
SoC Architecture for Real-Time Interactive Painting
based on Lattice-Boltzmann

Domien Nowicki, Luc Claesen
Hasselt University

3590 Diepenbeek, Belgium
firstname.lastname@student.uhasselt.be, firstname.lastname@uhasselt.be

Abstract—A new SoC-based hardware architecture for inter-
active watercolor paint simulation based on the lattice Boltzmann
fluid dynamics simulation model is presented. A scalable proof-
of-concept FPGA based hardware prototype achieves a VGA
framerate of 60 fps with a resolution of 160x120.

Index Terms—Digital Painting, Lattice Boltzmann, Fluid Simu-
lation, FPGA, VLSI, SoC, Active Canvas, Real-Time, Interactive.

I. INTRODUCTION

In recent years, advanced models for digital painting have
been developed that try to realistically mimic the traditional
painting process [1], [2], [3], [4]. The complex interaction
between the paint medium, canvas and brush is simulated with
realistic physically based rules to provide a digital equivalent.
Recently, real brushes can be used to provide even more
realistic input [5], [6]. Advantages over the traditional painting
process include a clear digital representation, undo support,
saving and loading intermediate images, experimenting with
different paint media, and more control over paint flow.

When adding paint to a digital canvas, the paint fluid can
start to flow, following physically based fluid dynamics such
as diffusion and advection. A digital canvas is usually divided
into a regular grid of cells containing water and pigment
concentrations. Eventually the water will evaporate, and leave
dried colored strokes. This process is depicted in Fig. 1 and
is called “active canvas”.

An active canvas will try to adhere to the macroscopic
Navier-Stokes equations for fluid dynamics [3], [4]. When
implicit integration methods like backward Euler are used to
solve the systems of differential equations, it requires several
Newton-Raphson iterations [7] over the whole fluid field. Thus
they are computationally intensive and require a lot of memory
access, limiting real-time simulation.

To achieve acceptable simulation speed, existing active can-
vas methods utilize GPU processing and a coarser simulation
grid size than the actual canvas.

Copyright 2010 IEEE. Published in the IEEE 2010 International Conference
on Electronics, Circuits, and Systems (ICECS 2010), December 12-15,
2010, Athens, Greece. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in
other works, must be obtained from the IEEE. Contact: Manager, Copyrights
and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 /
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

evaporation

diffusion and advection

water

canvas

pigments

Fig. 1. Active canvas approach modelling physical fluid dynamics.

A new SoC based hardware architecture is presented that
can achieve interactive simulation speed at larger grid sizes
using a specialized parallel pipeline. The solution is based
on the lattice Boltzmann model [8], [9], that solves the in-
compressible fluid dynamic system equations on a mesoscopic
level in a single iteration, making use of basic laws of physics
such as the preservation of momentum, energy and mass.
The model was first introduced and extended for Eastern ink
painting by Chu et al. [2]. The floating point implementation
has been redesigned using fixed point arithmetic to enable an
efficient solution in hardware. A satisfactory accuracy can be
achieved using a word length of 12 bits.

Summary of Contributions: A fixed point lattice
Boltzmann simulation pipeline for fluid dynamics and a
real-time interactive active paint canvas hardware architecture
for watery paint is presented.

In section II related work is discussed, and in section III
the lattice Boltzmann hardware approach is described. The
watercolor paint system hardware architecture is described in
section IV and the prototype implementation is discussed in
section V. Finally, conclusions are presented in section VI.

II. RELATED WORK

Sano et al. [10] present an FPGA based hardware accelerator
for simulating the lattice Boltzmann model. They plan on
using their accelerator for computing 3D thermal flows. Their
architecture continuously streams simulation data from a host
PC over a PCI-Express bus and uses floating point operations.
Unfortunately this limits the maximum possible throughput.
This is addressed in this paper by using fixed point arithmetic
and maintaining the entire grid in on-board external memory,
directly accessible by the SoC.



e0 e1e2

e3

e4

e5

e6

e7

e8

x

y

Fig. 2. The D2Q9 lattice Boltzmann model. Left: Regular lattice. Right:
Close-up of a cell.

III. LATTICE BOLTZMANN HARDWARE FLUID
SIMULATION

The lattice Boltzmann idea is to model fluid flow using a
simplified particle model arranged in a regular lattice of cells.
Fluid particles moving with arbitrary velocities are modelled
by a set of distribution functions in specific directions for
each cell. At each cell x and time t, the distribution function
fi(x, t) describes the expected number of particles moving
in the direction of vector ~ei. In Fig. 2, the arbitrary particle
velocities are divided into a discrete set of 9 directions, ~e0
through ~e8, with ~e0 as the stationary particle direction. This
particular 2D lattice Boltzmann configuration is called D2Q9.

