: e.g. an integer word a.t the SFG lerlel
represented in the implementation in carry save techni<1ue.

Tlre third condition is required so tha.t the S.FG Tracinq
a.lgorithm can use a. directed gra.ph traversal a.lgorithrn to
reach all of the parts in the specification SFG in order to do
the comparison.

2.4 Signal Flow Graph partitioning.
The choice of appropria.te reference signals and mapping
functions allorvs that SFG graph q(V,E) is partitioneJ
into a signal flow graph PSFG (Pa.riitioried Signal Florv
Graph)_consisting of a set of disjoint and acyclic subgraphs
Qr'(U,,Et,). Each subgraph Q1,(I/',,Ep) cons-ists of a cuis"t
of vertices of Q(V,.E) where the edges between vertices in

or:

F:B*;-13'o' (4)

the cutset and vertices out of the cutset correspond to the
reference signals, related to that subgraph.

2.5 Description of the SFG-Tracing rnethod.
The reference signals allow a subdivision of the global SFG
in a number of subgraphs in the PSFG. For each subgraph
in the PSFG a verification of the implication of the speci-
fication by the implementation is verified by performing a
symbolic simulation of the irnplementation.

SFG-Tracing ()

t
read-:ref -s ignale_and-rnappingJunct ions () ;
init-symbolic-sinutat ion () ;
PSFG = Partition-SFcO;
for each aubgraph in the PSFG

{
for impl-time = etart-time to end-time;
{

symbJnLt :[al-1zc-lnpl-r lgnal (impl-t lmc) ;
eymbolic-simulat e-at ep (impl_t Lmc) ;

]
eymb-compare-aignals O ;

In read-ref -.eLgnals-and-rnappingJunctions O ; the ref-
erence signals and the mapping functions are read. Mak-
ing use of this information, the partitioning of the signa.l
flow graph is performed in Partitl-on-SFG. Hereafter for
ea.ch subgraph the verification is done by a symbolic sim-
ulation. Since reference signals in the implementation can
occur in different cycles and clock phases, (within a global
SFG clock period of the system) the values of implemen-
tation signals have to be initialized in the symbolic simu-
lation at the appropriate implementation times. Therefore
the symbolic simulation has to be done from gtart-tl-me
to end-time, such that all the signals that are input to the
PSFG subgraph can be initialized and that after that, all
signals a.t the output of the PSFG subgraph can be evalu-
ated in the appropriate cycle time and clock phases.

In the symbolic sirnulation, the reference signa.ls and the
signals dependent on them will be evaluated symbolically.
External signals that are always recurring during each global
SFG time period will have specific values. This is the case
for external clock signals, that will be used for the specific
values in the respective phases. Other signals such as reset
signals and signals to put the circuit in test mode, will be
set to the specific constant values. Doing such a symbolic
simulation will result in specific (Boolean 1,0) signals for the
control circuits, and symbolic signals for the other circuitry.
Most of the time 'x' signals will be used in the symbolic sim-
ulation. Onlv for those signals implementing the operations
of the subgraph of the PSFG at hand, symbolic values will
be computed,

The controller takes care of the sequencing in time of the
ha.rdware operations that ha.ve to be performed on the sa.me
hardware operator (e.g. t,he same ALU). By doing symbolic
simulation, the eflect of the sequencing by the controller is
removed, and the hardrvare operators can be seen as un-
folded for the specific opera.tions that they have to perform.

By this symbolic simulation, the micro-code controller
will normally operate with instantiated signal values (,I',

t9', '*') instea.d of symbolic values in the execution of cy-
cles and clock phases. These instantiated signal values ca.n
directly be used (ond reduced) in l,he syrnbolic simulations.
By this fact of unfolding (or unrolling) the algorithm again
to its ma:cimally parallel representation the effect of the con-
troller, and its specific encodings ca.n be 'simulated awav'.

After the symbolic simulation, symbolic expressions are
obtained for the output signals corresponding to the sub-
graph under consideration. Notice tha.t these symbolic orrt-
put signals have to be taken at the a.ppropriate cycle and
clock phase times as defined by the reference signals. As
already explained these output signals correspond to the
maximally parallel representation as in the SFG specifica.-
tion, and the correctness ha.s to be verified by comparison.

