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This paper describes a fully operational on-line signature verification svstem. Froma hardware point of view, its heart is the sMAÁTpetrTM, à,p".iui"i"prï-a""i."
allowing, the recording of force and angle signals. The most importani softw*rc
aspect thàt we focus on here is the exploitàtion of the gau--fuetch pr*.ou.u
in the feature extraction process. This argorithm provides a mathemaiical basisfor classifying a signature taking into account the rerative importance or rátt tt editrerent signals under observation, and the distinct phenomàna that are present
in these. The usefulness of the approach is ilrustrated by presenting tnl ,eJutts or
a full-scale field test.

1 fntroduction

The most typical characteristic of our current society is undoubtedly its high
degree of automation. At the moment a very large amount of jobs, previously
done exclusively by humans, can be executed witÈout quality loss by machines.
The weakness of this automation process is however i" ,nany cases situated in
the problem of autonomously identifying the user.

Until very recently most of the identity verification systems have been
using non-biometric identity verification techniques. These techniques do not
base the actual classification on a unique characteristic of a certain person, but
on some kind of secret - a key, a pass-word - shared between the sutject being
verified and the object that is performing the verification task. In return for
the simplicity of the concept, a rather high price has to be paid. First of all,it is relatively easy to gain insight in the secrets that are used for verification,
or to get possession of the objects employed for this purpose. This means that
the degree of security that is achieved by a non-biometric identity verification
system is in practice rather low. secondly, the person who is to b! verified has
to do a non-trivial effort, like remembering a elN-code or carrying a key.

As the number of occasions where a certain person has to prove his identity
is rapidly growing, these disadvantages are getting more and more coercive.
For this reason, and thanks to the technological evolution that makes more
complex verification techniques feasible, there is in the Iast fe.v years a steadily
growing interest for biometric identity verification. These alternative identity
verification systems use some kind of physiological (fingerprint, iris-pattern)
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or behavioral characteristic (handwriting, typing rhythm) to identify a certain

person.

An excellent overview of the different biometric identity verification tech-

niques is given in 1. In this paper we concentrate on on-line signature veri
fication. This means that we classify a certain person as a genuine or forger

by observing the characteristics of his/her way of signing. An overview of the

work that hás recently been done in this area can be found in2'3'

A description of the different steps that have to be taken whên build-

ing a complete on-line signature verification system is given in for instance
n."I., g"nà.al, we distinguish between three major stages: data-acquisition

and prË-processing, featuie-extraction, and classiflcation. This separation is

the backbone of our paper. sec. 2 focuses on data-acquisition. sec. 3 and

4 deal with parameter-extraction respectively classification. We evaluate the

performarrce of the global system in sec. 5. conclusions are drawn in Sec. 6'

2 Data-acquisition andpre-processing

Two different trends can be observed in data-acquisition for on-line signature

verification. A majority of the researcherss'6'7 opt for a classic tablet for the

registration of tne posiiions of the pen-tip over time. A second group 8'e hopes

tolnd up in a better cost-benefit situation by building a special input-device

that allows the observation of signals like forces, accelerations etc. In this

work the second approach is chosen for. Our input-device, the SMARTpenTMo

(Fig. 1 and10), captures 5 different signals:

o Forces on the pen-tip in three directions'

o Angles of the pen-shaft relative to the writing surface in two dimensions'

we do not have any information about the rotation of the pen around

its own axis. In practice, this is not a problem since this rotation is not

characteristic for the signing process. The actual pen-rotation does however

influence the other signáls that are registered, as these are measured relative

to the pen. using a new reference co-ordinate system eliminates this effect.

The main axes of this system are defined as the ones in which the force signals

have extreme energy contents. The resulting signals are low-pass filtered with

cut-offfrequency about 30 Hz. Ií is generally accepted3 that higher frequency

regions contain no signer-specific information'

"SMARTpenTMis a registered trademark is of LCI-SMARTpen N'V
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Figure 1: The SMARTpenTM.

3 Feature-extraction

The ability to deal with non-linearities in the time-domain is an important
property of a good on-line signature verification system. This is illustrated
by th9 fact that many recent publications describe verification techniques that
allow handling them 6,11,12.

The traditional approach for removing timing-differences in the signature
verification area is to use Dynamic Time Warpi"g lOfW; ls. This technique
originates from the speech recognition field 1?. In the Iast decade, Hidden
Markov Models (HMMs) have been appried very successfuily in the speech
area for the same purpose. Recently, the HMM-approach áigrated to the
signature verification field, with good results u, *"1 rs,rz.

