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A Real-Time High-Quality Complete System for
Depth Image-Based Rendering on FPGA

Yanzhe Li, Luc Claesen, Senior Member, IEEE, Kai Huang, and Menglian Zhao

Abstract—Depth image-based rendering (DIBR) techniques
have drawn more attention in various three dimensional (3D)
applications nowadays. In this paper, a real-time high-quality
DIBR system which consists of disparity estimation and view
synthesis is proposed. For disparity estimation, a local approach
that focuses on depth discontinuities and disparity smoothness is
presented to improve the disparity accuracy. For view synthesis,
a method that contains view interpolation and extrapolation is
proposed to render high-quality virtual views. Moreover, the sys-
tem is designed with an optimized parallelism scheme to achieve
a high throughput, and can be scaled up easily. It is implemented
on an Altera Stratix IV FPGA at a processing speed of 45 frames
per second (fps) for 1080p resolution. Evaluated on selected image
sets of the Middlebury benchmark, the average error rate of the
disparity maps is 6.02%; the average peak signal to noise ratio
(PSNR) and structural similarity (SSIM) values of the virtual
views are 30.07 dB and 0.9303, respectively. The experimental
results indicate that the proposed DIBR system has the top-
performing processing speed and its accuracy performance is
among the best of state-of-the-art hardware implementations.

I. INTRODUCTION

EXTENDING visual sensation to 3D vision has been
studied for decades and it is widely used in many

applications, such as three dimensional television (3D-TV)
and virtual reality gaming. They provide the audience with
a greater sense of presence in a computer-generated envi-
ronment. Specific viewing technology is used to ensure that
each eye only observes one image from different viewpoints.
However, the requirement to wear additional eyeglasses is
usually perceived uncomfortable. Recently, autostereoscopic
displays support glasses-free 3D depth perception by showing
multiple views simultaneously so that the audience always
sees a stereo pair from predefined viewpoints regardless of its
position [1]. However, it is impractical to capture such multiple
views by using a high number of cameras. The large amount
of consecutive views, which are arranged properly to alleviate
the motion parallax conflict, have significantly increased the
amount of data to be processed and transmitted. Consequently,
depth image-based rendering (DIBR), which efficiently gener-
ates novel realistic viewpoints using the known original views
and the depth information, has been treated as a key part of
3D display systems [2].

In common DIBR algorithms, the production of high-quality
virtual views not only poses challenges to the accuracy of
the depth maps, but also requires additional inpainting steps

Y. Li, K. Huang and M. Zhao are with the Institute of VLSI Design,
Zhejiang University, Hangzhou 310058, China (e-mail: {liyz, huangk, zhaom-
l}@vlsi.zju.edu.cn).

L. Claesen is with the Engineering Technology - Electronics-ICT Dept.,
Hasselt University, Belgium (e-mail: luc.claesen@uhasselt.be).

Disparity 
Estimation

V
iew

 S
y

n
th

esis

Stereo image pair

Disparity maps

Virtual views

+

Fig. 1. The processing flow of the proposed DIBR algorithm.

to fill in the occluded regions that become visible in the
synthesized views. It is noted that DIBR is a complicated and
time-consuming procedure, which makes it hard to process
in real time on a CPU. As a result, hardware acceleration is
inevitable and it has been done extensively using GPUs and
dedicated hardware. Current research efforts on DIBR focus on
the high-quality performance and real-time processing speed
in various 3D applications.

DIBR algorithms can be mainly classified into two kinds:
single-view approach and multi-view approach. In single-view
approaches, depth information is generated from a single view
based on the characteristics of the human depth perception. It
is difficult to recover accurate physical depth even with high
complexity algorithms [3]. Besides, another drawback is that
the virtual views suffer from large occluded holes due to the
lack of corresponding information of the background. On the
contrary, in multi-view approaches, accurate depth maps are
retrieved from the disparity of the correspondences in relative
stereo/multiple images or videos. And the virtual views have
smaller native holes because they can be filled using multi-
view inputs.

In this paper, a stereo-view DIBR algorithm is proposed,
which consists of two main parts: disparity estimation and
view synthesis. The processing flow of the DIBR algorithm
is illustrated in Fig. 1. In addition, a hardware system is
presented based on the proposed DIBR algorithm, and the
evaluation of our design is carried out on the Middlebury
benchmark [4]. There are three major contributions for this
paper:

1) A complete hardware-compatible DIBR algorithm which
consists of disparity estimation and view synthesis is
proposed for high synthesis quality and real-time pro-
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cessing speed at high resolutions.
2) A sophisticated hardware architecture is presented with

an optimized parallelism scheme to accelerate the pro-
posed algorithm. It is designed to achieve a high
throughput, and can be scaled up easily.

3) A prototype of the proposed DIBR system is developed
on an Altera EP4SGX530 FPGA, which achieves a
processing speed of 45 frames per second (fps) for
1080p resolution. Evaluated on selected image sets of
the Middlebury benchmark, the average error rate of the
disparity maps is 6.02%; the average peak signal to noise
ratio (PSNR) and structural similarity (SSIM) values of
the virtual views are 30.07 dB and 0.9303, respectively.

The rest of this paper is organized as follows. The back-
ground and some related works are introduced in Section
II. The DIBR algorithm and its hardware implementation on
an FPGA are described in Sections III and IV, respectively.
The processing speed and accuracy performance of the DIBR
system are discussed in Section V. Finally, this paper is
concluded in Section VI.

II. BACKGROUND AND RELATED WORK

A. Image-Based Rendering Classification

Conventional computer graphics requires an a priori spec-
ified 3D geometric model of the scene, together with color,
texture, lighting, etc. The data is then processed by the
rendering pipeline which performs projection of the 3D model
to produce 2D images. Image-Based Rendering (IBR), on
the other hand, generates virtual views directly from real-
world captured images without full 3D model reconstruction.
It takes advantage of the built-in degree of lifelike visual
realism, which is difficult to achieve with traditional geometric
modeling.

Although many IBR methods often defy rigid classification,
they can still be broadly categorized on a spectrum, as shown
in Fig. 2. It requires explicitly provided geometry on one
end and little to no geometry on the other extreme, with
implicitly determined geometry in between. A tradeoff is
usually observed between the geometry and the number of
images: the less geometry, the more input images are required,
and vice versa [5].

IBR with implicit geometry first estimates the depth of the
scene from any information contained in the input images. This
kind of IBR algorithms is therefore regarded as DIBR. Dispar-
ity estimation from stereo images is a common approach to get
depth information. It is also known as stereo matching, which
takes a pair of rectified images, estimates the displacement of

each pixel between the two images, and displays the associated
movement in disparity maps. While disparity is often treated
as synonymous with inverse depth, virtual views can then be
synthesized by using the disparity maps.