From the semantic deffnitions of the primitive operations
in the specifying SFG, the mapping functions for the ref-
erence signals (that form the interface for the subgraph at
ha.nd), and the results of the symbolic simulation a compar-
ison is done in symb-compare-al-gnal-e .

From the semantics of the primitive operators in the sub-
graph of the PSFG under consideration, the input output
behavior at the SFG level for the subgraph can be derived.
This is characterized by the function:

E"yn : 13* + l)' (S)

This function provides the behavioral relationship as ex-
tracted from the SFG semantics betrve€n reference. signals
at the input e,,," and at the output e,our" of the subgraph
under consideration:

r-Tnors:6rjo("rr-") (?)

In the same way the input-output behavior function as
derived bv the symbolic simulation of the implementation
can be deffned:

)
)

6i,rpr I B* - B* (8)

This function provides the relationship as obtained by the
symbolic simulation between reference signals at the input
e,,-' and at the output e,".t' of the subgraph under consid-
eration:

e,oori :5;'.nr("",, i) (g)

The ma.pping functions for the reference signals at the in-
puts and outputs of the subgraph under consideration pro-
vide the following relationships:

eroors:f."*r(.r",,') (10)

and:

e,;, : f,,,,(",,,,') (11)

From the above relationships, the subgraph behavioral
functions and the ma.pping functions, the following condition
for the correct behavioral verification of the subgraph under
consideration can be derived:

S,tc(F,.,,(",,,,t)) : f.,.,,(S,,,,,,,("",,,')) (t2)
The verification will normally be done by tautologv check-

ing, based on efficient methods such as OBBD,s [tS]. tn ttris
comparison, one can however also make use of the informa-
tion available from the signal flow gra.ph, such as the facl,
that at the SFG level signals are representing bit-words.

,*t{**-Fi
trtr

,,,5.,,1'5. I d_-.
-5.

4 i-di.'",(,(t
I

"']t',ll I +

,.,+,d L$-.'
+

df

l][l
"''rq I dft,,'1ql

2 phase non overtaDorno clock
nMOs.r.'d

Figure 4: nMOS realiation of a BCD-recognizer circuit

t
Figure 3: State transition diagram for a bit-serial implemen-
tation of a BCD-recognizer.

Optimized verification algorithms and vector-based reduc-
tion rules such as presented by Eveking [22] and Simonis
[21] can be used to improve the cpu-time-effrciency of the
veriffcation.

3 Design example: A bit-serial BCD-
code recognizer.

To illustrate the SFG-Tbacing methodology, we use the
BCD-recogniger os introduccd by Dietmcyer and described
in [3]. At a high level this system could be considered as
taking in 4-bit words per (algorithmic) sample period. The
recognizer hag to decide per sampled word wether it is a
BCD-code or not. This can be specffied at the SFG level in
the LOGMOS language as given below:

High Level Behavioral FIow Graph Specification
BCD recognizer

cell bcd*recognizer o
unsigned input bcd_in[4J ;

irr the SFG is related in rpace and in time lo the signals in
the bit-serial implementation in ffgure 4. From the seman-
tics of the comparison operator "<t' the functionality be-
tween input and output can be determined. The sernonticg
of the implementation is determined by svmbolic simulation
using the CO$f\d.OS symbolic simulator [lT]. Hereafter, the
cotrectness vdrih-cotion eccording to cquatioir Il can be per-
formed using OBDD-based methods, This is accomplished
using the following commond script for the COSMOS sym-
bolic simulator:

output bcd_ok;
end bcd_rocognizer;

description of bcd_recognizor
t

bcd_ok=bcd_in<10;
)
end deecription;

High level (SFG) specification and signal florv graph repre-
sentation.

