An ASIC for

Mark Genoe Wim Ploegaerts

Luc Claesen

Die-Sinking Spark Erosion Simulations

Hugo J. De Man

Interuniversity Micro Electronics Center (IMEC), Leuven

Claude Tricarico

R. Delpretti

Dirk Dauw

Charmilles Technologies S.A., Geneva

Abstract

Electrical Discharge Machining (EDM) simulation is
always been considered as a very hard problem, for reasons
that such simulations are extremely computation intensive.
However, this paper presents a wide range of
implementations for the Die-Sinking Spark Erosion Process,
which prove that EDM simulations are today executable in an
acceptable time. All the implementlalions we propose here are
designed on a full automatic way, using the Cathedral Silicon
Compilers System developed at IMEC-Heverlee. The results
are compared with similar implementations on a TMS320
domain specific commercial signal processor. From the
viewpoint of EDM-users, these simulations are very useful
because the final results of this kind of thermo-electrical
processes are in no way predictable.

l.__Introduction

In Electrical Discharge Machining (EDM) [1],
material removal is achieved by the thermal action
of electric discharges occurring between a tool-
electrode and the workpiece, in contrast with the
conventional metal-removing methods using high
mechanical forces. By each discharge a small
volume of material is melt away from workpiece as
well as from the tool-electrode. The electric
discharges are produced by a generator applying
voltage impulses between electrode and workpiece,
at a rate of 10 to 1000 Khz.

The gap between electrode and workpiece tends
to increase as material removal goes on. If the
tool-electrode was fixed in its original position
the machining process would stop as soon as the
gap would reach a size too large to allow for
further discharge breakdown. In order to maintain
the ‘'sparking'-process, the electrode has to be
fed towards the workpiece in such a way as to keep
the gap-width within some narrow limits and to
avoid contact between the electrode and the

workpiece. This is achieved by a servo-controlled
feed mechanism. By this way the tool-electrode is
sunken gradually into the workpiece. The
complementary shape of the electrode is than
reproduced into the workpiece with a small
oversize of 0.01 to 0.02 mm (figure 1).

The EDM operation 1is carried out in a

dielectric fluid intended primarily to concentrate
the discharge energy of a single discharge.
Forced circulation of the fluid is often used to
remove the small metal chips.

TH0316-0/90/0000/0236/$01.00 © 1990 IEEE

236

—-——

figure 1: Die-Sinking EDM-process.

Besides the Die-Sinking process, there are two

other important Spark Erosion processes: wire-
cutting and grinding. However, the Die-Sinking
process is the only one worthy to simulate,

because for this process the final results after a
large amount of discharges depend largely on the
electrode wear.

The applied Research Department of CHARMILLES
TECHNOLOGIES S.A. Geneva has developed a
mathematical model to simulate the intermediate
and final results of the processes on their Spark
Erosion machines, in particular for Die-Sinking
[2]. The original implementation was in PASCAL,
but the execution time on a PC took several hours.
So, other and faster solutions had to be found.

In this paper a comparison is presented between
different implementations for the rather complex
simulation model for the Die-Sinking Spark Erosion
process. Therefore, we considered three kind of
processors: a general purpose processor (1), a
domain specific signal processor (2), and an
application specific signal processor (3). We
compare the final execution time after one hundred
cycles for a specific example, chosen as
reference.

Each implementation is obtained on a nearly
full automatic way, starting from the same high
level behavioural description for each of the
three processor types.

The simulation model described in this context
does not apply for all imaginable three
dimensional (3D) geometries. Only those 3D
geometrical shapes of tool and workpiece which can
be generated by a 2D geometric function are
considered here, i.e. geometries with a rotational
or a longitudinal symmetry.

Thus, we are talking here about 3D shapes which
can all be transformed into a 2D concept. Other 3D
shapes which do not match the above definitions
are not considered in this study though, the
applied techniques and algorithms can be extended

for these applications.
An important point in the model was the way to

describe both the workpiece and the tool-
electrode. This is done by two discrete
functions: for the workpiece W[il:i=1l..m, and for

Each discrete
one for the x-

the tool-electrode T[j]l:j=1..n.

function contains two coordinates,
direction and the other for the y-direction.
These discrete points have to be successively
filled along both contours in the same direction.
Special attention must be given on the fact that
the computing time will increase with the square
of the number of considered points, but the
accuracy of the final results is of course also be
related to that number.

One can imagine that metal removal and tool
wear consist of removing thin surface layers
successively at the tool and workpiece. Based on
this assumption, the spark erosion removal can be
decomposed into tive basic steps:

1. Workpiece removal 4. Tool feed (servo)
2. Tool feed (servo) 5. Shape regeneration
3. Tool wear

Each simulation cycle involves the removal of a
slight surface layer at the workpiece and the tool-
electrode respectively. The new coordinates of
the points are calculated in the first and the
third step, respectively for the workpiece and the
tool-electrode. This works as follows: for each
point first the distance to the nearest point of
the opposite shape has to be found. With this
distance we can read from an experimental measured
curve the local removing volume.