B. Real-Time Hardware Systems
As mentioned in Section I, it is hard to process the complete

DIBR algorithm in real time on a CPU. A CPU-based method
to synthesize 3D video from a binocular stereo camera is
presented in [6], achieving only 8 fps for 640 × 480 pixel
images. To obtain real-time processing speed at high resolu-
tions, GPUs are used as acceleration platforms. One of the
first complete GPU-based systems for multi-view synthesis
is proposed in [7], which runs at 24 fps using a pair of
1080p images. An L-shaped trifocal system which enables
accurate scene reconstruction is proposed in [8]. High-quality
3D content is produced due to the spatial camera arrangement,
but no real-time processing results are provided. A unified
DIBR framework is proposed in [9] and implemented on GPUs
at a frame rate of 10 fps with a 800 × 600 resolution. Although
GPUs have proved to be an attractive speedup platform for
DIBR-based systems, high power consumption restricts their
performance.

Compared to GPUs, FPGAs have two advantages: 1) recon-
figurable processing units and customized memory hierarchies
and 2) low power. In most published FPGA-based systems, the
depth estimation and view synthesis steps are usually treated
separately. There are relatively few real-time systems which
have combined both parts on FPGAs, such as [10] and [11].
In [10], an FPGA-based system is capable of synthesizing
one view from 1080p stereoscopic inputs at 60 fps. A free
viewpoint synthesis system utilizing three-camera disparity
estimation is presented in [11]. It is implemented on a Virtex
7 FPGA board, achieving a speed of 55 fps for 1024 × 768
XGA images.

FPGA-based hardware accelerators for depth estimation
have been developed in [12]–[16]. The design in [12] outputs
1024 × 768 pixel images at 60 fps, whereas the designs in
[13] and [14] also reach the XGA resolution at 129 fps and
199 fps respectively. A semi-global step is applied in both [15]
and [16] to improve the depth accuracy. The hardware system
in [15] achieves a throughput of 1600 × 1200 pixel images
at 42 fps, while the design in [16] shows a very promising
performance of up to 1280 × 960 resolution at 197 fps.

DIBR-based view synthesis engines on FPGAs are de-
veloped in [17]–[20]. Single-view synthesis engines with a
throughput of 1080p images at 60 fps are presented in [17]
and [18]. Multi-view rendering solutions for 1080p at 30 fps
and 96 fps are developed in [19] and [20], respectively.

After exploring state-of-the-art hardware systems extensive-
ly, a complete DIBR system is developed on an FPGA to
achieve high synthesis quality and real-time processing speed
for high-definition images. A more detailed comparison is
given in Section V.

III. ALGORITHMIC FLOW

This section is a summary of the proposed DIBR algo-
rithmic flow. Further, we explain the specific selection and
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parametrization of the methods involved with respect to hard-
ware efficiency. Using a stereo image pair, disparity maps
can be produced with a local disparity estimation method
that focuses on depth discontinuities and disparity smoothness
to improve the synthesis quality. Then virtual views can be
rendered by view synthesis that consists of view interpolation
and extrapolation. The individual steps are explained in more
details below.

A. Disparity Estimation

Disparity estimation algorithms can be divided into two
groups: local approaches and global approaches [21]. Since
local approaches only utilize local information, the accuracy
is usually not sufficient in textureless and occluded regions.
On the other hand, while global approaches can show better
results, they are not easily implemented using dedicated hard-
ware due to their high computation complexity and irregular
data access [22]. Although several hardware systems based
on global approaches have been recently presented [15] [16],
the majority of existing hardware implementations use local
approaches.

For the purpose of generating high-quality views, two
important factors must be present in disparity maps [23].
First, depth discontinuities should be correctly estimated and
placed at the right location. Second, the maps should be
smooth in areas of constant depth to avoid artifacts in virtual
views. Considering the two factors, a local disparity estimation
method is proposed with regard to its applicability in hardware
setups. The computational flow of disparity estimation can be
summarized in four well-defined steps: cost calculation, cost
aggregation, disparity selection and disparity refinement [21].
The details of each step are explained as follows.

1) Cost Calculation: The census transform is a commonly
used function to calculate the matching cost between the
chosen stereo regions. The mini-census transform, a sparse
version of census transform, is first proposed in [24]. It has
been proved that the mini-census transform which intends to
reduce hardware resource requirements is able to deliver better
results than the full census transform [25].

The disparity estimation method begins by applying the
mini-census transform. It converts 8-bit luminance of every
pixel into a 6-bit vector where each bit corresponds to a certain
pixel in the local neighborhood around the pixel of interest.
As shown in Fig. 3, a bit will be set if the corresponding pixel
has a lower luminance than the center pixel which is marked
by gray. Consequently, the pixel characteristic is no longer
represented by its luminance, but rather by the 6-bit vector that
includes the relative luminance difference. This transformation
reduces the on-chip storage and makes disparity estimation
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Fig. 4. The curve of the approximated weight function.

robust to radiometric changes [22]. Once the input images
have been transformed, the matching cost is defined as the
Hamming distance between the vectors.

2) Cost Aggregation: This is the most important step in
local estimation methods because it largely influences the dis-
parity accuracy and computation complexity. In order to obtain
accurate discontinuities in disparity maps, a segmentation-
based adaptive support weight (ADSW) method [26] is used
here, which assumes that segment boundaries in an image are
also depth discontinuity boundaries. The function of the weight
coefficient w is defined as

w(pi, pc) =

{
1.0 pi ∈ Sc
exp(−dc(I(pi),I(pc))γc

) otherwise
(1)

where pi is any pixel in the support region, Sc is the segment
of the central pixel pc, dc is the Euclidean distance in the
CIELAB color space, and γc is a fixed parameter [26]. It
is assumed that pixels inside the segment Sc have a similar
disparity value and their weights are equal to the maximum
value of the range; while pixels outside Sc usually have
different disparity values and their weights are calculated
based on their color distances to pc. Finally, the aggregated
cost is calculated by summing up all the weighted matching
costs in the support region, and then normalized with the sum
of weight coefficients.

To reduce the computation complexity and make the
segmentation-based ADSW method more hardware-friendly,
some optimizations are proposed. (1) The input images are
divided into segments using thresholding instead of the mean
shift method used in [26]. (2) The YUV color representation
is adopted instead of the CIELAB color representation to
replace signed floating-point numbers with unsigned integers.
In our design, only the luminance (Y) channel from the
YUV representation is used to reduce the potential bandwidth
and storage requirements. (3) Rather than Euclidean distance,
Manhattan distance is used to avoid square and square root
computations. (4) The exp(−x) function is approximated by
the 2(6−x) function, and the curve of the weight coefficient is
shown in Fig. 4. It will assign a maximum weight of 64 if the
luminance distance is less than 16 and a minimum weight of
0 if the luminance distance is greater than 128. As a result,
the multiplication between the initial matching costs and the
weight coefficients is reduced to a left shift operation.

Table I lists how the accuracy of disparity maps is impacted
by these optimization techniques. The error rate is averaged
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TABLE I
IMPACT OF THE OPTIMIZATIONS ON ERROR RATE

Optimizations 1 2 3 4 Overall

Error rate + 0.4% + 2.4% - 1.4% + 2.5% + 3.9%

1 - Thresholding segmentation. 2 - Y color representation. 3 - Manhattan
distance. 4 - Approximated 2(6−x) function.

