
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL, 9. NO. I0. oCTOBER I99(}

PATRICK ODENT, LUC J. M. CLAESEN, veN{seR, IEEE, nNo HUGO DE MAN, FELLow, IEEE

Abstracl-This paper presents several new methods for the electri-
cal-level simulation of digital VLSI MOS circuits on a shared-memory
multiprocessor system. A new parallel algorithm, the overlapped phases

algorithm, for the efficient simulation of circuits containing feedback
Ioops, is presented. The algorithm is based on data flow scheduling and
local relaxation of the feedback loops, A new method for the partition-
ing of large pass-transistor networks is discussed. The method is based
on the signal flow direction in the elements. This partitioning allows an
efficient simulation of these large networks on a multiprocessor system.

Parallel element evaluation and the time segment pipelining method,
two methods to increase the performance of the parallel circuit simu-
lator, are explained. Simulation tests with actual circuits show a sub-
stantial acceleration for the new methods.

I. INrnonucrroru

A CCURATE circuit simulation remains very impor-
l-Itant in the design process of integrated circuits. Con-
ventional simulators (SPICE [l2], ASTAP I22l) are not
suited for the simulation of VLSI circuits containing sev-
eral thousands of transistors. New circuit simulators (RE-
LAX il01, SWAN [4], TOGGLE [9], SPLICE il81) based
on relaxation techniques have been developed in recent
years, giving a speedup of more than one order of mag-
nitude.

However, simulation times can still be very large and

delay the circuit design. One of the ways to reduce the
execution time further is the implementation of the circuit
simulators on multiprocessor systems. Relaxation-based
techniques decompose the large circuits into a collection
of small blocks. This is interesting for parallel processing
since each block can be simulated on a different proces-
sor. Implementations of relaxation-based simulators on
multiprocessor systems are reported by several research

sroups [4], [6], ull, [l3], tl7l, Il9l, 1231, Izsl, 1281.
The programs are based on a scheduling mechanism to
distribute the simulation of subcircuits on different pro-
cessors. This method works very well for large circuits
which tend to be quite "wide."

Multiprocessor circuit simulators are intended for very
large circuits, of the order of 100 000 transistors. What is

important for the simulation on parallel computers is the

Manuscript received October 12, 1989. This work was supported by the
EC under Grant ESPRIT-1058. This paper was recomnrended by Associate
Editor A. E. Ruehli.

P. Odent and L. J. M. Claesen are with the VSDM Division, IMEC.
B-3030 Leuven, Belgium.

H. De Man is with the VSDM Division. IMEC and the Katholieke Uni-
versiteit Leuven, 8-3030 Leuven, Belgium.

IEEE Log Number 9036677.

1063

structure of these large circuits [3]. They are most likely
less uniform than typical smaller circuits and may contain
several "difficult" circuits like buses, feedback loops,
memory circuits, registers, large blocks of pass-transistor
logic, and analog parts which can lead to large subcir-
cuits. These circuits are hard to solve and need special
techniques for an efficient simulation on a multiprocessor.
So far, this problem has not received much attention in
the literature.

Several improvements have been proposed to increase
the efficiency of the parallel relaxation algorithms. It is
possible to combine a parallel relaxation algorithm with a

parallel version of the direct method tl4l, 1261, [28].
Pipelining of computed results between different tasks has

been used as a method to realize temporal parallelism [25].
In the time point pipelining method [25] transfer of results
is done for each time point. In the parallel time point
method U9l, [24] a large part of the computation of each

time point is done concurrently. These methods give only
a moderate improvement in simulation speed, because the
additional parallelism is limited and the overhead associ-
ated with the scheduling and synchronization is signifi-
cant.

The original contributions presented in this paper are a
number of new algorithms for the efficient simulation of
digital VLSI MOS circuits on a shared-memory multipro-
cessor system. They are implemented in the circuit sim-
ulator CSWAN and have been tested on a number of ac-

tual circuits. The results are compared to the overlapped
WR iterations (OWRI's) algorithm [4], [3]. This algo-
rithm is based on the data flow principle and exploits as

much parallelism as possible at the level of the subnet-
work simulations. This algorithm is used as a basis of
comparison for the other algorithms. The new algorithms
are the following.

o The overlapped phases algorithm is an extention of
the OWRI's algorithm. It allows an emcient simu-
lation of circuits which contain feedback loops on a

multiprocessor system.
e A new partitioning algorithm for large subcircuits is

based on the signal flow direction in the elements.
Due to this partitioning, several parts of one large
subnetwork can be simulated concurrently.

o An algorithm in which the parallelism during the ele-
ment evaluation is combined in a dynamic way with
the parallelism of the relaxation method. This dy-

Acceleration of Relaxation-Based Circuit Simulation
Using A Multiprocessor System

0278-0070190/1000-1063$01.00 0 1990 IEEE

t064 IEEE TRANSACTIoNS ON CoMPU'TER.AIDED DESIGN. VOL' 9. NO. IO. OCTOBER I99O

Subn 1 Subn 2 Subn 3 Subn 4

Fig. l. Network Partitioning

These equations are solved iteratively until convergence.

Slow convergence can occur with this point-wise par-

titioning [0] , due to strong coupling between some vari-
ables. In the blockwise paftitioning several tightly cou-

pled variables are grouped together. The partitioning of
the differential equations is equivalent to the partitioning
of the circuit in subcircuits. Each subcircuit is then sim-

ulated with a standard circuit simulator, based on the di-
rect method [12]. To take into account the coupling be-

tween the subcircuits, WR iterations have to be performed

until convergence.
The following network elements are considered in

CSWAN:

. MOSFET transistors;
o resistors and capacitors;
o junction diodes;
o grounded voltage sources.

The network partitioning in CSWAN is based on dc

unilateral subnetworks [4].

Definition.l: A dc unilateral subnetwork S is a con-

nected group of nodes in the graph which is constructed

as follows. Create a vertex for each internal node of the

network and an edge between two vertices I and B if they

form a drain/source connection of some transistor or if
they are the terminals of some resistor.

