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Abstract.

In this paper a novel methodology for the formal correct-
ness verification of digital (VLSI) designs is presented. This
methodology aims at bridging the gap from transistor switch
level circuits, as obtained from circuit extraction, up to high
level specifications. The SFG-Tracing verification method-
ology inherits its power from the exploitation of the inher-
ent algorithmic information in the high level (signal flow
graph level) specifications. Given the fact that the circuit
designer provides the appropriate reference signals and map-
ping functions, the methodology is intended to operate au-
tomatically on VLSI circuits of up to 50,000 transisturs and
more.

1 Introduction.

The possibilities offered by the steadily increasing complex-
ities offered by the VLSI technology have resulted in the
fact that more and more complex systems can be built on
integrated circuits. The realization of complex systems has
become design limited instead of technology limited. The
challenge is indeed to design electronic systems first time
right. This is required to avoid costly redesign, and delays
in market introduction of new products. These economic
reasons are the drive behind a lot of effort to check the cor-
rectness of designs with respect to their specifications.

Traditionally simulation (at multiple levels of design ab-
straction) is being used, and is standard industrial practice,
to verify the correctness of electronic designs before they are
produced. It is however very well known that for even mod-
erately sized circuits it is not possible to try out all possible
input excitations in these simulations, due to the combina-
torial explosion problem in the number of possible patterns.
Therefore designers have to choose an appropriate subset of
input stimuli for verification by simulations. This method
leaves open the possibilities for undiscovered design errors.
This motivates the need for analytic verification techniques
that are input pattern independent. The technique of static
timing verification is an analytic technique that has cur-
rently gained industrial acceptance for the verification of
the speed performance of circuits.

The analytic verification of the behavioral correctness of
digital designs with respect to their specifications is however
still in its infancy. It is mainly hindered by the problems of
combinatorial explosion in handling the mathematical for-
mulas describing the systems at hand.
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Formal correctness verification techniques have been in-
vestigated already for a few decades in theoretical compuler
science. Although better insights have been gained in the
mathematical modeling of computer programs, no full cor-
rectness proofs of practical computer programs can be done
in a realistic way. Formal verification techniques derived
from these developed in theoretical computer science have
been applied in hardware designs and have been illustrated
by the correctness proofs of small microprocessors nsing me-
chanical theorem proving methods [10, 11]. Even for these
small sized applications, the correctness proofs_require sev-
eral months of (mechanical theorem proving) éxpert inter-
action for conducting the correctness proof. It is also not
obvious how design specific theorems and proof strategies
can be automatically generated from specifications or how
they can be reused in new designs.

For the representation and manipulation of Boolean for-
mulas, the ordered binary decision diagrams (OBDD's) [19]
is currently the best known technique. It is currently used in
the verification of combinaterial logic and in logic synthe-
sis. Several additional techniques are still being proposed
that improve the efficiencies that can be obtained. Ana-
lytic methods [13, 14, 17] have been developed that allow to
extract symbolic equations from MOS switch level circuits,
that accurately model bidirectional information flow, mmlti-
ple strengths of nodes and transistors and 'X’ hehavior. For
the verification of finite state machines (modeling the con-
trolers in digital systems) promising techniques have been
worked out [1, 2].

The main breakthroughs in formal verification methods
for behavioral correctness have been achieved by methods
that take advantage by exploiting the circuit structure in
the verification algorithms. This is the only way Lo avoid the
problem of combinatorial explosion that results when trying
to formulate the correctness problem in a general way (e.g.
Boolean formulas) and have a general decision procedure
trying to figure out the correctness.

Further along these lines of correctness verification we
propose a method called SFG-Tracing that exploils the in-
formation available in the signal flow graph level specifica-
tion that describes the algorithms to be implemented.

In this paper we present a new methad for the automatic
verification from the behavioral signal flow graph specilfi-
cation down to lower implementation levels. These can go
down to the switch level if a suitable symbolic simulator is
used. In line with the automatic verification algorithms, as
much as possible the structure available in the problem at
hand is being exploited. The first application targel isin the
verification of high level synthesis results as obtained by the
CATHEDRAL silicon compilers [8], but the methodology is
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Figure 1: Design & time abstraction levels from SFG (signal
flow graph) down to transistor layout, for a receiver pulse
shaper and equalizer, containing 3 ALU’s of 14 bits as syn-
thesized by CATHEDRAL-II

generally applicable.