(a) (b) (c)

(d) (e)

Fig. 5. The process of disparity refinement on the right scene of Teddy. (a)
The initial disparity map. (b) The disparity map after consistency check. (c)
The disparity map after disparity voting. (d) The disparity map after disparity
inpainting. (e) The final disparity map after median filtering.

over the Tsukuba, Venus, Teddy and Cones stereo images from
the Middlebury benchmark. The overall error rate is increased
by 3.9% after the integration of all optimization techniques.

3) Disparity Selection: The aforementioned cost aggre-
gation step is executed for the whole disparity range and
the disparity with the minimum aggregated matching cost
is attainable through a winner-takes-all (WTA) method. In
fact, the WTA is widely used in most of the local disparity
estimation methods [21].

4) Disparity Refinement: As shown in Fig. 5a, initial dis-
parity maps are obtained including occlusions around object
edges and at the image borders. To improve the accuracy of
the initial disparity maps, a segmentation-based refinement
which consists of consistency check, disparity voting, disparity
inpainting and median filtering is proposed.

A segmentation-based consistency check is proposed to
determine whether disparity maps are valid or not. The right-
to-left check means that for each pixel p of its right disparity
Dr(p), the corresponding pixel p′ is determined in the left
image based on Dr(p), then the disparity Dl(p

′) and the
segment Sl(p′) of the left image are compared with Dr(p)
and Sr(p) of the right image respectively. If both values are
equal, the right disparity Dr(p) will be marked as valid. This
is expressed as

Dr(p) =

{
valid if Dr(p) = Dl(p

′) & Sr(p) = Sl(p
′)

invalid otherwise
(2)

with p now related to p′ as xp′ = xp +Dr(p), yp′ = yp. The
checked right disparity map is shown in Fig. 5b, and pure
black patches are disparities that have been invalidated. The

TABLE II
IMPACT OF THE REFINEMENT STEPS ON ERROR RATE

Venus Teddy Cones Average

Disparity voting - 68.3% - 30.3% - 25.6% - 41.4%

Disparity inpainting - 9.9% - 15.1% - 14.2% - 13.1%

Median filtering - 2.62% - 2.78% - 5.56% - 3.65%

Overall - 80.8% - 48.2% - 45.4% - 58.1%

process is then reversed for the left-to-right check of the left
disparity map Dl.

After the consistency check, the disparity voting updates the
center disparity with the most frequent valid disparity inside
its local support window. It works because valid pixels in the
same window have a high probability of belonging to the same
object and should have the same disparity. Disparity voting is
able to reliably fill in the occlusions and smooth out disparities
over patches, as shown in Fig. 5c.

Although the disparity voting removes many invalid dis-
parities, it will fail if the window does not contain any valid
disparities. This occurs mostly near the borders in Fig. 5c, and
can also manifest itself where the occlusions are too large. In
order to address the problem, disparity inpainting is used to
replace every invalid disparity with the closest valid disparity
on its scanline. The visual improvements are shown in the
green boxes in Fig. 5c and Fig. 5d.

Finally, small disparity outliers, such as speckle noise, are
filtered using a median filter. The effect of the median filtering
is indicated by the red boxes in Fig. 5d and Fig. 5e.

As shown in Fig. 5, the proposed segmentation-based re-
finement contributes significantly to smooth disparity maps
with sharp object edges and little to no artifacts. Furthermore,
a quantitative measurement on Venus, Teddy and Cones is
summarized in Table II. Note that Tsukuba is not measured
here because its image borders are neglected in the ground
truth. The average error rate is reduced by 58.1% after the
refinement, where the disparity voting, disparity inpainting and
median filtering contribute 41.4%, 13.1% and 3.65% to the
reduction, respectively.

B. View Synthesis

The final generated disparity maps can be used to render
virtual views. Since the input images have been rectified, the
rendering simplifies to a horizontal pixel shift depending on
the pixel’s disparity value.

According to the target location of the virtual views, view
synthesis can be classified into view interpolation and view
extrapolation. For the locations on the baseline between the
left and right reference views, view interpolation is used with
both images and their disparity maps; for other locations on
the baseline, view extrapolation is processed using only one
image and the corresponding disparity map.

In both cases, the rendering is done with a two-step warping
method. The method first warps disparity maps to the target
location, and then uses them to generate virtual images. It has
been proved in [27] that the two-step warping could perform
better than the one-step warping which directly warps the
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images, because the sampling precision is higher in the virtual
views. Note that the warping is not a one-to-one mapping, and
there may be multiple pixels warped to the same pixel location.
Thus, not all pixels in the virtual images will be filled in and
the images will still contain some blanking holes. They are
caused not only by occlusions of the source images, but also
by mismatches and noise in the disparity maps.

To handle the holes, different methods are proposed for
view interpolation and extrapolation, respectively. In the view
interpolation, both reference views are warped to the target
location independently, and then the two virtual views are
used to complement each other because most of the occluded
regions could be seen by either one of the two views. Besides
the complementary process, hole expansion is proposed for
large holes to avoid visual disturbances on the border of
the areas where only one view is available. In addition,
horizontal background extrapolation [28] is used to fill in the
holes that can not be found from both views. In the view
extrapolation, the target location is not between the left and
right reference views, and only the nearer view is used to
render the virtual view. A dynamically adaptive inpainting
method, which contains horizontal background extrapolation
and mirroring, is utilized to fill in the holes depending on their
width. The flowchart of the proposed view synthesis algorithm
is illustrated in Fig. 6. On the basis of our experiments, 3 pixels
width is adopted as the threshold value to determine a hole
whether it is large or not. Algorithm details and experimental
comparisons are explained below.

1) View Interpolation: Both disparity maps of the left and
right reference views are first warped to the target location
independently, as shown in Fig. 7. The warping of each pixel

(a) (b)

Fig. 7. The disparity maps are warped to the target location. (a) From the
left view. (b) From the right view.

(a) (b)

Fig. 8. The effect of hole expansion is demonstrated in the magnified part
of the virtual images. (a) Without hole expansion. (b) With hole expansion.

is determined by its disparity. When multiple pixels are warped
to the same pixel location, the pixel with the greatest disparity
value will be chosen because foreground objects that have
large disparities may occlude background objects with small
disparities under the parallel stereo camera configuration. After
the disparity warping, there are some blanking holes to which
none of the pixels have been warped, indicated as the pure
black patches in Fig. 7.

Given the warped disparity maps, the colors are fetched
from the source images to produce two virtual images. For
pixels that can only be seen in either one of the virtual images,
they are recolored directly to fill in most of the holes; for pixels
that can be seen in both virtual images, they are recolored and
then blended to generate average color values. This blending
process improves the color consistency between the two source
images with higher quality. However, a contour of visual
disturbances surrounding the foreground objects is noticeable
in the final virtual image, as shown in Fig. 8a. The halo-like
effect is caused by color differences on the border of the areas
where only one view is available. To address it, hole expansion
is proposed for large holes in the warped disparity maps. It
expands the hole regions towards the warping direction by one
pixel so that more background information is copied from the
complementary view. The hole expansion process is shown in
Fig. 9. As a result, the colors are prevented from suddenly
changing at the hole borders, and visual improvements could
be seen in Fig. 8b.