As known, in EDM the working gap between tool-
electrode and workpiece remains almost fixed. 1In
reality the working gap varies slightly around a
mean value. In this model it is assumed that the
minimum distance between the two electrodes
remains fixed. This recalculation is done after
each removal step, in step two and four.

The last step of each simulation cycle is the
shape regeneration. This means that we will
control the two discrete functions, for reasons
that their length will surely vary during the
simulation, and hence the number of points of both
functions has to be adapted. By doing this, we
are sure that the point density, and even the
accuracy can always be guaranteed.

The execution of this five step will remove one
small layer of both electrodes. By repeating this
for a great number of times, the tool-electrode
will sink gradually into the workpiece.

The most occurring activity in this algorithm
is the calculation of something like c=a*a+b*b.
Each cycle we have to search, for each point of
both electrodes, between all the points of the
opposite electrode for that point with the
smallest distance. This is done in step one and

three. In the fifth step the distance between
successively points of each discrete function has
to compute for contrelling and adapting if
necessary.

For the description of our signal flow graph we
choose the functional language SILAGE (3][4]. We
had three good reasons for doing this: first of

237

all, we can simulate this description by using the
s2c-compiler of IMEC, which transforms the non-
procedural SILAGE description into a procedural
and executable C-description. Secondly, EDC-
Heverlee has developed recently a compiler to
transform the description in an optimal machine-
code for the TMS320C25 and TMS320C30 signal
processor. Finally, SILAGE is also be used as
description language for the Cathedral Silicon
Compilers developed at IMEC, which translates the
signal flow graph in a single multi-processor
ASIC. Each of this tools gives possible solutions
for the Die-Sinking Spark Erosion simulations. 1In
the next sections we will discuss them separately.

lll._A General Purpose Processor

This is of course the easiest implementation,
with the minimal cost but the highest execution
time. The bottle-neck here is of course the fact
that both instructions and data are stored in RAM,
and that they travel on the same bus. Another
important thing is that all the multiplications
have to be compute on an iterative way, by
shifting and adding on the ALU.

As mentioned an important point in this study
was that all implementations started from the same
behavioural SILAGE-description. Thanks to the s2¢-
compiler from IMEC we were able to obtain a first
-software- implementation in C ([5].

We tried first to optimise the original
description: so we changed the floating-point
operations in fixed-point operations, we found
faster methods to get the nearest distance to the
opposite electrode, we removed as much as we could
large computations like square-roots, divisions,

etc. Simulations on an APOLLO 3500 workstation
have shown us that the execution time was reduced
from several hours to several minutes, thanks to
all these corrections. An example of such
simulations is shown in figure 2.
7.00E+00 F
6.00E+00 | : :
5.00E+00 | § :
N :" ‘:ft
4.00E+00 | LA |
v N sl
f—————— S T I
\ N |
3.00E+00 | i |
' |
I
2.00E+00 | | !
" " y
2.00E+00 4.00E+00 6.00E+00

figure 2: Example of EDM Die-Sinking simulations.

V. Domain ecific Signal Processor

As explained above, the main operation in the
algorithm is the calculation of something like
c=a*a+b*b. Using a hardware multiplier with

accumulator this can we done very fast. Some

commercial processors like e.g. the Motorola56000
family and the TMS320 family make use of this
advantage. For this application, we picked out
two processors of the last family. This family
supports realtime digital signal processing (DSP)
and computation-intensive applications in areas of
telecommunications, modems, speech processing,
instrumentation, numeric processing, machine
controlling, etc.

The TMS320C25 [6) is a 16-bit processor with
Harvard-type architecture, in which program and
data memory reside in separate address spaces.
This allows a full overlap of instruction fetch
and execution (100 ns cycle time). Internaly,
full-speed execution is obtained by maintaining
two separate bus structures, for program and data,
with the possibility to exchange data between the
two buses. When we store the program instructions
in the on-chip ROM of 4K words (more than enough),
and the experimental measured relations between
gap-width and removal volume in the on-chip RAM of
544 words (or 272 words for each relation), than
we use this processor in a very efficient way for
our application. Only the coordinates of the
discrete functions have to be stored out of the

chip.

At the European Development Center (EDC
~Heverlee-Belgium) they have developed compilers
to translate a single flow graph from a

behavioural description (SILAGE) into an efficient
instruction-list for the TMS320. The efficiency
6f this compiler can be demonstrated by comparing
it with the C-compiler of Texas Instruments: the
instruction-list after using this compiler was
more than three times longer. The reason is that
this compiler first translates the C-code into

assembler as an intermediate step. The final
results for this processor type is that the
execution takes 34.0 seconds for a single

processor configuration, and 22.8 seconds for a
two-processor system. Using the SWDS simulator
[71 we were able to execute and test the obtained
instruction-code as a verification step in our
design.