The elements of a subnetwork are the transistors for
which a drain or source is a node of the subnetwork and

the other elements for which a terminal is a node of the

subnetwork. The subnetwork partitioning is illustrated

in the circuit of Fig. 1, which contains four subnetworks.

Some other definitions are the following.

Definition 2: A node is an input node of a subnetwork
if it is not a node of the subnetwork and if it is a connec-

tion for a transistor or resistor of the subnetwork.
Definition 3.' A transistor is a fan-out transistor of sub-

network S if a node of subnetwork S is a gate connection

for the transistor and if the transistor is not an element of
the subnetwork S.

namic combination of both parallel methods im-
proves the runtime.

o The time segment pipelining algorithm which pro-

vides an efficient way to increase the simulation speed

without the tremendeous overhead of other pipelin-

ing methods.

First of all, we give a description of the parallel hard-

ware which is used for our research work. In Section III
we introduce the waveform relaxation method. In Section

IV, the OWRI's method is explained. The overlapped
phases algorithm for circuits containing feedback loops is

presented in Section V. The new partitioning method for
large subnetworks is given in Section VI' The two meth-

ods which exploit small grained parallelism are discussed

in Section VII. Finally, some conclusions are given.

II. HnnownnE

The system that has been used for our research work is
the Sequent Balancc 8000 t20l' Since the hardware

strongly influences implementation aspects of a parallel

program, we give an introduction on the Sequent Balance

8000. The system is a general purpose parallel computer.

Ten 32-b microprocessors have access to the shared mem-

ory pool of 8 Mbyte through one 32-b common system

bus. Each processor is supported by a floating point unit,
memory management unit, and 8 Kbyte cache memory to

limit the bus contention. The way to initiate parallel pro-

grams is to start several child processes from one parent

process. Each child process works on the data in a shared

memory. Locks are used to prevent that two processes

write in the same memory location at the same time. All
interprocess communication is done through the shared

memory. There are no explicit message-passing func-

tions.

III. Tue Wnvsponv ReLexeuox MerHoo

The program CSWAN is based on the waveform relax-

ation (WR) method [10]. This section gives a brief de-

scription of this method. The electrical simulation prob-

lem to verify the behavior of integrated circuits is

formulated as a large system of nonlinear ordinary differ-

ential equations (ODE's)' The ODE system is of the form

q(r(t), u(r)) - f(u(t), a(r)) : 0, u(0) : vo

(r)

with q the sum of charges at each node, /the sum of cur-

rents charging the capacitance at each node, z the input

voltages, and u the unknown node voltages.
In the WR method the system of coupled nonlinear dif-

ferential equations is transformed into a sequence of non-

linear differential equations in one unknown. In the

Gauss-seidel WR method the following equations are

solved for u!, with k the WR iteration number for the en-

tire time interval of window

vi Q;Q11, "' , uf, ul,], "' , r,l,-', r)

- f,(r\, "' , u!,1,!*1, " ' . t'1, r, u) : s. (2)

I

ODENT dt a1.: ACCELERATION OF RELAXATION-BASED CIRCUIT SIMULATION

Definition 4; A fan-out node of a subnetwork is either
a source, drain, or bulk connection for a fan-out transistor
of the subnetwork or a terminal node of a floating capac-
itor of the subnetwork; and the node must not be a node
or input of the subnetwork.

IV. Tne OvsnLRppro WR Irenerroxs (OWRI's)
AlconrrHtt

The parallelism in the WR method is obvious. The pro-
cess to simulate one subnetwork, in one WR iteration is
a single task that can be assigned to a processor and sev-
eral of these tasks can be executed concurrently . There is,
however, a problem of how to distribute the tasks over
the different processors. We have investigated a number
of algorithms for the scheduling of tasks over the proces-
sors. The first algorithm, the leveled subnetworks algo-
rithm [6], is a straightforward parallelization of the se-
quential version. It contains global synchronization points
between each level of subnetworks and each WR itera-
tion. This synchronization reduces the overall perfor-
mance. These bottlenecks are eliminated in the over-
lapped WR iterations (OWRI's) algorithm. It is based on
the data flow principle and allows the simultaneous sim-
ulation of subnetworks in different levels and WR itera-
tions. This algorithm is discussed in this section. It forms
the basis of comparison for the other algorithms in this
paper.

The data flow principle means that a task is executed as
soon as possible, i.e., from the moment that all the data
which are needed to execute the task are available. The
data flow principle allows to exploit automatically the
parallelism in the application: when several tasks become
executable at the same time, they can be distributed among
the available processors.

In the case of the circuit simulator, a task is the simu-
lation of one subnetwork in one WR iteration. The data
needed to execute the task are the waveforms of the input
and fan-out nodes of the subnetwork. A subnetwork (the
task) can be simulated (executed) as soon as all the wave-
forms (the data needed for the task) are available. The
conditions for a subnetwork S to be simulated in WR it-
eration k are the following.

l) The waveforms of the input nodes of the subnetwork
S must be computed in the same WR iteration k.

2) The waveforms of the fan-out nodes of the subnet-
work S must be computed in the previous WR iter-
ation k - l.

The conditions for a task to be executable can be rep-
resented in a data flow graph or task dependency graph,
see Fig. 2. Each vertex in the graph represents a task: the
simulation of a subnetwork in a given WR iteration. The
edges represent the conditions for a task to be executable.

The algorithm is not a master-slave configuration in
which one master process searches simulatable subnet-
works, and gives them to slave processes to simulate
them, as proposed in [5]. The algorithm is based on a

l 065

Subnetwork graph --> task dependency graph

Fig. 2. The task dependency graph of the OWRI's algorithm.

distributed scheduler. Each processor executes the same
scheduling algorithm, which is shown in the following:

Par_process0 {
while (not converged) {

subn: take_frorn_stack0 ;

if(subn){
simulate(subn);
schedule_new_subn(subn);

)
)

It.

There is one shared stack. All the subnetworks that can
be simulated are placed on this stack. Each process can
take a subnetwork from this stack to simulate it. After the
simulation of the subnetwork, new simulated subnetworks
are searched for. This is done by verifiing the output tasks
of the executed task in the task dependency graph to see
whether all the waveforms which are needed are avail-
able. If such subnetworks are found, they are placed on
the shared stack.