It is noted that there are still some remaining holes that can
not be found from both reference views. This problem can be
solved by inpainting methods. Here, a simple method called
horizontal background extrapolation is employed, which fills
in holes by horizontally extrapolating the pixels on the border
of background objects [28]. The disparity information is taken
into account to avoid using foreground objects that are visible
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(a) (b)

Fig. 9. Hole expansion in the warped disparity maps. Green pixels represent
the initial hole regions, and black pixels represent the hole expansion regions.
(a) From the left view. (b) From the right view.

(a) (b)

Fig. 10. The virtual images using different inpainting methods. (a) Horizontal
background extrapolation only. (b) The dynamically adaptive inpainting
method which contains horizontal background extrapolation and mirroring.

and not occluded. Each pixel inside the hole H is filled by
horizontal background extrapolation according to:

I(x, y) =

{
I(ml, y) if d(ml, y) < d(mr, y)

I(mr, y) otherwise
(3)

where (ml, y) and (mr, y) are the left and right positions of
the first boundary pixels of the hole H in the scan line of
pixel (x, y), which has to be filled, and d denotes the disparity
values of those pixels. As pointed out in [28], the horizontal
background extrapolation has satisfactory visual effect without
taking too much computation power.

2) View Extrapolation: When the target location is not
between the left and right reference views, only the disparity
map of the nearer view will be warped. Then the virtual
view is recolored from the corresponding source image using
the warped disparity map. In this case, a number of large
holes will appear in the virtual images due to the lack of
the complementary process. They also need to be filled by
inpainting methods.

Although the horizontal background extrapolation is an
effective inpainting method, it might cause some undesirable
visual artifacts when filling in large holes. Thus, a horizontal
background mirroring method [29] is used to handle large
holes here. As opposed to extrapolation, the hole H is now
filled by completely mirroring background pixels, but not only
using the first boundary pixels:

I(x, y) =

{
I(ml − (x−ml), y) if d(ml, y) < d(mr, y)

I(mr + (mr − x), y) otherwise
.

(4)
The pixels inside the holes are symmetric with respect to the
border of background objects.
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In the view extrapolation, horizontal background extrapo-
lation and mirroring are dynamically used depending on the
width of the holes. The final virtual images using different
inpainting methods are displayed in Fig. 10. It is observed that
the dynamically adaptive inpainting method performs much
better in the yellow boxes.

IV. HARDWARE IMPLEMENTATION

A. System Overview

The hardware system of the proposed DIBR algorithm
is shown in Fig. 11, which consists of two main modules:
disparity estimation and view synthesis. The original RGB data
is first read back from the DDR2 memory sequentially and
stored into line buffers. Then the disparity maps of the stereo
image pair are calculated in the disparity estimation module
with a Prow × Pcol parallelism scheme. Finally, the stereo
images and the corresponding disparity maps are synchronized
and buffered as the input of the view synthesis module, where
the virtual image is generated as the final result.

For the purpose of achieving real-time processing speed at
high-definition images, the system is designed to be a high
throughput architecture. However, external memory bandwidth
is always an important limitation. For example, it requires 1.24
GB/s for 1080p at 50 fps considering loading and reading each
image pair one time. The DDR2 memory that is mounted on
FPGA prototyping boards can typically reach approximately 5
GB/s. Under this condition, hardware implementations that re-
quire multiple reads of a pixel can easily exceed the bandwidth
limitation. Using multiple cameras in one system may also
pose external memory bandwidth challenges. The hardware in
[24] needs to access external memory at least five times for
every pixel, and thus it requires high memory bandwidth even
for low resolution images. In the proposed hardware system,
the data allocation scheme requires reading each pixel only
once from the external memory during the whole process.

The high-speed processing is also guaranteed by the par-
allelism and pipeline scheme in the system. As shown in
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Fig. 11, the stereo images are processed in parallel whenever
possible. However, it is almost impossible to connect the two
modules directly because they have different requirements in
accessing the memory. The disparity estimation module reads
the data repeatedly to cover the disparity range of different
pixels, and then writes disparity maps out in scanline order; the
view synthesis module requires image data and disparity maps
synchronously, and the data from the two images has to be
accessed in reverse order for each other. In such a setting, ping-
pong line buffers are used to support fully row-based pipelined
processing. Further, the implementation details inside each
module will be discussed in the following subsections.

B. Disparity Estimation Module

1) Parallelism Scheme: During the disparity estimation,
it is challenging to develop an efficient parallelism scheme
due to the requirement for real-time processing speed. Many
hardware systems calculate the disparity maps pixel by pixel
using progressive scan [12] [24]. It is simple to implement
but inefficient. In our system, a parallelism scheme which
combines the row-level parallelism Prow with the column-
level parallelism Pcol is proposed. It means that Prow pixels
in neighboring rows and Pcol pixels in neighboring columns
are processed in parallel. Thus, the parallelism degree is
Prow × Pcol in the system.

The estimation process starts with converting the RGB
pixels into the YUV format. As shown in Fig. 12, the 8-bit
luminance (Y) components of the pixels are loaded into the
D flip-flop (DFF) Arrays, the size of which is (Prow + 12)×
(Pcol +12) depending on the parallelism degree. The colored
Prow × Pcol pixels are processed in parallel, and the support
region of each pixel is selected from the DFF Arrays as a 13
× 13 window block, which is indicated by the red box for the
red pixel. In the Prow ×Pcol window blocks, the mini-census
transform and the thresholding segmentation are operated for
the Hamming distances and weight coefficients, respectively.

To calculate the left disparity map in Fig. 12, the left pixels
are kept unchanged in the left DFF Array during the search
process, while the right pixels are read as candidate pixels
continuously. They are loaded into the right DFF Array and

Left image Pcol

Right image

The target windows (fixed)

The candidate windows are 
shifted every cycleshift

1 2 3 ...

1 2 3 Pcol...

Fig. 13. The proposed PWR technique.

shifted one column every cycle until the whole disparity range
(Dr) is covered. The right disparity map is calculated in
the same way, and the left pixels are shifted by column as
candidate pixels. Thus, the disparity estimation module is able
to process Prow ×Pcol pixels of each image every (13+Dr)
clock cycles. Here the disparity range can be configured by the
user depending on the expected distance to the objects. And it
is noted that configuring the module for a low disparity range
can increase the processing speed. The relationship between
the processing speed and parameter settings (e.g. Prow, Pcol
and Dr) will be discussed in detail in Section V-B.

2) Data Reuse: To reduce the memory bandwidth and
computation requirements, data reuse techniques are used in
the disparity estimation module. An efficient method, partial
column reuse (PCR), has been proposed in [24]. It reuses
the data in each column, which is usually a part of multiple
horizontally overlapped window blocks. Therefore, the data
of each column can be shared by the calculation in these
windows. In our system, the PCR is adopted not only for
columns horizontally, but also for rows vertically.