The algorithms are intended to operate with as little in-
teraction from the user as possible. The underlying assump-
tion is that the flow graph specification is synthesized while
keeping track of mapping relationships of a set of well-chosen
reference signals of the specifying flow graph and of the im-
plementation. The global verification problem is reduced
to a manageable size by partitioning the information in the
global signal flow graph into acyclic subgraphs and provid-
ing correspondence (mapping) functions between the inter-
face values (reference signals) in the partitioned graph and
the signal values at specific cycle and clock phase times in
the implementation. The correctness of each individual sub-
graph is proven by making use of a (switch-level} symbolic
simulator that acts on the actual switch level models of tran-
sistor circuits.

To give an indication of the information explosion from
high level (SFG) specifications down to the implementation,
consider the modem pulse shaper and equalizer chip indi-
cated in figure 1 as designed by Vanhoof e.a. [9]. This
system implements the filter flow graph indicated in the top
of the figure and can be formally specified in the SILAGE
language in 70 lines of text. The chip implementation as
synthesized by CATHEDRAL-II [9] results in a microcoded
architecture with 3 ALU’s of 14 bits and consists of more
than 12000 transistors. Near the figure is shown the time ab-
straction from sample periods at SFG level over micro-code
instruction cycles, clock phases down to clock waveforms at
the switch level. Notice that all the signals that appear in
the SFG specification occur in some form during specific
times at specific places in the transistor implementation of
the chip. Operations in the SFG can however occur on the
same hardware blocks such as ALU’s at different instances
of time. This relationship between algorithmic SFG signals
and signals in space and time of the implementation forms
the basis for the SFG Tracing verification methodology.

In this paper we give a short overview of the theoreti-
cal background of the SFG-Tracing methodology. For the
relationship with existing formal verification methods and
an overview of the inclusion of the methodology in a CAD
environment, we refer to [4].

In the next section, we give an overview of the SFG-
Tracing methodology. The concept will be illustrated by
a practical example in section 3.

2  SFG-Tracing Methodology.

The goal of the verification process is to verify the behavioral
input-output correctness of the lower level implementation
with respect to the high level signal flow graph specification.
Of course it would be the most interesting to perform the
verification from a level as high as possible to an implemen-
tation as detailed as possible. In this paper, we consider the
SILAGE SFG level as the specification, and the transistor
switch level as the representation. Higher levels of the im-
plementation could also be considered (such as gate level or
sRT or bRT level). The same techniques as indicated below
would apply in each of these cases. The switch level imple-
mentation is however preferred, because it reflects the best
the circuit implementation. Appropriate symbolic analysis
techniques based on Bryant’s method [13, 14] for the switch
level have been developed and are supported in CAD tools
(17, 15, 16], =

2.1 Flow Graph Specification.

For the SFG-tracing, two aspects have to be comsidered.
The first consists of the verification of the initialization se-
quence, and the second aspect consists of the verification
of the steady state behavior. The initialization sequence is
used to bring the implemented system into a known state.
Starting from that known state, cycles and clock phases can
be defined, which correspond to the SFG level sample pe-
riods. The initialization sequence consists of the sequence
following for example the reset pulse. The symbolic simula-
tor will have to be started from the initialization sequence
in order to be able to bring the implemented system into a
known state. The SFG specification also contains initializa-
tion information (initial values at SFG level registers). The
verification will consist of two phases: the initialization and
the steady state. Although similar techniques can be used
for both phases, this paper will concentrate further on the
verification of the steady state behavior.

2.2 Basic SILAGE Signal Flow Graph Semantics.

The basic SILAGE signal flow graph semantics are modeled
by a graph G(V, E).

The set of vertices V" of this signal flow graph G are defined
by vertlices v; € V" corresponding to the primitive operations
in SILAGE. Examples are: arithmetic operations (addition,
subtraction, multiplication...), shift, logical operations and
conditionals.

The set of edges is F is defined by edges e; € F, where
each e; corresponds to a signal in the SILAGE flow graph.
In SILAGE, signals are defined as one-sided infinite streams,
characterized by a specific sampling rate.