The TMS320C30 Digital Signal Processor (8] is a
very recent 32-bit third generation micro-
processor in the TMS320 family. The 60~ns cycle
time allows it to execute more than 33 MFLOPS.
High performance is gained through its large on-
chip memories, concurrent DMA controller, full
floating-point multiplier and ALU, instruction
cache, etc. There is a high degree of parallelism
and very powerful instruction set.

The instruction-list for our application on the
TMS320C30 is also obtained by using a compiler of
EDC. Thanks to the parallel-operation instruction
set the number of instructions to implement our
algorithm on this processor is 2259 vs. 3195 for
the TMS320C25, or less than 70 %. This means that
the execution of our algorithm takes 16.4 and
10.8 seconds, respectively for a single and a two
processor configuration.

We can conclude that a domain-specific signal
processor like those of the TMS320 family can be a
good solution to execute this application in an
acceptable time, without extremely high cost or
other disagreeable problems. Comparing it with a
general purpose processor, as we saw in the
previous section, the execution is an order of 10
times faster.

238

The third type of processors we investigate in
this study is the ASIC or Application-Specific
Integrated Circuit. This means that datapath and
control logic are both designed in an optimal way
for each specific application separately. It is
obvious that such a solution will lead to the

fastest implementation, but also the most
expensive. The datapath can execute several
operations in parallel on different chosen

(EXU's), instructions are stored
data can travel on several

execution units
in a separated ROM,
buses, etc.

The VSDM-group of IMEC is intended to study
design methodologies for VLSI-systems. The result
of this work is 'Cathedral', a set of silicon
compilers for the design of integrated digital
circuits, starting from a behavioural description
of an algorithm. At this moment there are four
different Cathedrals, each of them with a target
architecture for a target application area:

CATH-1 CATH-2 CATH-3 CATH-4
Application linear DSP complex high through- | high through
Domain with simple DSP in the put with put with
control medium uregular regular
structure throughput signal flow signal flow
Target. hardwired microcoded hardwired systolic
Architecture | bit-serial multi-proc. cooperating array
hitecturc hi data-paths

The spark erosion algorithm is rather complex,
so it was clear that for this application the
Cathedral-II Silicon Compiler with microcoded
multi-processor architecture [9])[10) is the best
Cathedral-solution to design an ASIC.

The design methodology which is used in the
Cathedral-II Silicon Compiler is based on the so-
called 'meet-in-the-middle' strategy.

This means that a distinction is made between the
system design and the silicon design. When the
system design attains the level of functional

building blocks (FBB's), we can make use of the
silicon module library [11]. In a full-custom
design, more than 60 % of the design time is spent
on layout and verification. With the meet-in-the-
middle strategy, the reusable silicon modules
reduce these design tasks.

As mentioned above, for complex DSP-
applications in the medium throughput, a
microcoded multi-processor architecture is
developed into Cathedral-II. This target

architecture gives a fixed framework within the
structure of each particular design can be freely

chosen. There are three levels of hierarchy :
: at this level, the algorithm can
be divided into a number of independent

processors, with dedicated interprocessor memory
for communication. Such a division is not always

trivial, but can lead to a great decrease of the
cycle-count.
2. _processor level: each processor has his own

datapath and control logic. The datapath consists
of a number of execution units that communicate
with each other via buses. Examples of available

EXU's are the ALU, RAM, ROM,
computation unit, etc.

multiplier, address
Each clock cycle the
controller generates a microcode word that
specifies the function of all parts of the

datapath in that particular clock cycle. These
words are stored in the instruction ROM. The

program counter can be influenced by flags from
the datapath via a finite-state machine (FSM).

3. execution unit level: this is the lowest
level in the hierarchy. The EXU's are formed from
a number of FBB's adders, multiplexers,
register files, etc. These FBB's have
parameters such as number of registers,
wordlength, adder-type, etc.

In the interactive concept [12] of Cathedral-II
the system designer is able to give structural
hints to the compiler at the highest level. This
can be done by adding high-level directives to the
behavioural description (e.g. allocate 3 ALU's,
operation a>b on comparator nr 2, all
multiplication on a hardware multiplier or on an
ALU, etc.). The designer can easily iterate the
synthesis process from his workstation until he is
completely satisfied with the results. During the
interaction the module-generation environment is
consulted in depth to give early information about
the expected chip area and timing performance.
The reault of the synthesis in finally sent to Lhe
floorplanning environment. .

