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Electrical Discharge Machining (EDM) simulation is
always been considered as a very hard problem, for reasons
that such simulations are exlremely compulation intensive.
However, this paper presenls a wide range of
implementations for the Die-Sinking Spark Erosion process,
which prove that EDM simulations are today executable in an
aoceptable time. All the implemenlalions we propose here ate
designed on a full automatic way, using the Calhedral Silicon
Compilers System developed al IME0-Heverlee. The resulls
are compared with similar implementations on a TMSS2O
domain specific commercial signal processor. From the
viewpoint of EDM-users, lhese simulations are very useful
because the final resulls ol this kind of thermo-electrical
processes are in no way predictable.

L lntroduction

rn El-ectrical_ Discharge Machining (EDM) [1],material removal is achieved by the thermal action
of electric discharges occurring between a tool-
electrode and the workpiece, in contrast r.rith the
conventional metaL-removing methods using high
mechanical forces. By each discharge a smalI
volume of material is mel-t away from workpiece as
well as from the tool-electrode. The eLectric
discharges are produced by a generator applying
vol-tage irnpulses between electrode and workpiece,
at a rate of 10 to 1000 Khz.

The gap between electrode and workpiece tends
to increase as materiaL removaL goes on. If the
tool-electrode was fixed in its original position
the machining process would stop as soon as the
grap wouJ.d reach a size too larqe to a.l,low f or
further discharge breakd.own. In order to maintain
the rsparkingt-process, the electrode has to be
fed towards the workpiece in such a way as to keep
the gap-width within some narrow limits and. to
avoid contact betereen the electrode and the
workpiece. This is achieved by a servo-control-Ied
feed mechanism. By this way the tool-el-ectrode is
sunken gradually into the workpiece. The
compfementary shape of the el-ectrode is than
reproduced into the workpiece with a small-
oversj-ze of 0.01 to 0.02 mn (figure l.).

The EDM operation is carried out in a
dielectric fluid intended primaril-y to concentrate
the discharge energy of a single discharge.
Forced circulation of the fluid is often used to
remove the small- metal- chips,

figure 1: Die-Sinking EDM-process

Besides the Die-Sinking process, there are two
other important Spark Erosion processes: wire-
cutting and grinding. However, the Die-Sinking
process is the only one worthy to aimulaee,
because for this process the final results after a
large amount of discharges depend largely on the
el"ectrode wear.

The applied Research Departmen! of CHARMILLES
TECHNOLOGIES S.A. ceneva has developed a
mathematical model to simulate the intermediate
and finaL lesults of the processes on their Spark
Erosion machines, in particular for Die-Sinking
l2l. The original implementation was in PASCAL,
but the execution time on a pC took several hours.
So, other and faster sol-utions had to be found.

In this paper a comparison is presented between
different implementations for the rather complex
simul-ation modeL for the Die-Sinking Spark Erosion
process. Therefore, we considered three kind of
processors: a general purpose processor (1), a
domain specific signal processor (21, and an
application specj-fic signal processor (3) . We
compare the final executj.on time afte! one hundred
cyeJ-es for a specific exampl-e, chosen as
reference.

Each implementation is obtained on a nearly
ful-1 automatic way, starting from the same high
l-eve.L behavioural description fOr each of the
three processor types.

ll. Algorithm description

The simul-ation model described in this context
does not apply for aLI imaginable three
dj-mensional (3O1 geometries. Only those 3D
geometrical shapes of tool and workpiece which can
be generated by a 2D geometric function are
considered here, i.e. geometries with a rotational
or a longitudinal slmmetry.
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Thus, we are tal"king here about 3D shapes which
can all be transformed into a 2D concept. Other 3D

shapes which do not match the above definitions
are not considered in this study though, the
applied techniques and algorithms can be extended
for these applications.