Two functions

Inputs : V — E* and
Outpuls : V — E*
can be defined:
Inputs(vi) = {er, exy1, ...em } and



Outputs(v;) = {ei,€141,...€,}

which describe the inputs and outputs of operators in
SILAGE. In SILAGE only one output is used per operator.

To each edge e; corresponds a SILAGE signal, that is
modeled as a stream. However at specific moments in the
algorithm time ¢, , individual element values of the stream
can be considered e;(t,;,). The signals can be words repre-
senting numeric binary values of a specific word length W,
The signal consisting of a binary word can be represented
ag ﬂj[l..ng]. It is assumed that individual bits in signals
representing binary values are ordered from most significant
bit (MSB) (index 1) to the least significant bit (LSB) (index
w,;). The k’th individual bit of the signal €; is represented
as e;[k].

2.3  Reference signals and Mapping functions.
In SFG-Tracing we make the following assumptions:

1. There exist a number Ny of reference signals e, €
RefSignals(G(V, E)) corresponding to edges in the
SFG algorithm specification and signals at specific
(cycle and clock) times in the implementation. The
specification SFG is implemented in hardware main-
taining the same behavioral relationships for these ref-
erence signals,

For all reference signals e, € RefSignals(G(V, E))
the signaly ¢." in the specification and e, in the im-
plementation can be defined:

@ The reference signals in the SFG specification
er"(t,,) have the following semantics in terms of
Boolean bit words:

e "[k.](t,) € B (1)

for all bits k., € {1..w.} in the SFG signal word
and for a specific sample time ¢,. B is the set of
Booleans. Often at the SFQ level, the individual

bits in signal words are not considered.

¢ The reference signals in the implementation are
characterized by:

eri[k,‘](tik;) €B (2)

for individual bits with index k; € {1..w:} at
specific implementation times t;x,. The index k;
of tix; indicates that each bit of a reference signal
has to be considered at a specific cycle and clock
phase individually. This is for example already
necessary in bit-serial implementations of SFG
specifications.

2. There exist a set of mapping functions F that describe
the behavioral correspondence in space and time of
reference signals in the SFG algorithm specification
with respect to the lower level implementation at the
specific implementation times.

F : Switch_sign_semant. —+ SFG sign_semant.
(3)

Or:

F . BY — B (4)
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Figure 2: Illustration of the concepts of reference signals and
mapping functions that relate signals in the SFG specifica-
tion to signals in lower level implementations. (Here down
to the switch level).

where B3 is the set of Boolean values.
The function F is defined as:

er"(t:) = Fler [1)(tn ).e [wil(tin)) (5

This is a vector assignment over the individual bits of
the reference signal in the SFG.

3. All edges and vertices in G(V, E) are reachable via
directed paths starting at the edges corresponding to
reference signals,

4. The reference signal partitions the graph G(V, E) such
that the subgraphs are acyclic.

The most essential form of reference signals would be the
input and the output to the algorithm to be implemented
in hardware. The verification effort and complexity can be
reduced if more reference signals are available.

The concept of reference signals and mapping functions is
illustrated in figure 2.

For the reference signals it is required that mapping re-
lations are available, which state the relationship hetween
reference signals in the specification and in the implementa-
tion. This could be in the form of a certain word at a specific
sample time in the SFG level begin implemented in terms
of bits in specific registers (at specific time phases) at the
lower level implementation. Most of the relationships will
be simple correspondences of the logic values in specifica-
tion and implementation. Other relationships could include
a specific logic function to convert the logic representation
in the specification into the logic representation in the im-
plementation or vice versa. The simplest form of this are
signals in the specification that are identical or inverted in
the implementation. However, more complex relationships
can be envisioned: e.g. an integer word at the SFG level
represented in the implementation in carry save technique,

The third condition is required so that the SFG Tracing
algorithm can use a directed graph traversal algorithin to
reach all of the parts in the specification SFG in order to do
the comparison.

2.4 Signal Flow Graph partitioning.

The choice of appropriate reference signals and mapping
functions allows that SFG graph G(V, E) is pariitioned
into a signal flow graph PSFG (Partitioned Signal Flow
Graph) consisting of a set of disjoint and acyclic subgraphs
Gp(Vi Ep). Each subgraph G,(V,, E,) consists of a cutset
of vertices of G(V, E) where the edges between vertices in



the cutset and vertices out of the cutset correspond to the
reference signals, related to that subgraph.