H-owever, while the concept of a state is very crear in the speech recognition
area 16, it is not in the signature verification neta. A first stei towaras solving
this problem is the use of the Bakis type modeló, where the Ëoncept of a stateis clearlv weakened. we make one more step in this softening process, aswill become clear in the next sections. we start by discussini the ge.rerar
characteristics of our approach in sec. 8,1, and focus on its pJculiarities in
Sec. 3.2.

b

o
In a Bakis type model the number of states is proportional to the average duration of thebservation sequences.
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Figure 2: Construction of observation sequence out of signature data'

3.1 General characteri'st'ics

In previous work 17 we have illustrated the importance of taking into account

the relative weight of phenomena situated in difierent frequency regions during

the classification process. As a consequence, an observation has to contain

information about several succeeding time-samples. In this context, a useful

observation sequence for a certain signal might look like in Fig-_2. In Eq. (1)'

the ith observation out of the complete sequence is denoted by Xt ' The length

of this vector is denoted bY n(Xa)'

X;: (r i rí+1, . .r,(xr)) (1)

The use of a classical HMM for signal classification requires the ability to

compute the probability of occurrence for every state at each time instant' As

*" huu" only a very limited number of genuine signatures at our disposal, we

have to ,rrake good assumptions about the characteristics of the observed fea-

tures. Otherwise, it will become impossible to compute the probability density

function (PDF) for an observation x in state i (pn(x)) with a reasonable accu-

racy. If we succeed in decorrelating the individual features of the observations,

*" .un approach the multivariate PDF A(X) by a product of much easier to

approximate univariate ones (Eq. (2))'

n(x)
pr(x)=ileti(@wr6)) Q)

j:t

As is clear from Eq. (2), we use the discrete wavelet transform (DWT) 11 for this

purpose. The individu al pi,1@)s from Eq' (2) can be approximated accurately

by simple univariate Gaussian distributions'
Next to the construction of the PDFs, we have to compute transition

probabilities from one state to another, Our approach is based on the concept
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Figure 3: Part of the signature model, containing real and dummy states.

of a left-to-right HMM. This means that when a certain state is left, it can never
bc rcachcd again. rlrrther'rore, we wilr incorporatc cxplicit time dura[io'
modeling into our model. we assume the duration to stay in a certain state
is a Gaussian distribrrted variable. The fact that all our parameters have a,
Gaussian distribution will have an important effect on the actual classification
process, as discussed in Sec. 4.

3.2 Special features

when building a HMM with the characteristics mentioned higher, a state is
associated with every observation. This is problematic, as we do not have the
same strong state-concept as in for instance speech. For the situation of Fig. 2,
for i'stance, only one observation out of four should be matched to a sáte,
the other ones representing transitions from one state to the next.

we solve this problem by introducing the concept of a dummy state. Fig. 3
shows a part of our model, consisting of a sequence of rear and dummy states.
For a dummy state i, we have zu(X) = 1. As a result, observations matched
to dummy states contribute only for timing purposes.. The probability density
function p;(x) for the observations in real states is defineà by Eq. iz). tnl
ai,i-values of the model are chosen in order to make sure that exactly one
observation is matched to a real state, while the duration between succeeding
real states has a Gaussian distribution. By increasing the number of real states]
relative to the number of dummy states, it becomes crear that this approach
is just an evolution of the Bakis type model.

At this moment we can define the features that are used as an input to the
actual classification process that is described in sec. 4. After computing the
most probable sequence of state transitions for a certain signature, we have
two types of parameters at our disposal:

o Motion information parameters, describing the time-intervar between two
succeeding real states. The vector that contains all motion information
parameters is denoted às €Motion.
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. Form information parameters, used to construct a vector by concatenat-

ing all the observaiions that are matched to real states. This vector is

ináicated by tpor*. As should be obvious from the previous discussion,

we apply ttre DÍWT on these observations, before using them to construct

t-\l'orn'

We define the resulting feature vector { in Eq' (3)'

€: (€ For* tMoiion) (s)

The number of components in { is denoted bV 
"(€)'