In this ASIC-study we compared many alternative
implementations. The best solution was an
idplementatinn with two ALU's, one hardware
multiplier and only on-chip RAM's. a summary of
the architectural results are given below:

as

SPEC's(bits) R1 | R2 | delay mm2
X=16-bll;Y=16-bil i 6 103 ns 1.1°2.7=2.9
X=16-bil;Y=16-bil 9 7 101 ns 1.1°2.5=2.6
X=16.Y=16 -> 32-bil 2 4 122 ns 2.0°3.4=6.9

" address=12;data=16 7 3 116 ns | 2.3°0.8=-1.08
inaS;oule16:size=21 . - 31 ns 0.8°0.7=0.§

1238 words;16 bil 2 4 76 ns |9.4°3.0-28.3
1030 words;16 bil 1 2 73 ns [9.1°3.0=27.7

16 bit - - 15 ns 0.2°1.1=0.3
16 bit 1§ ns 0.2°1.1=0.3
32 bil 15 ns | 0.272.1=0.5
163 words of 112 bil 160 ns 1.8°3.5=6.

total area: 78.2 mm2

cycle-time: 160 ns

The same configuration but with only one ALU
takes 727 cycles. If we remove also the hardware
multiplier the total cycle count is 4852. For the
above one-processor ASIC with 2 ALU's, 1 hardware
multiplier, 1 Address Computation Unit (ACU) and
only on-chip RAM's, the total execution time for
our spark erosion simulation application is 12.4
seconds. We notice that the timing and area
estimations are done for the current 1.6 micron
module library. Another, 1.25 library will be
installed shortly, and will lead to less area and
shorter delays.

It was also possible to partition the
algorithm at high level, what resulted in a multi-
processor system with switching RAM's as
intercommunication memory [13]. We did this for a
configuration with two processors (cycle-time: 120
ns), and the resulting execution time decreased in
only 6.5 seconds.

239

VI, nclusion

In this paper the results of a comparative
study between different implementations of a
rather complex application are presented, and they
show us that Die-Sinking Spark Erosion Simulations
don't have to be considered in the future as
unrealistic. After having rewritten some parts of
the original algorithm, without changing something
functional, we worked out several implementations
automatically on three different kind of processor-
types, all starting from the same behavioural high
level description. To achieve this, we used three
excellent compilers: the s2c-compiler for the
implementation on a general purpose processor, the
EDC-compiler for implementation on a TMS320
Digital Signal Processor, and the Cathedral-II
Silicon Compiler for the ASIC implementation. We
can conclude that the corresponding execution
times are respectively from the order of several
minutes, a halve minute and several seconds.

Vil. _Acknowledgements

The author wishes to thank Mr. Claude Tricarico
and Dr. Dirk Dauw of CHARMILLES TECHNOLOGIES S.A.
for all the information concerning this
application, and all members of IMEC's VSDM
division for their contributions to the presented
work.

REFERENCES

(1] Kruth J.P., "The EDM process, and lits applications®, ITB
university of Bandung-indonesia, KUL university of Leuven-
Belgium.

[2] Tricarico C., Delpretti R., Dauw D., "Geometrical Simulation of
the EDM Die-Sinking Process.”, Charmilles Technologies S.A.,
Geneva,1988.

(3] Hilinger P.N., "SILAGE: a Language for Signal Processing*,
University of California, 1984.

[4) Scheers C., Nachtegaele L., "SILAGE to C compiler®, IMEC
Laboratory, 1989.

[S] Kernighan B.W., Ritchie D.M., "The C Programming Language”®,
Prentice Hall, 1978.

[6) Texas Instruments, “TMS320C25 Digital Signal Processor”,
Product Description,1986.

[7] Digital Signal Processor Products, "User's Guide: Software
Development System (SWDS)", Texas Instruments,1987.

(8] Texas Instruments, "TMS320C30 Digital Signal Processor®,
Product Description,1988.

[9] De Man H., Rabaey J., Vanhoof J., Goossens G., Six P., Claegen
L." Cathedral-ll: a computer-aided synthesis system for digital
signal processing VLSI-systems®, IMEC, april 1988.

[10] Van Meerbergen J., De Man H., "A true silicon compiler for
the design of complex IC's for digital signal processing.”, IMEC-
Philips, 1988.

[11] De Keulenaer H., "Definition of the Cathedral-ll module
library®, IMEC, 1988.

[12] Goossens G., Lanneer D., Vanhoof J., Rabaey J., Van
Meerbergen J., De Man H., "Optimization-based synthesis of
multiprocessor chips for digital signal processing with Cathedral-
II", IMEC, may 1988,

[13] Decaluwe J., Rabaey J., Van Meerbergen J., De Man H.,
“Interprocesor Communication in Synchrenous Multiprocessor
Digital Signal Processing Chips®, IMEC, 1988.