A problem in this algorithm is the convergence detec-
tion since several WR iterations are simulated at the same
time. The idea to solve the problem is to start with the
minimum number of WR iterations and to start a new WR
iteration from the moment a subnetwork is found that did
not converge in the highest WR iteration 1271. Notice that
this is in fact a violation of the data flow principle. A new
WR iteration can be started from the moment there are
enough waveforms available. This is not done until there
is a real need to do it. A new WR iteration is not started
until a 'rrbnetwork is detected that does not converge in
the last WR iteration that is required at that moment dur-
ing the simulation. This way of scheduling jobs is in fact
"demand-driven" instead of data flow driven.

The OWRI's algorithm has been tested on the Sequent
Balance 8000. The measured elapsed "wall-clock" time
during the simulation of several circuits is given in Table
I. The real speedup S1r is the ratio of the sequential run
time 7l.0 and the runtime Tr of the parallel algorithm ex-
ecuted on a given number of processors N. The real
speedup for the OWRI's algorithm is also given in Table
I. The overhead of the parallel implementation is small

11{

456

404

1530

684

338?

294r

4481

2r0

656

534

796

210

533

440

609

685

3308

2945

4514

300

1720

t477

227r

218

005

750

1145

1066

TABLE I
StuuLerror.r Trve ano RE,ql SpeEoup Facron or. rHe OWRI's ALcoRtrHM

IEEE TRANSACTIONS ON CoMPUTER-AIDED DESICN. VOL. 9. N(). IO. oCTOBER I99O

graph from subnetwork z4 to subnetwork B and from sub-
network B to subnetwork l.

The algorithm to find the SCC's is a depth first search
algorithm [21] which is of linear complexity. After the
search of the subnetworks and the SCC's, the SCC's are
leveled so that a SCC ,4 is placed before SCC B if SCC ,4

has nodes which are inputs of subnetworks in SCC B.
The sequential WR algorithm for the simulation of cir-

cuits with feedback loops is shown in the following:

i * FW-phase *i
for (all SCC's of circuit)

if (one subn in SCC)
simulate(subn);

else
while (SCC not converged)

for (all subn of SCC)
simulate(subn);

/* WR-phase */
while (circuit not converged)

for (all SCC's of circuit)
for (all subn of SCC)

simulate(subn).

The algorithm consists of two major parts:

o the fundamental waveform (FW) phase;
o the WR phase.

In the FW phase "functional correct" waveforms are
computed. This is done by local relaxation of the feed-
back loops. After leveling and ordering the SCC's from
input to output, they are simulated. If a SCC contains only
one subnetwork, the subnetwork is simulated. If a SCC
contains several subnetworks, they are simulated itera-
tively until convergence. To simulate the subnetworks of
the SCC in the correct order the feedback loops are opened
and the subnetworks are ordered in the preprocessing
phase.

In the WR phase the capacitive coupling between sub-
networks is taken into account. The subnetwork simula-
tions are iterated until convergence of the circuit, i.e.,
until the waveforms of all nodes converge.

Circuit #MOS T,.t

(scc)

T, TZ TI T" T6

(rcc) (scc) (scc) (scc) (scc)

s. s, sr sc 5r

ALU2

ALU8.

csA.

BOOTII

1.0

0.99

1.0

0.0s

1.9

2.0

2.0

2.0

3.1

3.7

3.9

3.9

3.3 3.3

5.2 6.4

5,5 6.6

6.6 7.4

because the runtime of the parallel version executed on
one processor is only slightly longer than the sequential
runtime. The acceleration is very dependent on the size
and configuration of the circuit: on eight processors it
ranges from a factor three to more than seven.

One might remark that there is still a global synchro-
nization point for all the processes between the simulation
of different windows. There are two reasons why this syn-
chronization is not removed. The first reason is that the
simulation of the circuit in the different windows is highly
sequential, The circuit must be simulated up to conver-
gence in the current window before the simulation in the
next window can be started. The second reason is the
memory use. Windowing is also intended to reduce the
memory use, Simulating several windows in parallel does
not preserve this property.

V. THe OvsnLRppeo PuRses MerHoo

Feedback loops form a hard problem in relaxation-based
circuit simulators. If no special care is taken for the feed-
backs, the number of WR iterations to simulate the circuit
can become very large, making the simulator inefficient
[4]. Several methods to handle feedback loops have been
proposed [3], [4]. Most methods are based on the local
relaxation of the subnetworks in the feedback loop. In this
way global iterations due to iterations needed to simulate
a feedback loop to convergence are avoided.

The number of subnetworks in a feedback loop can be
very different. It is even possible that for some circuits,
such as finite state machines, nearly the whole circuit is
in one large feedback loop. To be efficient, the parallel
version of the simulator should be able to exploit the par-
allelism within the simulation of one feedback loop. The
simulation of one feedback loop has to be divided in sev-
eral subtasks. A new algorithm based on data flow sched-
uling to solve this problem is explained in this section.
First we will explain the method for a uniprocessor. Then
the data flow algorithm to exploit the parallelism will be
explained. The section concludes with some experimental
results.

5. l. Sequential Version

The first step in the simulation of a circuit which con-
tains feedback loops is the search of strongly connected
components (SCC) in the subnetwork graph.

Definition 5; SCC: Two subnetworks are placed in the
same SCC if there exists a directed path in the subnetwork

5.2. Parallel Version

The parallelism in the previous algorithm is obvious. In
the FW phase SCC's can be simulated in parallel and in
the WR phase subnetworks can be simulated in parallel.
This is, however, not sufficient since a SCC can contain
several subnetworks. It is even possible that nearly the
whole circuit is placed in one very large SCC. To be ef-
ficient the parallel version should be able to simulate mul-
tiple subnetworks of one SCC in parallel. It is also pos-
sible to start the WR phase before all the fundamental
waveforms have been computed. When the fundamental
waveforms of two levels of SCC's have been computed,
the WR phase can be started. This is a "pipelining" of
the FW phase and the WR phase. For this reason we call
the algorithm the overlapped phases algorithm.