4 Classification

As has already been mentioned in sec. 3, the distribution of the components

of both t*ornon and' (por* can be reasonably well approximated in a Gaussian

way. It ir uiro i"t"itiu.iy 
"tuut 

that the degree of correlation between ÊMotion

unÁ 1ro,* is small. Th"is is also true for the correlation coefficients between

different components of ttwotton'Thanks to the fact that the components-of

{po,* have u""n ,o*pni;ï;;i"g the DWT, these are also decorrelated 17'

Ëoïn"conditions (Gaussian distriÈution, absence of relevant correlations) are

"rrorrgf, 
to concluàe tiat y2 (nq. (+)) has a chlsquare distributionls'

In Eq. (a) p({) is the expected value for the feature vector { corresponding

to our -àaàr. 
'"iíl i, u,r".to, containing the variances on the components of

(. To make a finai decision' we simply compare the value of y2 to a threshold'

ihut ir defined bv "({) 
and the user requirements'

Normally, a biometric identity verification system is characterized by two

numbers. TËe False Acceptance liate (FAR) is the percentage of forgeries that

is considered as genuiner. th" False Rejection Rate (FRR) is the percentage

ofgenuinesignaturesthatismisclassifiedasoriginals.Wecannotpredict
the relation between FAR and classification threshold, because this relation

depends on the quality of the forgeries in our database' However' we can

esiimate the valuà of the threshold for a required FRR"'

'(€) Gt - ru(0)'

";(€)
x2 t

i=l

(4)

cIn order to describe the performance of the system independentlY of the classification thresh-

old, we can use a third sYstem Parameter: the Equal Error Rate (EER) This is the percentage

of miscl assifications that occurs when the decision threshold is chosen

and FRR equai'
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Figure 4: The benefits of the HMM-based verification approach.

5 Performanceevaluation

The use of the Baum-welch algorithm to model a class of genuine signatures, as
has been described higher, is closely related to the use of the DTW-algorithm
for feature extractionlT. This last approach also allows dealing with the relative
importance of phenomena situated in different frequency or time-intervals for
a certain class of signatures. The only additional feature of the approach that
is described here is that we can take into account the relative importance of
the different signals that are observed. This importance is even aliowed to
change dynamically in the time and frequency domain. Fig. 4 compares both
systems. It is clear that our HMM-based system performs relevantly better
than the one using DTW-based feature extraction. The EERd is reduced frorn
over ITo to about 0.5%.

6 Conclusion

we have built a fully operational biometric identity verification system based
on on-line signature analysis. The hardware-heart of the svstem is itre stMARr-
dThe EER is very dependent on the database that has been used. The database used herehas been constructed over a period of three months. 5z people have been involved. 1g of
them provided us with 20 genuine signatures each. 10 of these have been used as references.
The 10 remaining ones are part of the set of test originals. The set of test forgeries for personi, consists of one random signature for each of the 56 persons j (j + i,).
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penTM. This instrument allows observing forces on the pen-tip and angles of

ihe pen_shaft while a person is writing. The main topic of this paper is to

answer the question on how to extract features that satisfy three conditions:

o They should be local in both time and frequency-domain'

rTheyreflecttherelativeimportanceofthedifferenttypesofsignalsina
mathematicallY correct manner'

o They allow dealing with non-linear phenomena'

Afirststepinsolvingthisproblemistheuseofthediscretewavelet
transformtoconstructobservationSequenceswheretheindividualfeatures
are decorrelated, Afterwards, we can build a model for the class of genuine

signatures using the Bau*-Welch algorithm' The approach that is presented

isln fact an evolution of the Bakis type HMM'
Usingthismodel,weextractformandmotionparametersforacertain

signature"that should be verified by simply computing the optimal sequence of

state transitions.
The last step in the verification process is the classification. The con-

struction of a goàd classifier is in general a difficult problem, but in this case

it is simplified a lot because the fárm and motion parameters we use have a

Gaussian distribution and are decorrelated. As a result' we can easily combine

them into a single parameter that has a chlsquare distribution for the class of

genuinesignaturesunderstudy.Iftheclassofreferencesignalswehaveatour
áirporal is- really representative for the class of genuine signatures this even

alláws to predici the FRR, by examining the classification offset.

We have illustrated thai ttre technique offers better classification results

than a technique based on the combined use of the discrete wavelet transform

anddynamictimewarping.Thepricethathastobepaidforthisisadrastic
increase of the compl""itylf the training process' The actual verification pro-

ceduredoesnotsufferu"rymuchfromthisdrawback,asthemajorcomplexity
of the process really has to be situated in this training stage'
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