Further, a parallel window reuse (PWR) technique is pro-
posed based on our parallelism scheme. The PWR reuses the
window blocks for the Pcol neighboring pixels in the same row.
To calculate the disparities of the left image, the pixels from
the right image are shifted as candidate pixels every cycle, and
the right window blocks can be used Pcol times from pixel 1 to
pixel Pcol. As shown in Fig. 13, the window block in the red
solid lines is first processed for pixel 1. Then in the next cycle,
its location is shifted to right by one column and the block
is processed for pixel 2, as indicated by the red dotted lines.
This operation continues until the window block is used for
pixel Pcol, and its location is shown in the blue solid lines.
As a result, the mini-census transform and the thresholding
segmentation, which are operated in the window blocks, can
be calculated only once for the Pcol pixels. In every cycle of
the search process, only the window blocks that contain new
shifted columns are calculated and repetitive computations are
avoided.

3) Cost Aggregation: In each aggregation submodule, the
Hamming distances and weight coefficients are produced using
the left and right window blocks. The Hamming distances
are calculated as matching costs between the mini-census
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Fig. 14. The architecture of the aggregation submodule.

data from both windows. With the help of the segmentation
information, the weight coefficients are generated using a look-
up table (LUT). It is a straightforward solution that consumes
a low amount of hardware resources. The matching costs
are multiplied by the corresponding weight coefficients, and
this multiplication is reduced to a left shift operation due
to the approximated weight function. The final aggregated
cost is calculated by summing the weighted costs with a tree
adder, then dividing it by the sum of weight coefficients.
The architecture of the aggregation submodule is illustrated
in Fig. 14. A total of Prow×Pcol aggregation submodules are
processed to deal with the Prow × Pcol parallelism degree.

After the cost aggregation, the disparity with the minimum
aggregated cost is selected by the WTA method. In addition,
the segmentation information of each pixel is stored in a FIFO
for the segmentation-based refinement.

4) Disparity Refinement: Consistency check, disparity vot-
ing, disparity inpainting and median filtering are implemented
in a pipeline to generate the final disparity maps. First, the
initial disparity maps of both images are used to check the
consistency of every pixel with the help of the segmentation
information. One more bit is generated to label whether each
disparity is valid or not.

Then the disparity voting is processed in a 13 × 13 support
window to achieve a reliable result. Two techniques, which
have been proposed in [30], are applied here for fast and
efficient implementation. One technique is that the voting can
be modified to a horizontal-vertical approach, as shown in
Fig. 15a. The gray blocks represent valid disparities, while the
white blocks represent invalid ones. The 2D voting procedure
is approximated to two successive 1D voting procedures, and
the computation complexity can be reduced from O(N2) to
O(2N). The other technique is using a bitwise fast voting
method to handle the most frequent valid disparity. It drives
each bit of the disparity value independently from the other
bits. In this way, the hardware cost depends on the number of
the disparity bits in binary. The architecture of the bitwise fast
voting for one row is shown in Fig. 15b. It is noted that when

Horizontal Vertical

(a)

. . .

LUT

valid_1

...

&

&

D1_bit0

D2_bit0

&
D13_bit0

Bit0
Bit1

Bit2
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...
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Disparity
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Fig. 15. Two techniques used in the disparity voting. (a) The horizontal-
vertical approach. (b) The architecture of the bitwise fast voting.
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Fig. 16. The architecture of the view synthesis module.

counting bit votes, the valid information of each disparity must
be taken into account. Since the support window size is 13 ×
13, the 13 most frequent disparities in 13 rows are first derived.
Then the most frequent disparity in the support window is
selected from the 13 derived ones as the center disparity.

After the disparity voting, most invalid disparities are updat-
ed to valid ones only by their valid neighbours. The remaining
invalid disparities are replaced with the closest valid ones
for the disparity inpainting. Finally, the median filtering is
processed, and its hardware architecture proposed in [31] is
implemented in our system. The refined disparity maps are
written into the disparity buffers in scanline order.

C. View Synthesis Module

In the view synthesis module, the image data and disparity
maps have been synchronized in buffers. The target location
is defined as an unsigned integer. As shown in Fig. 16, this
module is split into 4 concurrent state machines: Warping,
Recoloring, Blending and Inpainting; and ping-pong buffers
are used between the states to provide pipelined processing.

The Warping state will start once the disparity and image
buffers are available. The read address is generated to read
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the disparity values dl and dr from the disparity buffers. Then
the warped disparity values dwl and dwr are calculated using
dl and dr; they are also used to generate the write address
to the warped disparity buffers. In addition, the corresponding
validity bits of dwl and dwr are produced in the validity gen-
eration, where the hole expansion is implemented depending
on the hole width. The architecture of the validity generation
submodule is shown in Fig. 17. If a disparity is not validated,
it will be considered in the holes. Whenever dwl and dwr are
written into the warped disparity buffers, their corresponding
validity bits are written to the same address of the validity
buffers.

The Recoloring state works when the warped disparity and
validity buffers are available. The dwl and dwr are used to
calculate the read address to the image buffers. For the view
interpolation, the read data from both images is processed
in the color blending submodule; for the view extrapolation,
only the buffers of one image are read according to the target
location, and the read data is bypassed without the blending.

In the Blending state, the warped disparity values and
validity bits are processed in the label calculation submodule.
As shown in Fig. 18, a label is generated for each pixel inside
the holes to indicate the address of its corresponding inpainting
pixel. Then the image data and address labels are written into
the inpainting buffers.

Finally in the Inpainting state, the read address is generated
using the address labels to fill in the holes, and the image data
is read back from the inpainting buffers. The virtual image is
sent out pixel by pixel in scanline order.

V. EXPERIMENTAL RESULTS

A prototype of the proposed system has been implemented
on an Altera EP4SGX530 FPGA board. It is evaluated using
rectified synthetic stereo images, which are initially stored
in the DDR2 memory. Two important aspects — processing
speed and accuracy evaluation — are elaborated in the fol-
lowing subsections to prove the effectiveness of the proposed
DIBR system. In addition, to make the system more flexible,
its scalability is also discussed below.

A. Overall Hardware Performance

An overall comparison is first made among our system and
other complete DIBR systems which are listed in the related
work. Further, there are relatively few published FPGA-based
systems that implement the disparity estimation and view syn-
thesis units together. Both parts are usually treated as separate
subproblems in the literature. Therefore, the two subsystems
are then compared with related hardware implementations on
FPGAs.

1) Complete Systems: Complete DIBR systems with simi-
lar functionality are presented in [6], [7] and [9]–[11], which
are listed at the top of Table III. The systems in [6] and
[9] are based on CPU and GPU respectively, but it is noted
that they can not achieve real-time processing speed for
high resolutions. The work in [7] is implemented on a dual
processor workstation with two Intel Xeon5690 CPUs and
two NVIDIA GTX590 graphics cards. It synthesizes eight
interleaved views from 1080p input images at 24 fps. Clearly,
the size of this system, the cost, and power consumption make
it unsuitable for integration into consumer devices. In [10],
the synthesis system is implemented on a Stratix III FPGA,
which is able to produce one virtual view generated from
1080p content at 60 fps. Since no detailed FPGA results are
published for the system, its hardware complexity is provided
in 250 nm CMOS technology. Compared to our system, only
the view interpolation is implemented in [10], where the virtual
viewpoints are limited between the stereoscopic input images.
The system in [11] utilizes XGA images from three cameras
and achieves a speed of 55 fps. Therefore, it is able to reach
only 21 fps when its performance is scaled to 1080p images.
This FPGA-based system is implemented on a Virtex 7 board,
and occupies quite a large number of hardware resources.
As a comparison, our proposed system, which can run up to
120 MHz on an Altera EP4SGX530 FPGA, occupies fewer
resources comprising 254k LUTs, 149k registers and 3.73M
RAM bits, and supports 1080p output resolution at 45 fps.