ODENT (r a/.: ACCELERATION OF RELAXATTON-BASED CIRCUIT SIMULATION

The algorithm is an extention of the OWRI's algorithm
which uses data flow scheduling. Three different jobs have
to be considered: SCC's, subnetworks in the FW phase
and subnetworks in the WR phase. The simulation of a
subnetwork in the FW phase and in the WR phase are
considered to be two different tasks because the condi-
tions for the tasks to become executable are different.
Also, the scheduling that has to be performed after the
execution of the task is different.

A task is executable if all the inputs which are needed
to execute the task are available. For the three tasks the
conditions to be executable have to be set up. They are a
direct result of the different algorithms in the simulation
process. The conditions for the three tasks are the follow-
ing.

l) The simulation of a SCC in the FW phase:
o a SCC can be simulated if all its SCC inputs which

are not external inputs are computed in the FW
phase.

2) The simulation of a subnetwork in the FW phase:
o the SCC, of which the subnetwork is part of, must

be able to be siurulated (see the previous point);
r the subnetwork inputs must be computed in the

current local relaxation iteration, except if the in-
put node is a feedback input or an external input.

3) The simulation of a subnetwork in the WR phase:
o the subnetwork inputs have to be computed in the

current WR iteration, except if they are external
inputs or feedbacks;

o the fan-out nodes and feedback inputs have to be
computed in the previous WR iteration;. two additional conditions are needed for the
"pipelining" of the FW phase and the WR phase.
First of all, the SCC, of which the subnetwork is
part of, must be simulated to convergence in the
FW phase;

o for the first WR iteration in the WR phase, the other
condition is that the fan-out nodes and feedback in-
put nodes of the subnetwork must be computed in
the FW phase.

Given these tasks and the conditions for the tasks to be
executed, a task dependency graph can be constructed.
This is shown on Fig. 3 for the small circuit of Fig. I
with four subnetworks and one feedback loop. Assume
that the SCC needs three local iterations, which is a typ-
ical number to reach convergence, in the FW phase and
the total circuit needs two additional WR iterations in the
WR phase to reach convergence. The data flow graph is
constructed by creating a vertex for each task in the sim_
ulation process. These are the simulation of the two SCC's
in the FW phase and the simulation of the four subnet-
works in two WR iterations in the WR phase. The simu-
lation of SCC 2 in the FW phase can be expanded in the
simulation of three times the three subnetworks of the
SCC. The edges between the tasks represent the data flow
conditions for the tasks to be simulated.

Slbn 1 Subn 2

GWI
Slbn 3

GWt
4

owl

Slbn 2

GW2
Sobn 3

GW2
Subn 4

GW2

Subn 2
GIY 3

Subn 3
GW3

Sobn 4
GW3

S.rbn I
wRt

30bh 3
wFr

{
wnl wnr

Subn 1

wR2 wR2
slDn 3
YYN 2 wR2

Fig. 3. The tasks dependency graph of the overlapped phases algorithm

Based on this relationship between thc tasks, a data flow
based scheduler can be used to execute all tasks in the
correct order on a parallel computer system. The simpli_
fied parallel scheduler which is executed concurrently on
all the processors is shown in the following:

Par_process() {
while (not converged) {

/x Take SCC from stack x/
while(SCC: take_SCC_from_stack())

for(all subn's of SCC)
if (subn_simul(subn))

place_on_stack(subn);
/* Take subn in FW-phase x/
while (subn: take_FW_subn_from_srack()) {

Simulate(subn);
Schedule_new_tasks(subn) ;

)
/x Take subn in WR-phase */
while (subn: take_WR_subn_from_srack()) {

Simulare(subn);
Schedule_new_subn(subn) ;

)
)

II.

There are three stacks with executable tasks. Each pro-
cess can take tasks from each of the stacks. After the ex-
ecution of the task, some scheduling has to be performed.
All the fan-out tasks in the task dependency graph have
to be verified. If such a task is executed it is placed on
the appropriate stack.

5.3. Experimental Results

This overlapped phases algorithm has been tested on
the Sequent Balance 8000. Several circuits containing
feedback Ioops have been simulated on a number of pro-
cessors ranging from I to 8. The measured simulation
times Iry and real speedup factors S1y, of which N is the
number of processors, are given in Table IL

t067

Subnetwork- and SCC-graph

Task dependency graph
SCC1 GW

sccl
scc2

scc2 Gw

l 068

srMULArroN TIMEs AND *.^l+3lo1 j'aACroRS
oF rHE ovERLAPPED

PHASES ALGORITHM

IEEETRANSACTIONSoNCoMPUTER-AIDEDDESIGN.vot-.g.No'l0.OCToBER1990

The new method proposed in this paper partitions the

large subnetworks in smaller blocks. This is suited for
parallet processing since all the blocks can be simulated

concurrently on different processors. Moreover, the sim-

ulation time can further decrease because each block is

simulated with its own optimal timestep and with less

overhead to solve the linear equations in the subcircuit

simulator.
The large subnetworks are partitioned into smaller

blocks making use of signal flow information I I] ' [8] . For

each subnetwork a signal flow direction can be defined

from the input nodes (the gate terminals of the MOS-

FET's of the subnetwork) to the output nodes of the sub-

network.
The following rules are used to determine the signal

flow direction in the transistors of a subnetwork (see Fig'
4).

l) If the drain or source of a transistor is a subnet-

work output, the data flow direction is from the

other terminal to the outPut node.

2) If the drain or source of a transistor is a subnet-

work input, l,he data flow direction is from thc in-

put node to the other terminal.
3) If multiple elements are connected to one node,

all except one element are directed in the same

direction and one element is not yet directed, then,

that undirected element will have the opposite di-
rection.

4) If all transistors connected to a node y are set with
equal direction except for two unset transistors 7l
and 72, and the gates of Zl and T2 ate comple-

ments of each other, and the node y is not an input

or an output, then both transistors Zl and 12 must

transmit signals in the opposite direction at node

y with respect to the set transistors.