An important point in the model was the way to
describe both the workpiece and the tool-
e.Iectrode. This is done by two discrete
functions: for the workpiece wtil:i:l..m, and for
the tool-electrode Ttjl:j=1..n' Each discrete
function contains two coordinates' one for the x-
direction and the other for the y-direction'
These discrete points have to be successively
filled along both contours in the same direction'
Special attention must be given on the fact that
the computing time will increase with the square
of the number of considered points, but the
accuracy of the final results is of course also be

related to that number.
One can imagine that metal removal and tool

wear consist of rernoving thin surface layers
successively at the toof and workpiece' Based on

this assumptionr the spark erosion removal can be

decomposed into tive basic stePs:
1. workpieee removal 4. TooI feed (servo)
2. Tool feed (servo) 5. Shape regeneration
3, Tool wear

Each simulation cycle involves the removal of a

sligrht surface layer at the vrorkpiece and the tool-
electrode resPectively. The new coordinates of
the points are calculated in the first and the
third step, resPect.ively for the workpiece and the
tool-electrode. This works as foll"ows: for each
point first the distance to the nearest point of
tne opposite shape has to be found' with this
distance we can read from an experimental measured
curve the Local removing volume.

As known, in EDM the working gap between toof-
electrode .and workpiece remains almost fixed' In
reality the workingr gap varies slightly around a

mean va.Lue. In this modef it is assumed that the
minimum distance between the tno eLectrodes
remains fixed. This recalculaEion is done after
each removal step' in step two and four'

The last slep of each simulation cycle is the
shape regeneration. This means that we wiII
contlol the two discrete functions' for reasons
that their lengch will surely vary during the
simulation, and hence the nutnber of points of both
functions has to be adapted' By doing this' we

are sure that the point densicy, and even the
accuracy can always be guaranteed.

The execution of this five step wilL remove one

smalf layer of both electrodes. By repeating this
for a great number of times, the tool-electrode
will sink gradually into the workpiece'

The most occurring activity in this algorithm
is the calculation of something like g=6*3*b*b'
Each cycle we have to search, for each Point of
both el-ectrodes, betldeen aIl the points of the
opposite electrode for that point with the
smallest distance' This is done in step one and

three. In the fifth step the distance between
successivel-y points of each discrete function has

to compute for controlfing and adapting Lf
necessary.

For the description of our siqnal flow graph we

choose the functional language SILAGE t3l t4l. we

had three good. reasons for doing this: first of

all, we can simul-ate this description by using the
s2c-compiler of IMEC, which transforms the non-
procedural SILAGE description into a procedural
and. executable C-description. Secondly' EDC-

Heverfee has developed recentfy a compj-ler to
transform the description in an optimal- machine-
code fox the TMS32OC25 and TMS320C30 signal
processor. FinalIy, SILAGE is also be used as

description language for the Cathedral Silicon
Compilers developed at IMEC, which transl-ates the
signal flow graph in a singJ'e multi-p!ocessor
ASIC. Each of Ehis tools gives possible solutions
for the Die-sinking Spark Erosion simuLations' In
the next sections we will discuss them separately'

lll. A General Purpose Processor

This is of course the easiest implementation,
with the minimal cost but the highest execution
time. The bottle-neck here is of course the fact
lhat both instructions and data are stored in RAM,

and Lhat they travel on the sarne bus. Another
importan! thing io that all the multiplications
have to be compute on an iterative wdY, by
shifting and adding on the ALU.

As meneioned an important Point in this stttdy
was that all implementations started from the same

behavioural SllAcE-description. Thanks to che s29-
compiler from IMEC we were able to obtain a first
-software- implementation in C t5l '

we tried first to oPtimise the original
description: so we changed the floating-point
operations in fixed-point operations, we found
faster methods to get the nearest distance to the
opposite efectrode, we removed as much as we could
Iargre computations like sguare-roots' divisions'
etc. Simulations on an APotLo 3500 workstation
have shown us that the execution time was reduced
from severaf hours to Several minutes, thanks to
aII these corrections. An example of such
simulations is shown in figure 2.
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figure 2: Example of EDM Die-Sinking simulations

lV. Domain Specific Signal Processors

As explained above, the main operation in
algorithm is the calculation of something
c:a*alb*b. Using a hardware multiplier
accumulator this can we done very fast.
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conunercial processors like e.g. the Motoro1as6000
fanily and the TMS320 family make use of this
advantag'e. For this application, we picked out
two processors of the last family. This family
supports reaftime digital signal processing (DSP)

and computation-intensive applications in areas of
telecommunications, modems, speech processing,
instrumentation, numeric processingf, machine
controlling, etc.