2) Disparity Estimation Cores: In DIBR frameworks, dis-
parity estimators such as the implementations in [12]–[16] can
be viewed as an individual step. A quantitative comparison
of these FPGA-based estimators is shown in Table III in the
middle, which focuses on three aspects: disparity accuracy,
processing speed and resource utilization. The disparity accu-
racy is measured by the error rate and will be discussed in
detail in Section V-C.

The processing speed is evaluated by million disparity
estimations per second (MDE/s), which means the product
of frame rate, image resolution and disparity range. In the
proposed system, the disparity estimation core is able to reach
45 fps for 1080p images with a disparity range of 64 pixels.
Among the listed estimators, it is the only one designed for
1080p resolution, and can achieve 11944 MDE/s on an Altera
EP4SGX530 FPGA. Some estimators in [13], [15] and [16]
achieve a similar or even better processing speed. But the
estimator in [13] uses a simpler local algorithm based on
variable support region, which will cause a worse accuracy
performance than that of our disparity estimation core. Semi-
global methods are applied in [15] and [16] to achieve a
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TABLE III
OVERALL HARDWARE COMPARISON WITH OTHER COMPLETE DIBR SYSTEMS, DISPARITY ESTIMATION, AND VIEW SYNTHESIS UNITS

Complete systems Input Output Technology LUT Reg Ram [MBit] f [MHz] FPS

This work 2×1080p 1×1080p Stratix IV 254k 149k 3.73 120 45

Xu et al. [6] 2×VGA 1×VGA CPU Intel Core2 6700 CPU - 8

Riechert et al. [7] 2×1080p 8mix 1080p GPU+CPU 2×Xeon5690, 2×GTX590 - 24

Dumont [9] 2×SVGA 1×SVGA GPU 2×GTX TITAN Black - 10

Liao et al. [10] 2×1080p 1×1080p ASIC 250nm 470kGE 1.27* - 60

Akin et al. [11] 3×XGA 1×XGA Virtex 7 607k 303k 8.43* 175 55

Disparity estimation MDE/s† Output (Dr
◦ ) Technology LUT Reg Ram [MBit] Average error rate FPS

This work 11944 2×1080p (64) Stratix IV 247k 144k 3.31 6.02% 45

Zhang et al. [12] 3019 1×XGA (64) Stratix III 80.6k 94.9k 3.77 8.20% 60

MCADSR [13] 13076 1×XGA (128) Stratix IV 60.2k 33.3k 2.87 7.65% 129

Jin et al. [14] 9362 1×XGA (60) Virtex 6 123k 6.08 6.05% 199

Wang et al. [15] 10472 1×UXGA (128) Stratix V 222k 149k 16.6 5.61% 42

Li et al. [16] 15492 1×XVGA (64) Stratix V 96.1k 83.2k 20.3 6.03% 197

View synthesis Input Output Technology LUT Reg Ram [MBit] Quality metrics FPS

This work 2×1080p 1×1080p Stratix IV 7.61k 4.31k 0.41 PSNR/SSIM 65

Chen et al. [17] 1×360p4 9mix 1080p Cyclone III 1.40k 1.28k 0.47 Subjective perception 60

Lai et al. [18] 1×1080p 2×1080p Virtex 5 5.77k 2.43k - Subjective perception 60

Jin et al. [19] 2×360p4 9mix 1080p Virtex 4 5.56k 5.25k 0.29* Subjective perception 30

Wang et al. [20] 2×1080p 1×1080p Virtex 6 23.5k 20.5k 3.31* PSNR 96
* Estimates, not accounting for memory controller and other I/O infrastructure.
† MDE/s: Million disparity estimation per second.
◦ Dr : Number of the disparity range.
4 640×360 resolution.

high processing speed, but much more memory resources are
needed to store temporary results.

The resource utilization on FPGAs is another important
criterion especially when hardware resources are limited. It
is an estimated evaluation because the basic units of different
FPGA platforms are not the same. It is noted that the proposed
disparity estimation core occupies more logic resources than
others in Table III. There are two main reasons. One is that
the disparity maps of both stereo images are simultaneously
generated, which will be used in the view synthesis core;
the other is that the proposed algorithm uses many promising
methods (e.g. the segmentation-based ADSW and refinement)
to achieve a high accuracy performance.

However, it is difficult to provide a unified metric which in-
cludes all the mentioned aspects, because the processing speed
and disparity accuracy are in quite different domains. Besides,
the importance of the aspects varies over the requirements of
different applications. Thus, it is more meaningful to discuss
the metric in a specific scenario in the future.

3) View Synthesis Cores: A comparison of the proposed
view synthesis core with related FPGA-based implementations
is given in Table III at the bottom. Interleaved view synthesis
engines are developed in [17] and [19] with performances of
up to 1080p at 60 fps and 30 fps, respectively. In contrast,
architectures that are able to render virtual views directly are
designed in [18] and [20]. Among the listed designs, the work
in [20] achieves the highest processing speed of 96 fps while
it occupies the most hardware resources. The proposed work
is able to produce one virtual view of 1080p at 65 fps. Note
that it occupies a little more resources than those the designs

in [17]–[19] occupy. A main reason for this is that the view
interpolation and extrapolation are both implemented in our
view synthesis core. Additional reasons are the different image
and disparity map resolutions.

The synthesis quality of the virtual views is also an im-
portant criterion to these designs. The ultimate validation is
whether the views look real or not, but sometimes it is difficult
to be measured only depending on the subjective human
perception. For the proposed view synthesis core, quantitative
metrics such as PSNR and SSIM [32] are used to evaluate the
synthesis quality. More details will be discussed in Section
V-C.

B. Scalability

A key feature of the proposed system is scalability. As
shown in Table III, the disparity estimation core occupies
most of the hardware resources in the whole system. Thus, the
disparity estimation core can be scaled up to make the system
more flexible, and a tradeoff is made between the processing
speed and resource utilization by tuning the parameters such
as the image resolution H × W , disparity range Dr, and
parallelism degree Prow × Pcol. The processing speed (frame
per second) and resource utilization of the disparity estimation
core are shown in Table IV with different parameters. The
values are based on the compilation results of each module.

A further analysis is given to the relationship between the
processing speed and parameter settings. The frame rate of the
disparity estimation core could be estimated as:

FPS ≈ f × Prow × Pcol
H ×W × (Dr + 13)

(5)
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Fig. 19. True disparity maps and experimental results of the disparity estimation core.