It is not always possible to direct all transistors' So' the

direction of some transistors will be undefined or bidirec-

tional. A preprocessing of the circuit with the DIALOG
expert system Il] could be used to direct more transistors

-uting use of a more extended set of rules. However, this

limited set of rules allows us to show the properties of the

method.
Once the signal flow direction of the transistors is

known, the subgroups are searched for. The definition of
a subgroup is based on the signal flow direction of the

elements. There is a subgroup for each output of the sub-

network.

Definition 6; A subgroup is a group of nodes in the di-

rect ;ignal flow graph of a subnetwork. It contains all the

nodes of the subnetwork which can, based on the signal

flow, influence a given output node of the subnetwork'

Subgroups are searched starting from the outputs of the

subnetwork. The way to search all those nodes is based

on a depth first search algorithm in the opposite direction

of the signal flow, starting from an output node' The out-

put nodJand all the subnetwork nodes that can be reached

Circuit # T, T, T1

(rcc) (scc) (scc)

T,,,

(rcc)

MOS T. Tr 5, Sr 5. 56 S!

(rcc)

osc

SIPO

cca2

ccRs

ADDACC

1.0 1.3 1.4

1.0 1.9 3.0

1.0 2.0 3.8

1.0 2.0 3.9

1.0 1.0 0.90 0.99 0.08

1.4 1.4

3.3 3.3

5.4 0.9

5.3 5.1

By comparing the results of the parallel algorithm ex-

ecuted on one processor, with the sequential algorithm,
we can conclude that the parallel implementation has only

a very small scheduling overhead. The speedup of the

parallel overlapped phases algorithm for the simulation of
circuits containing feedback loops, strongly depends on

the size and configuration of the circuits. On eight pro-

cessors, the measurcd spccdup ranges from one for a stuall

circuit to more than six for the large circuits. There is no

speedup for the ring oscillator (OSC). This is because a

node of the last subnetwork is a feedback input of the first

subnetwork. This means that with the Gauss-Seidel re-

laxation method, the first subnetwork of the oscillator can

only be simulated in a higher WR iteration when the last

subnetwork has been simulated in the current WR itera-

tion. So, an overlapped simulation of the WR iterations

is not possible. For the same reason it is not possible to

exploit parallelism in the local relaxation process. The

ADDACC circuit, a 4-b adder, and accumulator placed

in a global feedback loop, shows a much better parallel-

ism. This is because several subnetworks which are placed

in the global feedback loop, are simulated in parallel with
the overlapped phases algorithm. If the local relaxation
process of this global feedback loop would not be exe-

cuted in parallel, the speedup would be much smaller.
The same algorithm can be used for the feedback loop

free circuits. For circuits without feedback loops, the

overlapped phases algorithm is the same as the OWRI's
algorithm.

VI. Lnnce SusNerwonxs

As explained above, the WR method partitions the cir-
cuit in a number of subcircuits. Several methods for the

blockwise partitioning of the circuit in subcircuits have

been developed:

user partitioning [10] ;

partitioning based on dc-unilateral networks [4];
diagonal dominance Norton partitioning [25].

For special circuits such as shifters, RAM's, and pass-

transistor logic, most methods give rise to large subcir-
cuits. These large subcircuits are not suited for parallel
processing. If a large subcircuit is simulated by only one

processor, the efficiency of the parallel execution can be-

come very bad.

19

160

114

456

528

83

3256

958

4973

211S

83

3260

960

4983

2t57

83

508

2526

10?1

84

2253

317

1313

5{9

84

2254

255

918

306

85

2st

710

4t1

ODENT ?t a/.: ACCELERATION OF RELAXATION-BASED CTRCUIT SIMULATION

T

muat be

1069

I
v

musl be

Bule 1 Rule 3

must be

must be set

sink

I T1

I
Rule 2 sink

Fule 4

Fig. 4. The signal flow direction.

by traversing the directed graph through set transistors in
the direction opposite to the signal flow or through unset
transistors, are placed in the same subgroup. Note that
this partitioning in subgroups is an overlapped partition-
ing, i.e., a node can be placed in more than one subgroup.
If a node can influence two or more outputs, lt witt Ue
placed in the subgroup of each output.

In the shifter of Fig. 5, the signal flow of the transistors
and the partitioning in subgroups is shown. The inverters
at the outputs of the shifter are different subnetworks and
only two out of eight subgroups of the shifter are repre-
sented. There is a small overlapping of the two subgroups.

It is not difficult to extend the parallel scheduler of the
overlapped phases method with the method to simulate
large subnetworks. The additional part of the scheduler
has the following form:

/* Take a subnetwork to simulate */

if (large subnetwork)
place*subgroups_on_stack(subn);

/x Take a subgroup to simulate. x/
while (subgr: take_subgroup_from_stack0) {

Simulate(subgroup);
if (All subgroups of the subn simulated) {

schedule_new_tasks(sub);
)

\t'

When a large subnetwork is taken from the stack to be
simulated, its subgroups, which are searched in the pre-
processing, are placed on the stack of subgroups. All pro-
cesses can take a subgroup from that stack to simulate it.
After the simulation of the subgroup, a shared locked
counter of the subnetwork, of which the subgroup is a
part, is incremented by one. If the number of simulated
subgroups equals the number of subgroups in the subnet-
works, the same functions are executed as if the subnet-
work was simulated without partitioning in subgroups.

The results in Table III are the speedup factors of two
circuits with large subnetworks. As can be seen from these

Fig. 5. Signal flow and subgroups in a shifter

TABLE III
Str*.rul-lrroN Trves aruo Rrnl SpeEnup Flcrons FoR CrRculrs CotrelurNc

Lencs SunNerwonrs

bemusl

Circuit # MOS T,,I

(scc)

T, T, T. !" r" ls, s, & s" s.

(scc) (scc) (sec I (scc) (sec)

SIIIFTER

MCALU

1.9 3.5 {.i 5.i

2.0 t.4 3.r {.:

1458 ?62 113 348 258 1

3268 16b6 9b4 843 z;g I t

results, a significant speedup can be obtained by execut-
ing this algorithm on a parallel computer. The simulation
of the shifter on eight processors is more than five times
faster than on one processor.