The signal flow graph representation is indicated near the
description. For the implementation one could decide on a
bit-serial realization, where the 4 bits of a word are entered
bit per bit, with the least significant bit first. Such a bit-
serial BCD-recognizer could be represented as a. sta.te tra.n-
sition diagram as illustrated in figure 3 describing the bRT
(behavioral Register Transfer) level. A specific implementa-
tion could be realized by an nMOS 2-phase non overlapping
clock methodology as illustrated in figure 4. The refererr."
signa.ls for this application a.re the word input bcd_in a.dn the
output bcd-ok. The rnapping functions indicate how bcd_in

clock fi1:0100 fi2:0001
boolean BCDINO BCDINI BCDIN2 BCDIN3 YO
semantics of constant "10',
eval val0: O

eval vall: 1

eval va12: 0
eval val3: 1

f semantics of rr<rr operator
eval less0:(IBCDIN0 & va10)
eval 1ese1:(IBCDINI & val1 + (BCDINI & vaI1

+ !BCDIN1 & !val1) & lessO)
eval lese2:(IBCDIN2 & va12 + (BCDIN2 & va12

+ IECDIN2 & !va12) & lessl)
eval 1ess3:(!BCDfN3 & va13 + (BCDIN3 & val3

+ IBCDIN3 & !va13) & Iess2)
eval BCD0K:1ess3
state in irnplementation corresponding to
algorithmic sample time
set y0:Y0 y1:0 y2:0 y3:0
application of bcd_in[O..3] in the
appropriate clock phases.
set x:BCDIN3
phaso 4
set x:BCDIN2
phase 4
set x:BCDIN1
phase 4
set x:BCDINO
phase 4
f correctness verification by 0BBD methods.
verify o:BCD0K

bcd_in(ls) bcd_ok(ts)

4 Conclusions and F\rture Work.
The ,9FG-fracing methodology is currently being worked
out for proving the correctness of the synthesis results in
CATHEDRAL-I [7] and CATHEDRAL-II. The COSMOS
[1?] compiled-code switch-level simulator is used as a sym-
bolic simulator in the algorithm. In this way the aplusb
design (2000 tr.) [S] and the rec3 design (32,000 rr.) have
already been formally verified.

Aeknowledgements.
The authors hereby wish to thank R. Bryant for making the
COSMOS system available to perform the research men-
tioned in this paper. The authors also thank the partners in
the ESPRIT CHARME and CHEOPS Basic Research Ac-
tions for the fruitful cooperation and interesting discussions
on the subject of formal hardware verification.

Referenees

[1] S.H. Hwang, A.R. Newton, "An Efficient Design Cor-
rectnegs Checker Of Finite State Machines", Proceed.-
ings IEEE ICCAD-8\ pp. 410-413.

[2] 0. Coutlerl,, C. Berthet, J.-C. Madre, r(Veriflca-

tion of Sequential Machines Using Functionol Vec-
torstt, in "Formal VLSI Correctners Verif,cationt'rEd.
L.Claesen, North-Holland, 1990, pp.267-286.

[3] P.Camurati, T. Margaria, P. Prinetto, "Application
selection: Finite State Machinest', report ESPRIT
CHARME-PDT-1.A-01, July 1, 1990, pp. 6-11.

[4] L. Claesen, F. Proesrnans, E. Verlind, H. De Man,
" SFG-Tracing: a Methodology for the Automatic Ver-
ification of MOS Transistor Level Implementations
from High Level Behavioral Specifications", Proc. In-
ternational Workshop on Formal Method.s in VLSI
Derign, ed. P.A. Subrahmanyam, Miami, January 9-
I1,1991.

[5] M. Genoe, L. Claesen, E. Verlind, F. Proesmans, H.
De Man, r'Illustration of the SfG-?rccr'ngmulti-level
behavioral verification rnethodology, by the couect-
ness proof of a high to low level synthesis application
in CATHEDRAL-II", Proc. IEEE Interna,tional Con-
ference on Computers and. Design, ICCD-9l, Cam-
bridge MA, October 14-16, 1991.

[6] P. Hilfinger, ('Silage, a high-level language and sili-
con compiler for digital signal processing" , Proc, IEEE
CICC-85, Portland, May 1985, pp.213-216.