TABLE IV
PROCESSING SPEED AND RESOURCE UTILIZATION OF THE DISPARITY

ESTIMATION CORE WITH DIFFERENT PARAMETERS

Image Parallelism
FPS

Resource utilization
resolution Prow Pcol LUT Reg RAM Bits

VGA 4 1 24.59 43246 20686 938112
Dr=48 4 2 49.17 59714 27818 939072

8 2 99.46 83935 45152 1143872

XGA 4 2 15.26 59623 28942 1465348
Dr=64 4 4 30.52 87048 43488 1467456

8 4 61.37 138428 76886 1795136

1080p 4 4 11.18 88263 45084 2700312
Dr=64 8 4 22.37 139897 78478 3311136

8 8 45.31 246791 144526 3314752

where f is the frequency of the system and can run up to 120
MHz. It is noted that the frame rate increases with increasing
parallelism degree Prow×Pcol, but decreases with larger image
resolution H ×W and disparity range Dr.

The total resource utilization of the disparity estimation core
is also estimated here:

LUT ≈ 3150× Prow × Pcol + 1660× Pcol + 31000 (6)

Reg ≈ 2050× Prow × Pcol + 12500 (7)

RAM ≈ 16×W × (66 + 5× Prow) + 58500. (8)

When the parallelism degree Prow × Pcol is fixed, the logic
resource utilization mainly depends on Pcol, while the memory
resource utilization mainly depends on Prow.

Due to unpredictable optimization in compilation tools, the
real processing speed and resource utilization of the whole
core may be a little different from the estimated values.
Consequently, the parameter settings in the proposed system
could be adjusted according to the resource specification of
various FPGA boards.

C. Quality Evaluation

To discuss the quality performance, the disparity estimation
and view synthesis cores are first evaluated on the Middlebury

benchmark using different metrics, respectively. Then the pro-
posed system is integrally evaluated to prove its effectiveness.

1) The Disparity Estimation Core: For disparity maps, the
error rate is utilized as a commonly accepted metric, which
means the percentage of bad pixels in different regions [21].
The Middlebury benchmark is widely used in evaluating the
accuracy of disparity estimation algorithms. The disparity
maps of four image pairs Tsukuba, Venus, Teddy and Cones
are shown in Fig. 19, and quantitative evaluation results are
listed in Table V, which also provides a comparison with some
state-of-the-art FPGA-based disparity estimators. The average
error rate is 6.02% in our design. It is observed that the work
in [15] shows an average error rate of 5.61%, which ranks
first among the implementations. However, as mentioned in
Table III, it occupies more memory resources and achieves
a lower processing speed than our design. The designs in
[14] and [16] show comparable accuracy performance 6.05%
and 6.03% respectively, but neither of them is developed for
1080p resolution. To summarize, the comparison shows that
the accuracy of the disparity maps in our design is among the
best of FPGA-based implementations.

The resolutions of the image pairs Tsukuba, Venus, Teddy
and Cones are all lower than VGA resolution. However, the
proposed design can process images at high resolutions. To
evaluate the tolerance for resolution variation, some high-
definition images in the Middlebury benchmark are utilized.
The results of Art, Dolls and Motorcycle are also shown in
Fig. 19, and it is noted that clear and smooth disparity maps
are provided. The overall error rates are 12.57%, 8.93% and
30.76%, respectively.

2) The View Synthesis Core: The quality performance of
the proposed view synthesis core is evaluated by four image
sets from the Middlebury benchmark, including Teddy, Cones,
Art and Dolls. For each set, seven images are placed in the
same distance between each other and numbered from 1 to
7 (IM1-IM7). IM2, IM6 and their corresponding ground truth
maps (GT2 and GT6) are used to synthesize the virtual views.
View interpolation is processed at exactly the viewpoints
IM3, IM4 and IM5, while view extrapolation is done at the
viewpoints IM1 and IM7. The virtual and real images are then
evaluated in terms of PSNR and SSIM, as shown in Table VI.
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TABLE V
ACCURACY COMPARISON OF DISPARITY MAPS

Image set Tsukuba Venus Teddy Cones Average
Evaluation nonocc1 all2 disc3 nonocc all disc nonocc all disc nonocc all disc Error Rate

Wang et al. [15] 2.39 3.27 8.87 0.38 0.89 1.92 6.08 12.1 15.4 2.12 7.74 6.19 5.61

This work 2.69 3.47 10.8 0.41 0.52 5.07 4.24 8.69 15.6 2.86 7.96 9.97 6.02

Li et al. [16] 2.79 - - 0.68 - - 4.18 - - 2.67 - - 6.03

Jin et al. [14] 1.66 2.17 7.64 0.40 0.60 1.95 6.79 12.4 17.1 3.34 8.97 9.62 6.05

Ttofis et al. [33] 2.38 3.01 9.38 0.40 0.70 3.62 7.23 12.7 17.2 2.87 8.59 8.27 6.36

MCADSR [13] 3.62 4.15 14.0 0.48 0.87 2.79 7.54 14.7 19.4 3.51 11.1 9.64 7.65

Zhang et al. [12] 3.84 4.34 14.2 1.20 1.68 5.62 7.17 12.6 17.4 5.41 11.0 13.9 8.20

Ttofis et al. [34] 4.48 6.04 12.7 6.01 7.47 18.2 21.5 28.1 28.8 17.1 25.9 25.8 16.8

Jin et al. [35] 9.79 11.6 20.3 3.59 5.27 36.8 12.5 21.5 30.6 7.34 17.6 21.0 17.2
1 Percentage of bad pixels except for occluded regions.
2 Percentage of bad pixels in all regions.
3 Percentage of bad pixels only along discontinuous regions.

TABLE VI
PSNR AND SSIM RESULTS OF THE VIRTUAL VIEWS

Metric Image set IM1 IM3 IM4 IM5 IM7 Average

PSNR (dB)

Teddy 29.03 31.49 31.60 30.69 29.12 30.39
Cones 27.06 29.89 29.19 29.42 27.31 28.57

Art 29.26 31.81 31.84 31.46 29.37 30.75
Dolls 30.64 33.94 34.01 33.56 30.84 32.60

SSIM

Teddy 0.9285 0.9566 0.9546 0.9419 0.9351 0.9433
Cones 0.9018 0.9361 0.9210 0.9342 0.9111 0.9208

Art 0.9251 0.9571 0.9604 0.9568 0.9253 0.9450
Dolls 0.9458 0.9660 0.9737 0.9691 0.9463 0.9602

TABLE VII
QUALITY COMPARISON OF THE PROPOSED VIEW SYNTHESIS METHOD WITH OTHER METHODS

Metric Image set Zhang et al. [36] Yang et al. [37] Sun et al. [38] Lee et al. [39] Chen et al. [40] Kuo et al. [41] This work

PSNR (dB)

Teddy 22.33 30.33 - 25.73 32.32 24.76 30.39
Cones 20.89 27.66 - 24.26 28.73 33.93 28.57

Art - - 26.37 - - - 30.75
Dolls 22.14 31.39 29.66 27.69 - - 32.60

SSIM

Teddy 0.7467 0.9230 - 0.8678 0.9923 0.9890 0.9433
Cones 0.6646 0.8834 - 0.8285 0.9653 0.9890 0.9208

Art - - 0.9740 - - - 0.9450
Dolls 0.7329 0.9356 0.9885 0.9109 - - 0.9602

PSNR is an objective method for judging image quality, but
it only calculates the color difference between two images.
SSIM calculates changes in structural information, which is
introduced to correlate better with the human visual system.
Note that for every image set, the PSNR and SSIM results
of IM3, IM4 and IM5 are always greater than those of IM1
and IM7. Because IM3, IM4 and IM5 are synthesized by both
IM2 and IM6 in the view interpolation process, where more
pixel information is utilized; while IM1 is generated in the
view extrapolation process from IM2 only and IM7 is from
IM6 only.