VII. Srrler-l Gnnrnsn PeneLI-sLrslr

Up to now only the parallelism at the level of subcir-
cuits (SCC, subnetwork, subgroup) is exploited. This is
very efficient, but the acceleration largely depends on the
size and configuration of the circuit. tt is possible to in-
crease the speed of the simulation process by parallelizing
several other parts of the program. Two new methods have
been developed in our research work.

l) In the first method, the parallelism at the level of
subcircuits is combined dynamically with the par-
allelism in the subcircuit simulator. When there are
not enough subcircuits to keep all the processors
busy, the parallel direct method is used to increase
the parallelism.

2) The second method, called the time segment pipe-
lining method, makes an additional speedup poisi-
ble by dividing the simulation interval into smaller
segments. The simulations of the subcircuits in these
smaller time segments can be pipelined. This gives
a significant speed improvement.

These two methods are further explained in this sec-
tion.

7.1. Parallel Element Evaluation

The subnetworks are simulated with the direct method.
Several parallel versions of the direct method have been

must be

24U I45J

1070

proposed. However, only a few results of the combination
of the parallel WR method and the parallel direct method
are published. In [26] a method with dedicated hardware
for the element evaluation is proposed. In [28] both the
model evaluation phase and LU-decomposition are par-
allelized. The processors are statically partitioned in
groups. All the processors of one group work together to
simulate one subcircuit.

We propose a method in which the processors are not
statically partitioned in groups. However, processors can
be grouped dynamically during the simulation to perform
parallel model evaluation when there are not enough sim-
ulatable subcircuits to keep all the processors busy with
only the parallel WR method. All the tasks, subnetwork
simulations and element evaluations, are dynamically dis-
tributed over all the processors.

Since in a relaxation method the circuit is partitioned
into smaller subcircuits, the major portion of the compu-
tation in the subcircuit simulator is the element evalua-
tion. F.xperimental results [6] indicatc that 60-70% of
the total simulation time is taken by element evaluations.
For each timestep, all the elements can be evaluated in
parallel. Since for several elements the stamps of the
MNA matrix can be in the same entries, some synchro-
nization is needed. The speedup will be limited since only
one part of the direct method is done in parallel. Theo-
retical computations [16], based on Amdahl's Law, in-
dicate that if the parallelism in the WR method at the level
of the subnetwork simulation is not exploited, an accel-
eration of 2.2-2.7 can be reached with the parallel ele-
ment evaluation.

The parallel element evaluation is implemented with a

shared stack for each process. On this stack we place all
the elements that have to be evaluated for the current
timestep of a subnetwork under simulation on a given pro-
cessor. If another processor becomes idle, i.e., there is
no subnetwork for that processor, it can help another pro-
cessor with the element evaluation. The idle processor can
look on the stack of elements of other processors. If such
an element is found, it is evaluated and its stamp is added
in the MNA matrix. It is obvious that several steps of the
process have to be protected with lock operations. Due to
these lock operations the acceleration is smaller than the
theoretical value given above. The synchronization over-
head to get a new element is large compared to'the time
to evaluate the element. Several techniques of the parallel
direct method could be used to improve the implementa-
tion. For example, merging several element evaluations
into one larger task to limit the synchronization overhead

I7t.
As long as there are enough subnetworks to distribute

over the processors, there is no parallel element evalua-
tion. Only when there are idle processors does the parallel
evaluation of the elements start on some processors. This
dynamic combination of the parallel WR method and the
parallel direct method is efficient since it gives an optimal
tradeoff between parallelism and efficiency. For large cir-
cuits, nearly l0O% of time is spend in the parallel WR

IEEE TRANSACTIONS ON CoMPUTER.AIDED DESIGN. VOL. 9. NO. IO. OCTOBER I99O

mode, while for the small circuits, up to 100% of time
can be spent in the parallel direct method mode.

Table IV shows some simulation times of the new
method. The third column gives the sequential execution
time. In the fourth column are the results of the OWRI's
algorithm on eight processors. The fifth column gives the
simulation times if only the parallelism in the element
evaluation is exploited. This is 1.6 times faster than the
sequential version. The last column gives the dynamic
combination of the parallel WR method and the parallel
element evaluation. We see that for small circuits or for
circuits with little parallelism that the method can reduce
the simulation time with a 30% compaison to the OWRI's
method. For large circuits the additional gain with paral-
lel element evaluation is limited. This is because in these
circuits there are a lot of subnetworks which can be sim-
ulated in parallel. So, the processors are only idle during
very small periods in which they can do element evalua-
tions for other processors. If more than eight processors
can be used, a significant acceleration is also expected for
these large circuits. However, experiments on a larger
system are needed to verify if bus or shared stack conten-
tion are not becoming a bottleneck.

7.2. Time Segment Pipelining

A method to increase the parallelism of the WR method
is time point pipelining [25]. The results show good speed-
up factors, but if the simulation times are compared with
the simulation times of the method without pipelining, it
is clear that the time point pipelining method suffers from
scheduling overhead. The simulation time on one proces-
sor is 50% larger for the time point pipelining method.

The time segment pipelining (TSPL) method shows
much less overhead [4]. In this paper we present an im-
proved version of the method and additional results which
indicate that there is an optimal size for the time segment.
To explain the method we use the chain of inverters of
Fig. 6. In the Gauss-Seidel relaxation method, and taking
into account the directionality of the circuit, subnetwork
2 can only be simulated if subnetwork I has been simu-
lated. This is because the internal node of subnetwork I
is an input of subnetwork 2. Also, subnetwork 3 can only
be simulated after the simulation of subnetwork 2. This
is represented in the first processor usage plot of Fig. 6.
This condition is in fact too restrictive. When the first
subnetwork is simulated over a certain time segment, the

simulation of the second subnetwork can be started in that
time segment. At the same time the first subnetwork can
be simulated in the next time segment. This is illustrated
in the second plot of Fig. 6.