[7] R. Jain, F. Catthoor, J. Vanhoof, B. Deloore,
G.Goosens, N. Goncalves, L. Claesen, J. \'a.n Gin-
derdeuren, J. Va.ndewa.lle, H. De Man, "Custom de-
sign of a VLSI PCM-FDM transmultiplexer ftom sys-
tem specifications to circuit layout using a computer
aided design system", IEEE Tranaactions on Circuita
and, Systems, Vol. CAS-33, No.2, pp. 183-195, Febru-
ary 1986.

[8] H. De Man, J. Rabaey, P. Six, L. Claesen, "Cathedral-
II: A silicon compiler for digit,al signal processing",
IEEE Desi,gn I Tett of Computerr, December 1986,
Vol. 3, No. 6, pp.73-85.

[9] J.Vanhoof, I.Bolsens, S,De Troch, E.Blokken, H.De
Man, "Evaluation of high-level design decisions rrsing
the Cathedral-Il silicon conrpiler to prototype a. DSP
ASIC", Proceed.ingr, IFIP Workshop on High Leuel
and Logic Sgnthesit, ed. G. Saucier, Paris,30 May-I
June 1990.

[10] W. Hunt, "FM8501 : A verified microprocess or" , Tech-
nical Report 17, The Uniaertity of Terac at Austin,
February 1986.

[11] J.Joyce, t'Formal Veriffcation and Implementation of
a Microprocessor", in "VLSI Specification, Verifica-
tion and. Sgnthetis", editors: G. Birtwistle and P.A.
Subrahmanyam, Kluwer 1987, pp. 129-157.

[12] R.E. Bryant, (A Switch-Level Model and Simulator
for MOS Digital Systems", IEEE Transactionr on
Cornputers, Vol. C-33, No.2, February 1984, pp. ld0-
177 .

[13] R.E. Bryant, '(Algorithmic Aspects of Symbolic
Switch Network Analysis", IEEE Transactiou on
Cornputer-Aid,ed, Dedgn, Vol. CAD-6, No. 4, July
1987, pp.618-633.

[14] R.E. Bryant, "Boolean Analyais of MOS Circuits",
IEEE Transactions on Computer-Aid,ed, Detign, Yol.

-;.;*:QAD-6, No. 4, July 1987, pp. 634-649.

[15] P. Herrebout, "BOTRYS: A program for the symholic
analysis of MOS circuits at the switch level", Thesis
IMEC - Katholieke Universiteit Leuven Belgium, July
1 988.

[16] W. Lempens, "symbolic analysis of digital MOS cir-
cuits at the switch level", Thesis IMEC - Katholieke
Universiteit Leuven Belgium, July 19S9.

[17] R.E. Bryant, D. Beatty, K. Bra.ce, K. Cho, T. Sheffer,
"COSMOS: A Compiled Simulator for MOS Circuits",
24th Design Automation Conference, pp. 9-16, 198?.

[18] S.Bose, A.L. Fisher, "Verifying Pipelined Hardware
using Symbolic Logic Simulation", Proc. o! the IEEE
International Conterence on Computers and Design,
ICCD-89, pp. 217-227.

[19] R.E. Bryant, "Graph Based Algorithms for Boolean
Function Ma.nipulation", IEEE Trantactions on Com-
puters, Vol. C-35 No. 8, August 1986, pp. 667-691.

[20] R.E. Bryant, "On the Complexity of VLSI Implemen-
tations and Graph Representations of Boolean Func-
tions with Application to Integer Multiplication", re-
port Carnegie Mellon Uniuersity, September 2?, I988.

[21] H. Simonis, "Formal Verification of Multipliers",
in "Formal IlLSI Correctness 1:erifi,cation", Ed.
L.Claesen, North-Holla.nd, I gg0, pp. 267-286.

122) A. Bratch, H. Eveking, H.-J. Faerber, J. Pinder, U.
Schellin, "LOVERT - A Logic Verifier of Register
Transfer Level Descriptions", in ('psrmal VLSI Cor-
rectnes s \;erification", Ed. L.Claesen, North-Holland,
1990, pp. 247-256.