The TMS320C25 t51 is a 16-bit processo! vrith
Harvard-type architecture, in which program and
data nemory reside in aeparate address spaces.
This allows a full overlap of instruction fetch
and execution (100 ns cycle time) . Internaly.
full-speed execution is obtained by maintaining
tno separate bus structureg. for program and data,
with the possibility to exchange data betvreen the
two buses. I{hen ne store the program instluctions
in the on-chip ROM of 4K words (more than enough),
and the experimental measured relations betlreen
gap-widtb and removal volume in the on-chip RAM of
544 words lox 2?2 words for eactr relation), than
we use this processor in a very efflcient way for
our application. Only the coordinates of the
discrete functions have to be stored out of the
chip.

At the European Development Center (EDC

-Heverlee-Belgium) they have developed cornpilers
to translate a single flow graph from a
behavioural description (SILAGE) into an efficient
instruction-Iist for the TMS320. The efficiency
df this compiler can be demonstrated by conparing
it vrith the C-compiler of Texas fnstruments: the
instruction-list after using this compiler was
more than three times longer. The reason is that
this compiler first translales the C-code into
assembler as an intelmediate step. The final
results for this processor type is that the
execution takes 34 .0 seconds for a single
processor configuration, and 22,8 seconds for a
two-processor system. Using the SWDS simulator
[7] we were able to execute and test the obtained
instruction-code as a verification step in our
design.

The TMS320C30 Digital Signal Plocesso! [8] is a
very recent 32-bit third generation micro-
processor in the TMS320 family. The 50-ns cycle
time alLolrs it to execute more than 33 MFLOPS.
High performance is gained through its large on-
chip memories, concurrent DMA controll,er, full
floating-point multiplier and ALU, instruction
cache. etc. There is a high degree of palallelism
and very powerful instruction set.

The instruction-list for our application on the
TMS320C30 is also obtained by using a compiler of
EDC. Thanks to the parallel-operation instruction
set the number of instructions tso implement our
algrorithm on this processor is 2259 vs. 3195 for
the TMS320C25, or less than 70 t. This means that
the execution of our afgorithm t.akes 16.4 and
10.8 seconds, respectively for a single and a two
processor configuration.

we can conclude that a domain-specific signal
processor l-ike those of the TMS320 family can be a
good solution to execute this application in an
acceptable t.ime, without ext.remely high cost or
other disagreeabLe problems. Comparing it with a
general" purpose processor, as we saw in the
previous section, the executj-on is an order of 10
times faster.

V. Application Specific Digital Signal
Processors

The third type of processors we investigate in
this study is the ASIC or Application-Specific
rntegrated Circuit. This means that datapath and
control logric are both designed in an optimal way
for each specific application separately. It is
obvious that such a solution wiIl lead to the
fastest implementation, but also the most
expensive. The datapath can execute geveral
operations in paraIleI on different chosen
execution units (ExUrs), instructions are stored
in a separated RoM, data can travel on several
buses, etc.

The vsDM-group of IMEC is intended to study
design methodologies for vLSr-syatems. The result
of this work 1s rCathedralr, a set of silicon
compilers for the design of inLegrated dlgltal
circuits, starting from a behavioural description
of an algorithm. At this moment there are four
different Cathedrals, each of them nith a talget
architecture for a target, application area:
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The spark erosion algorithm is rather complex,
so it was clear that for t.his appllcatLon the
Cathedral-If Silicon Compiler with mLcrocoded
multi-processor architecture t9l t10l is the best
Cathedral-solution to design an ASIC.

The design methodology whlch is used in the
Cathedrat-rl Silicon Compiler is based on the 3o-
called'meet-in-the-nl,dd1er st!ateqy.
This means that a distinction is made betereen the
system design and the silicon design. when the
system design attalns the leve1 of functional
building blocks (FBBrs), we can make use of the
silicon module library t111. In a full-custom
design, more than 50 * of the design time is spent
on layout and verification. with the meet-in-the-
middl.e strategy, the reusable silicon modufes
reduce these design tasks.