In the TSPL method the whole simulation interval or
window is divided in a number of time segments. The
simulation of subnetworks is done over only one time seg-
ment. A subnetwork is now able to be simulated if all
inputs are computed in the same time segment for this
waveform iteration and if all fan-out nodes are computed
in the same time segment for the previous waveform it-
eration. An additional condition is that the subnetwork

ODENT cr a1.: ACCELERATION OF RELAXATION-BASED CIRCUIT STMULATION

Procs

OWRI_algorithm

150

TSPL_algorithm

50

Fig. 7. The processor usage of the TSPL method

TABLE V
StvuLntlou Tlves or rHE TSPL Mp.rnon

MOS 2ns 5ns 10ns 25ns OWRI

(sec) (sec) (sec) (scc) (sec)

ALU2

ALUU

CSA

107 I

#act_procs

2 3

9

8

'|

6

5

4

3

2

I

o

9

8

7

6

5

4

3

2

I
0

Procs Time
3.1 3.2

nn
lm50 200 sec

200 SeC

3.3
#acr-procs

2.1

1.r 1.2 1.3

Fig. 6. Three invertors.

TABLE IV
Sluuurlon Ttt'aes WtrHour AND WtrH pARALLEL ElrlreNr EvnLuetlor.r

Circuit # MOS T,,q T"wn T"ot TtwIt-Dn

(sec)

ALU2

ALU8

CSA

osc

ADDACC

SHIFTER

MCALU

752

150

(sec) (scc) (sec)

413

52

405

242

643

has to be simulated in the previous time segment. Feed-
back inputs of the subnetwork are considered to be fan-
out nodes.

For the TSPL method there is an optimal length for the
time segment. It can be seen from Table V, which shows
the execution times for several simulations with time seg_
ments from 5 to 100 ns, that the simulation time is de_
pendent on the size of the time segment. However, the
size is not very critical. Only for a too small size of the
time segment are the scheduling and communication cost
becoming so large that the increase in parallelism is not
Iarge enough to improve the speedup. This tradeoff be-
tween parallelism and overhead is similar to the tradeoff
between convergence speed and overhead in the choice of
the window size.

For an optimal length of the time segments, from l0 to
20 ns, the improvement in simulation time is more than
30% for several circuits. For large circuits, which are al_
ready emciently simulated wirh the OWRI algorithm,
there are no idle processors to exploit the additional par_
allelism. However, on a larger system with more proces_
sors, an equivalent acceleration could be observed for
these large circuits, provided that the bus and shared stack
contention do not become bottlenecks.

Fig. 7 shows the processor usage plots for the simula_
tion of the ALU2 circuir with the OWRI's algorithm and
the TSPL method. The average processor usage is much
higher for the pipelining method and the reduction in sim_
ulation time is significant.

VIII. Cor.rcLUSroNS

In this paper several new algorithms for the efficient
electrical level simulation of large VLSI circuits on mul-
tiprocessor systems are presented. An efficient parallel
scheduler for the simulation of circuits with feedback
loops is explained. A new static partitioning method for
large pass-transistor networks is proposed. Two tech-
niques to exploit smaller grained parallelism are pre-
sented: a dynamic combination of the parallel WR method
and parallel element evaluation and the TSPL method.
The program CSWAN exploits parallelism at several lev-
els: SCC's, subnetworks, subgroups, time segments, and
element evaluations. Experimental results show the power
of the new algorithms.

RepenrNces

[l] I. Bolsens, W. De Rammelaere, L. Claesen, and H. De Man, ,.Elec-
trical debugging of synchronous MOS VLSI circuits exploiting anal-
ysis of the intended logic behaviour." in proc. 26th ACM/IEEE De_
sign Autonution Conf.,Iune 1989, pp. 513-518.

t2l L. O. Chua and P. M. Lin, Cornputer Aitletl Anal,-sis of Electronic
Circuits: Algorithrns and Computational Technique.r. Englewood
Cliffs, NJ: Prenrice-Hall, 1975.

[3] P. Debefve, F. Odeh, and A. E. Ruehli, ..Waveform techniques,"
in Circuit Anall,sis, Simulation and Design, A. E. Ruehli, ed. Am-
sterdam, The Netherlands: North-Holland, 1987, part2, pp. 4l-127.

[4] D. Dumlugol, P. Odent, J. Cockx. and H. De Man, ..Switch-elecrri-
cal segmented waveform relaxation for digital MOS VLSI and its ac_
celeration on parallel computers," IEEE Trons. Computer-Aided De-
sign, vol. CAD-6, pp. 992-1005, Nov. 1987.

[5J D. Dumlugol, "The segmented wavelbrm relaxation method fbr
mixed-mode sinrulation ol digital MOS VLSI circuits," ph.D. dis_
sertation. Katholieke Univ. Leuven, Oct. I986.

16l G. K. Jacob. A. R. Newton, and D. O. pederson. .'An empirical
analysis of the pertbrmance of a multiprocessor-based circuit simu-

210

533

440

85

258

779

431

2146

1733

52

1320

909

488

521

210

533

440

,l1t ,tflt

l',jl] \,r.

,Il'[]l[J

l{l|'ilfl\,r" I

114

456

404

19

528

240

292

084

3387

294I

83

21L5

1458

3268

114

45tt

404

151

498

390

,ro

3U7?

4554

145

71U

565

200

479

395

ro72

lator," in 23rd ACM/IEEE Design Autontation Conf. Pruc., June
1986, pp. 588-593.

[7] G. Jacob. A. Newton. and D. Pederson, "Direct method circuit sim-
ulation using multiprocessors," in Proc. Int. Symp. on Circuits and
S-r'.r/errs, vol. I, May 1986. pp. l7O-l'73.

I8l N. P. Jouppi. "Derivation ol signal flow direction in MOS VLSI,"
IEEE Trans. Contputer-Aided Desigrt, vol. CAD-6, pp. 480-490, May
t987.

t9l H. Y. Hsieh. A. Ruehli. and P. Ledak, "Progress on toggle: A wave-
form relaxation VLSI-MOSFET CAD program, " in Proc. Int. Symp.
on Circuits and Sysrems,1985. pp. 213-216.