2.5 Description of the SFG-Tracing method.

The reference signals allow a subdivision of the global SFG
in 8 number of subgraphs in the PSFG. For each subgraph
in the PSFG a vetification of the implication of the speci-
fication by the implementation is verified by performing a
symbolic simulation of the implementation.

SFG_Tracing()

read ref signals_and mapping functions();
init_symbolic_simulation();

PSFG = Partition_SFG();

for each subgraph in the PSFG

{

for impl time = start_time to end time;

symb initialize impl signal (impl time) ;
symbolic simulate_step(impl_time);
}
symb_compare_signals() ;
}
}

In read ref _signals_and mapping functions(); the ref-
erence signals and the mapping functions are read. Mak-
ing use of this information, the partitioning of the signal
flow graph is performed in Partition SFG. Hereafter for
each subgraph the verification is done by a symbolic sim-
ulation. Since reference signals in the implementation can
occur in different cycles and clock phases, (within a global
SFG clock period of the system) the values of implemen-
tation signals have to be initialized in the symbolic simu-
lation at the appropriate implementation times. Therefore
the symbolic sirnulation has to be done from start_time
to end_time, such that all the signals that are input to the
PSFG subgraph can be initialized and that after that, all
signals at the output of the PSFG subgraph can be evalu-
ated in the appropriate cycle time and clock phases.

In the symbolic simulation, the reference signals and the
signals dependent on them will be evaluated symbolically.
External signals that are always recurring during each global
SFG time period will have specific values. This is the case
for external clock signals, that will be used for the specific
values in the respective phases. Other signals such as reset
signals and signals to put the circuit in test mode, will be
set to the specific constant values. Doing such a symbolic
simulation will result in specific (Boolean 1,0) signals for the
control circuits, and symbolic signals for the other circuitry.
Most of the time 'x’ signals will be used in the symbolic sim-
ulation. Only for those signals implementing the operations
of the subgraph of the PSFG at hand, symbolic values will
be computed.

The controller takes care of the sequencing in time of the
hardware operations that have to be performed on the same
hardware operator (e.g. the same ALU). By doing symbolic
simulation, the effect of the sequencing by the controller is
removed, and the hardware operators can be seen as un-
folded for the specific operations that they have to perform.

By this symbolic simulation, the micro-code controller
will normally operate with instantiated signal values (1,

‘0%, 'x') instead of symbolic values in the execution of cy-
cles and clock phases. These instantiated signal values can
directly be used (and reduced) in the symbolic simulations.
By this fact of unfolding (or unrolling) the algorithm again
to its maximally parallel representation the effect of the con-
troller, and its specific encodings can be ’simulated away’.

After the symbolic simulation, symbolic expressions are
obtained for the output signals corresponding to the sub-
graph under consideration. Notice that these symbolic out-
put signals have to be taken at the appropriate cycle and
clock phase times as defined by the reference signals. As
already explained these output signals correspond to the
maximally parallel representation as in the SFG specifica-
tion, and the correctness has to be verified by comparison.

From the semantic definitions of the primitive operations
in the specifying SFG, the mapping functions for the ref-
erence signals (that form the interface for the subgraph at
hand), and the results of the symbolic simulation a compar-
ison is done in symb_compare_signals.

From the semantics of the primitive operators in the sub-
graph of the PSFG under consideration, the input output
behavior at the SFG level for the subgraph can be derived.
This is characterized by the function:

Sajg:B" = B’ (6)

This function provides the behavioral relationship as ex-
tracted from the SFG semantics between reference signals
at the input e, * and at the output e,,,,” of the subgraph
under consideration:

er,..’ =Sﬂfﬂ(er.’uﬁ) (M

In the same way the input-output behavior function as
derived by the symbolic simulation of the implementation
can be defined:

Simpt : BY — B” (8)

This function provides the relationship as obtained by the
symbolic simulation between reference signals at the input
er;.,' and at the output e,,,," of the subgraph under consid-
eration:

€rpni' = Simpt(er,') (9)

The mapping functions for the reference signals at the in-
puts and outputs of the subgraph under consideration pro-
vide the following relationships:

e"uutﬂ = f"oul(erou!i) (10)

and:

er;, " :}_r;..(eri..') (”)

From the above relationships, the subgraph behavioral
functions and the mapping functions, the following condition
for the correct behavioral verification of the subgraph under
consideration can be derived:

Sesg(Friuler,)) = Frou (Simpler, ') (12)

The verification will normally be done by tautology check-
ing, based on efficient methods such as OBBD’s [19]. In this
comparison, one can however also make use of the informa-
tion available from the signal flow graph, such as the faci
that at the SFG level signals are representing bit-words.
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Figure 3: State transition diagram for a bit-serial implemen-
tation of a BCD-recognizer.