As mentioned above, for complex DSP-
applications in the medium throughput, a
microcoded nulti-processor architecture is
developed into Cathedral-II. This target
architecture gives a fixed framework vrithin the
structure of each palticufar design can be freely
chosen. There are lhree levels of hierarchy :

7- chip fevef: at this level, the algorithm can
be divided into a number of independeot
processols, with dedicated interprocessor memory
for conununication. Such a division is not always
trivial, but can lead to a great decrease of the
cycle-count.

each processor has his own
datapath and control logic. The datapath consists
of a number of execution units that cornmunicate
vrith each other via buses. Examples of available
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EXUrs are the ALU, RAM, ROM, multipLier, address
comput.at.ion unit., etc. Each clock cycle t.he
control-1er generates a microcode word that
specifies the function of a1l parts of the
data_pach in that particular clock cycIe. Thesewords are stoled i.n the instruction ROM. The
program counter can be influenced by flags from
the datapath via a finite-state rnachine (FSM).

3- execution lonit fevef: this is the 1owest
level in the hierarchy. The EXU's are formed from
a number of FBBts as adders, multiplexers,
register files, etc. These FBB r s have
parameters Such as number of registerS,
wordlength, adder-type, etc.

fn the interactive concept t12l of Cathedlal_Il
the syst.em designer is able to give st,ructulaL
hints to the compiler at che highest Level. This
can be done by adding high-level directives Co t.he
behavioural description (e.g. allocate 3 ALUrs,
operation a>b on comparator nr 2, all
multlplication on a hardware multipll-er or on an
AI,U, ecc.). The designer can easily iterate the
synthesis process from his workstatLon until he is
conpletely satlsfied wlth t.he results. During the
interaction the modula-generation cnvironmcnt ig
consulted in depth to glve early information about
the e:<pected chip area and tlming performance.
The rerrrlt of thc rynth6aL6 lo finally scnt t,J Lhe
floorplanning environment .

fn this ASIC-study we compared many alternative
implementations. The best solution was an
implementation wlth two ALUrs, one hardsare
multiplier and only on-chip RAllrs. A summary of
the architectural result.s are given below:

EXU SPEC's(blts) R1 R2 dslay m]tr2

ALU-I
ALU-2
MULT
,qi
R T.CTRL
RAM-I
RAM-2
BUS_r
BUS-2
BUS-3
IYNIHAI FN

X-l6.bll:Y-16-bit
X-l6.bil:Y.l6.bit

X.l6:Y-16 .> 32-bit
' add.oss-l 2:data-l 6
ir-5;oul- t 6:girs-Z t

1238 rcds:16 bil
1030 wd3:16 Ut

16 bir
15 bn
32 btl

t63 rcrds ot ll2 ttt

6
I
a
3

a
2

t03 ns
lOl ns
122 ns
rt6 ns
3l ns
76 ns
73 ns
15 os
t5 ns
15 ns

t60 ns

l.l'2.7 -2.1
r.r'2.5-2.t
2.0'3.a -6.(
2.3'0.8- !.t
0.8'0.7.0.(

9.4'3.0-28.i
9. I '3.0-27.;
0.2'l . t -0.i
0.2'r . r -0.:
0.2'2. t -0.!
t.8'3.5-6.!

Vl. Conclusions

In this pape! the result,s of a comparative
study between different implementations of a
rather complex application are presented, and they
show us that Die-Sinking Spark Erosion SimuLations
donrt have to be considered in the future as
unrealistic. After having rewrLtten some parts of
the original algorithm, nithout changing something
functional", we worked out geveral implementations
aut.omatically on three different. kind of plocessor-
types, all st'arting from the same behavioural high
level descriptlon. To achieve this, we used three
excellent compilers3 the s2c-compiler for the
implementat,ion on a general purpose processor, ehe
EDC-compiler for implernentation on a TMS320
Digital Signal processor, and the Cathedral-II
Silicon CompiJ.er for the ASIC inplementation. we
can conclude that the corresponding execution
times are respectively from the order of several
minutes, a halve minute and several seconds.
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