[0] E. Le larasnree. A. Ruehli, and A. L. Sangiovanni-Vincentelli, "The
wavelbrm relaxation method for the time-domain analysis of large
scale integrated circuits," IEEE Trans. Contputer-Aided Desigtr, vol.
CAD-1. pp. l3l-145. Aug. 1982.

I l] S. Mattison, "CONCISE: A concurrent circuit simulation program,"
PhD dissertation, Dep. Appl. Electron., Lund Institute of Technol-
ogy. Lund, 1986.

[2] L. N. Nagel. "SPICE2: A computer program to simulate semicon-
ductorcircuits," Memo. no. ERL-M520, Univ. California, Berkeley,
Elec. Res. Lab., May 1975.

[3] P. Odent. D. Dumlugol, and H. De Man, "Hardware acceleration of
circuit simulation on a multi-microprocessor system," in Hard.v,are
A<'celerators for Electrical CAD, by T. Ambler, P. Agrawal and W.
Moore, eds. Oxford, U.K.: Adam Hilger, 1987, pp. 154-163.

[4] P. Odent, L. Claesen, and H. De Man, "New parallel techniques for
simulating MOS circuits with wavcform rclaxation algorifhms in
CSWAN," in Proc. Int. Sy-mp. on Circuits and S1-stems, May 1989,
pp. I 166-l 169.

[5]
-"Feedbackloops

and large subcircuits in the multiprocessor im-
plementation of a relaxation based circuit simulator," in Proc. 26th
ACM/IEEE Digitul Autorttution Conf. 1989, June 1989, pp. 25-30.

[6] P. Odent, "Electrical-level simulation of VLSI MOS circuits using
multi-processor systems," Ph.D. dissertation, Katholieke Univ. Leu-
ven. Jan. 1990.

[7] L. Peterson and S. Matisson, "Circuit partitioning and iteration
scheme for waveform relaxation on multicomputers," in Proc. Int.
St'np. on Circuits afld S),stems, May 1989, pp. 570-573.

tl8l R. A. Saleh, J. E. Kleckner, and A. R. Newton, "lterated timing
analysis and SPLICE1," in Dig. Tech. Papers Int. Conf. Computer-
Aided Design, Sept. 1983, pp. 139-140.

[9] R. A. Saleh, D. Webber, E. Xia, and A. Sangiovanni-Vincentelli,
"Parallel waveform-Newton algorithms for circuit simulation," in
Proc. lttt. Conf. Computer Design, 1987, pp. 660-663.

[20] A. Osterhaug, "Guide to parallel programming," Sequent Computer
Systems, Inc.

[21] R. Tarjan, "Depth-first search and linear graph algorithms, SIAM J.
Cotnput., vol. l. no. 2, June 1972.

l22l W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H. Qua-
semzadeh, and T. R. Scott," Algorithms for ASTAP-A network
analysis program," IEEETrans. Circuit Theory, vol. CT-20, pp.628-
634. Nov. 1973.

[23] D. Webber and A. Sangiovanni-Vincentelli, "Circuit simulation on
the connection machine," in Proc. 24th ACM/IEEE Design Auto-
mation Conf., 1987 .

[24] J. White, R. Saleh, A. Sangiovanni-Vincentelli, and A. R. Newton,
"Accelerating relaxation algorithms for circuit simulation using
waveform newton, iterative step size refinement, and parallel tech-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. IO. OCTOBER I99O

niques," in Dig. Tach. Papers Int. Conf. on Conputer-Aided Design,
Nov. 1985, pp.438-441.

[25] J. White and A. L. Sangiovanni, "Partitioning algorithms and par-
allel implementations of waveform relaxation algorithms for circuit
simulation," in Proc. Int. Symp. on Circuits and Systens, June 1985,
pp. 229-231.

[26] J. White and N. Weiner, "Parallelizing circuit simulation- A com-
bined algorithmic and specialised hardware approach." in Proc. Int.
Conf. ott Computer Design, Oct. 1986, pp. 438-441.

[27] J. White and A. Sangiovanni-Vincentelli, Relaxation Techniques for
Simulation of VLSI Circuits, Norwell, MA Kluwer Academic, 1986.

[28] H. Yoshida, S. Kumagai, and I. Shirakawa, "A parallel irnplemen-
tation of large-scale circuit simulation," in Hurdware Accelerators
for Electrical CAD, T. Ambler, P. Agrawal and W. Moore, eds.
Oxford, U.K.: Adam Hilger, 1987, pp. 164-113.

*

Patrick Odent received the electrical engineering
degree and the Ph.D. degree in applied sciences
from the Katholieke Universiteit Leuven, Bel-
gium, in 1985 and 1990, respectively.

In 1985 he joined the VSDM Division of the
Interuniversity Microelectronics Center (IMEC),
Leuven, Belgium, as a Research Assistant. His re-
search interests are computer-aided design. circuit
simulation, and parallel processing.

Luc J, M. Claesen (S'77-M'85) received the
electrical engineering degree and Ph.D. degree
from the Katholieke Universiteit Leuven, Bel-
gium, in 1979 and 1984, respectively.

After graduation in 1979 he joined the ESAT-
Laboratory, Katholieke Universiteit Leuven, as a

Research Assistant, where he worked in the field
of computer-aided design of integrated systems for
digital and analog signal processing. In 1984 he
joined the IMEC Laboratory in Heverlee, Bel-
gium, where he is heading research in the Design

Methodologies Division. Since 1989 he has been an Associate Professor at
the Katholieke Universiteit Leuven. His research interests are in computer-
aided design, especially formal design and verification methods, as well as
their application to dedicated chip architectures for image synthesis sys-
tems.

Dr. Claesen is a member of IFIP working group 10.2: "System De-
scription and Design Tools. " He received a Best Paper Award at the ICCD
1986 Conference.

*

Hugo De Man, fora photograph and biography please see page 937 ofthe
September 1990 issue of this TnaNsncrrorvs.

*