Optimized verification algorithms and vector-based reduc-
tion rules such as presented by Eveking [22] and Simenis
[21] can be used to improve the cpu-time efficiency of the
verification.

3 Design example: A bit-serial BCD-

code recognizer.

To illustrate the SFG-Tracing methodology, we use the
BCD-recogniser as introduced by Dietmeyer and described
in [3]. At a high level this system could be considered as
taking in 4-bit words per (algorithmic) sample period. The
recognizer has to decide per sampled word wether it is a
BCD-code or not. This can be specified at the SFG level in
the LOGMOS language as given below:

/*
High Level Behavioral Flow Graph Specification
BCD recognizer

*/

cell bed_recognizer ()
unsigned input bcd_in[4];
output becd_ok; bod_in(is)
end bcd_recognizer; D_ ¥ <
i

bed_ok(ts)

U

description of bcd_recognizer
{

becd_ok = becd_in < 10; 10
}

end description;

High level (SFG) specification and signal flow graph repre-
sentation.

The signal flow graph representation is indicated near the
description. For the implementation one could decide on a
bit-serial realization, where the 4 bits of a word are entered
bit per bit, with the least significant bit first. Such a bit-
serial BCD-recognizer could be represented as a state tran-
sition diagram as illustrated in figure 3 describing the bRT
(behavioral Register Transfer) level. A specific implementa-
tion could be realized by an nMOS 2-phase non overlapping
clock methodology as illustrated in figure 4. The reference
signals for this application are the word input bcd_in adn the
outpuf bed. ok. The mapping functions indicate how bed_in
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Figure 4: nMOS realiation of a BCD-recognizer circuit.

in the SFG is related in space and in time to the signals in
the bit-serial implementation in figure 4. From the seman-
tics of the comparison operator ”<” the functionality be-
tween input and output can be determined. The semantics
of the implementation is determined by symbolic simulation
using the CO§MOS symbolic simulator [17). Hereafter, the
correctness verification according to equation 12 can be per-
formed using OBDD-based methods. This is accomplished
using the following command script for the COSMOS sym-
bolic simulator:

clock £i1:0100 £i2:0001

boolean BCDINO BCDINi BCDIN2 BCDIN3 YO

# semantics of constant "10"

eval valO: 0

eval vall: 1

eval val2: 0

eval val3: 1

# semantics of "<" operator

eval less0:(!BCDINO & valo)

eval lessl:(!BCDIN1 & vall + (BCDIN1 & vall
+ !BCDIN1 & !'vall) & less0)

eval less2:(!BCDIN2 & val2 + (BCDIN2 & val?2
+ !'BCDIN2 & !val2) & lessl)

eval less3:(!BCDIN3 & val3 + (BCDIN3 & val3
+ !BCDIN3 & !'vall) & less2)

eval BCDOK:less3

# state in implementation corresponding to

# algorithmic sample time

set y0:Y0 y1:0 y2:0 y3:0

# application of bcd_in[0..3] in the

# appropriate clock phases.

set x:BCDIN3

phase 4

set x:BCDIN2

phase 4

set x:BCDIN1

phase 4

set x:BCDINO

phase 4

* correctness verification by OBBD methods.

verify o:BCDOK



4 Conclusions and Future Work.

The SFG-Tracing methodology is currently being worked
out for proving the correctness of the synthesis results in
CATHEDRAL-I {7] and CATHEDRAL-II. The COSMOS
[17] compiled-code switch-level simulator is used as a sym-
bolic simulator in the algorithm. In this way the aplusb
design (2000 tr.) [5] and the rec3 design (32,000 tr.) have
already been formally verified.
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