Since very few FPGA-based view synthesis engines pro-
vide quantitative evaluation results, some state-of-the-art view
synthesis methods [36]–[41] which are implemented on other
platforms such as CPUs and GPUs are introduced for a quality

comparison, as shown in Table VII. There are some empty
values in the table because the image sets used in the presented
methods [36]–[41] are slightly different. It is noted that the
SSIM values of [40] and [41] are greater than that of this work.
Because [40] and [41] have complicated inpainting functions
to fill in the holes of the virtual images, while the proposed
method utilizes a relatively simple inpainting process for its
implementation on an FPGA. In this condition, more artifacts
such as distortions and ghosts will appear inside the holes
using our view synthesis method. High PSNR values could
possibly be produced, since the artifacts may occur only in
some small parts of the image, whereas they are expected to
present a larger error in SSIM values.

3) The Complete System: In the proposed DIBR system,
the disparity maps are generated in the disparity estimation
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TABLE VIII
THE QUALITY PERFORMANCE OF THE VIRTUAL VIEWS BY USING THE GROUND TRUTH AND THE GENERATED DISPARITY MAPS

Metric Disparity Teddy Cones Art Dolls Average

PSNR (dB)
Ground truth 30.39 28.57 30.75 32.60 30.58

Generated maps 30.03 28.29 29.81 32.16 30.07

SSIM
Ground truth 0.9433 0.9208 0.9450 0.9602 0.9423

Generated maps 0.9351 0.9144 0.9289 0.9426 0.9303

Source image IM2IM1

Teddy
(450x375)

IM3 IM4 IM5 IM7Source image IM6

Cones
(450x375)

Art
(1390x1110)

Dolls
(1390x1110)

Real-world images
(1920x1080)

Fig. 20. The virtual images synthesized in the complete system.

core, and then processed in the view synthesis core to produce
virtual views. The resulting views are used to evaluate the
quality performance of the complete system, and the results
are listed in Table VIII, where each number is an average value
of IM1, IM3, IM4, IM5 and IM7. Compared to the evaluation
results by using the ground truth, the average PSNR and SSIM
values decrease to 30.07 dB and 0.9303, respectively. Because
there are bad pixels in the generated disparity maps, while the
ground truth is always right.

The subjective perception is also a crucial point for the
virtual views. For each image set, two source images (IM2 and
IM6) and five synthesized images (IM1, IM3, IM4, IM5 and
IM7) are shown in Fig. 20. It is observed that no black patches
are remaining in the images. The most noticeable artifacts are
the left border of IM1 and the right border of IM7. Since IM1
is generated from IM2 only and IM7 is from IM6 only, the
pixel information is usually missing at their image borders. As
mentioned in Section III-B, the missing content is extrapolated
by existing pixels, but it will result in a few repetitive patterns.
Besides, some artifacts also appear around object edges. The
visual disturbances are caused by incorrect disparity maps in
depth discontinuity regions.

The image sets from the Middlebury benchmark are all well
captured and rectified so that the results are quite accurate. But

the synthesis quality for real-world images may decrease due
to some undesirable factors, such as luminance differences and
rectification errors. The proposed system is further evaluated
by real-world images to prove its robustness, as shown in the
last row in Fig. 20. The images are captured in a laboratory at
1080p resolution, and then rectified by software. It is shown
that our system still provides high-quality virtual views for the
real-world images.

VI. CONCLUSION

This paper presents a complete stereo-view DIBR algorithm
which contains disparity estimation and view synthesis. In
order to implement the algorithm, a fully parameterized and
scalable hardware architecture is designed with hardware-
oriented optimizations. Furthermore, a prototype of the DIBR
system has been built on an Altera Stratix IV FPGA and can
achieve 45 fps for 1080p resolution. The design is evaluated
on selected image sets of the Middlebury benchmark; the
experimental results have shown that the proposed system
has the top-performing processing speed and its accuracy
performance is among the best of state-of-the-art hardware
implementations. In the future, we will start the application
specific integrated circuit (ASIC) design of the DIBR system
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for lower cost and power. This could make it more practicable
in various 3D applications nowadays.
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“An FPGA-based implementation for median filter meeting the real-time
requirements of automated visual inspection systems,” in Proceedings of
the 10th Mediterranean Conference on Control and Automation, Lisbon,
2002.

[32] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, April
2004.

[33] C. Ttofis, C. Kyrkou, and T. Theocharides, “A low-cost real-time
embedded stereo vision system for accurate disparity estimation based
on guided image filtering,” IEEE Transactions on Computers, vol. 65,
no. 9, pp. 2678–2693, Sept 2016.

[34] C. Ttofis and T. Theocharides, “Towards accurate hardware stereo
correspondence: A real-time FPGA implementation of a segmentation-
based adaptive support weight algorithm,” in Proc. Design Autom. Test
Eur. Conf. Exhibit. (DATE), 2012, pp. 703–708.

[35] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S. K. Park, M. Kim, and
J. W. Jeon, “FPGA design and implementation of a real-time stereo
vision system,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 20, no. 1, pp. 15–26, Jan 2010.

[36] L. Zhang and W. J. Tam, “Stereoscopic image generation based on depth
images for 3D TV,” IEEE Transactions on Broadcasting, vol. 51, no. 2,
pp. 191–199, June 2005.

[37] T. C. Yang, P. C. Kuo, B. D. Liu, and J. F. Yang, “Depth image-
based rendering with edge-oriented hole filling for multiview synthesis,”
in 2013 International Conference on Communications, Circuits and
Systems (ICCCAS), vol. 1, Nov 2013, pp. 50–53.

[38] Z. Sun and C. Jung, “Real-time depth-image-based rendering on GPU,”
in 2015 International Conference on Cyber-Enabled Distributed Com-
puting and Knowledge Discovery, Sept 2015, pp. 324–328.

[39] P. J. Lee and Effendi, “Nongeometric distortion smoothing approach for
depth map preprocessing,” IEEE Transactions on Multimedia, vol. 13,
no. 2, pp. 246–254, April 2011.

[40] K.-H. Chen, C.-H. Chen, C.-H. Chang, J.-Y. Liu, and C.-L. Su, “A
shape-adaptive low-complexity technique for 3D free-viewpoint visual
applications,” Circuits, Systems, and Signal Processing, vol. 34, no. 2,
pp. 579–604, Feb 2015.

[41] P.-C. Kuo, J.-M. Lin, B.-D. Liu, and J.-F. Yang, “High efficiency depth
image-based rendering with simplified inpainting-based hole filling,”
Multidimensional Systems and Signal Processing, vol. 27, no. 3, pp.
623–645, Jul 2016.