At each timestep ∆t, two operations are performed for each
cell: the fi’s are propagated to their neighbour cells following
their direction ~ei, and the arriving fi’s at the same cell are
subjected to the collision operator. The collision operation
redistributes the colliding fi’s in a cell to their equilibrium
distribution function f (eq)i . The two operations of propagation
and collision are formulated mathematically:

fi(x+ ~ei∆t, t+ ∆t) = (1 − ω)fi(x, t) + ωf
(eq)
i (x, t) (1)

Here, ω is the relaxation parameter to modulate between the
new and old fluid state. For simplicity, ω was chosen to be 1
and therefore the left term was ignored. Like Chu et al. the
incompressible lattice Boltzmann variant of He and Luo [9] is
used, which minimizes the compressible effect. They present
an equilibrium distribution function with fluid diffusion in the
left term and advection in the right term:

f
(eq)
i =wi

[
ρ+ρ0

(
3

c2
~ei · ~u+

9

2c4
(~ei · ~u)2− 3

2c2
~u · ~u

)]
(2)

Here, c = ∆x/∆t, with ∆x the lattice spacing, wi are
weights determined by the lattice geometry, ρ is the fluid
density, ρ0 is a predefined average fluid density and ~u is the
fluid velocity. For simplicity, the parameters are defined as
follows: c = ∆t = ρ0 = 1. The weights wi are 4/9 for i = 0,
1/9 for i = 1...4 and 1/36 for i = 5...8. The fluid density ρ
and velocity ~u for a cell is:

ρ =

8∑
i=0

fi (3) ~u =
1

ρ0

8∑
i=1

fi · ei (4)

For simulating the collision operation in hardware, cells
need to be updated with their new equilibrium particle density
functions f (eq)i :

f
(eq)
1 = w1∗[ρ+3ux+4.5uxx−1.5uu] (5)

f
(eq)
2 = w2∗[ρ−3ux+4.5uxx−1.5uu] (6)

f
(eq)
3 = w3∗[ρ−3uy+4.5uyy−1.5uu] (7)

f
(eq)
4 = w4∗[ρ+3uy+4.5uyy−1.5uu] (8)

f
(eq)
5 = w5∗[ρ−3(ux+ uy)+4.5(uxx+ uyy + uxy)−1.5uu] (9)

f
(eq)
6 = w6∗[ρ+3(ux+ uy)+4.5(uxx+ uyy + uxy)−1.5uu](10)

f
(eq)
7 = w7∗[ρ+3(ux− uy)+4.5(uxx+ uyy − uxy)−1.5uu](11)

f
(eq)
8 = w8∗[ρ−3(ux− uy)+4.5(uxx+ uyy − uxy)−1.5uu](12)

f
(eq)
0 = ρ−

8∑
i=1

f̂i (13)

Here, ux and uy are the x and y component of the fluid
velocity vector ~u, and:

uxx = ux · ux
uyy = uy · uy

uxy = 2 · ux · uy
uu = uxx+ uyy

The f (eq)i equations are calculated each time step using fixed
point arithmetic. A distribution function fi is represented using
12 fractional bits and provides satisfactory results for the paint
system.

Note that these equations share common products which
only need to be calculated once. The constants used for
the weights wi, and for the other terms can be recoded
using canonical signed digits (CSD) [11], reducing their
multiplication to an efficient combination of a few additions,
subtractions. Shifts can be done at no cost in hardware. For
example, the constant w1 (= 1/9 ' 455 in 12-bit fixed point)
recoded in CSD needs only 3 operations:

x · 455 = x · 29 − x · 26 + x · 23 − x · 20

Since each fi incurs a small inaccuracy due to fixed point
arithmetic, f0 is based on the other fi’s to ensure the total fluid
mass is conserved. Only 3 real multiplications are required in
total, together with a few additions and subtractions.

The collision operation presented here only depends on
the new fluid density ρ and the velocity vector ~u, that are
calculated from the propagated fi’s.

For simulating the propagation operation in hardware, in-
formation from the neighbour cells is needed. Only the direct
neighbours of a cell are needed, so a sliding window approach
was chosen. The sliding window approach can be seen in
Fig. 3. The window is represented by a 3x3 matrix of registers
to allow simultaneous access in hardware to each direct
neighbour cell. The sliding is performed by a long FIFO
shiftregister, shifting in a cell at a time, with 3 taps for feeding
the window. Each shift moves the window horizontally one
column ahead. In this approach, each cell of the simulation
grid only needs to be looked up once from memory since
the shift register acts as a cache for future cell lookups. This



allows an efficient use of memory bandwidth. The shiftregister
contains 3N cells, with N the width of the simulation grid.
Using the window W, the particle distribution functions from
the neighbour cells can be propagated as follows:

f̄i = W (−ei)fi (14)

Here, f̄i is the propagated particle distribution function and
W (−ei)fi is the particle distribution fi of the cell W (−ei)
of the window. This completes the discussion for simulating
lattice Boltzmann in hardware.

IV. PAINT SYSTEM HARDWARE ARCHITECTURE

The lattice Boltzmann water simulation is extended to a
watercolor paint simulation by incorperating a pigment simu-
lation, similar to Chu et al.

The paint simulation is currently based on a single layer
paper model, that mostly resembles the flow layer of the paper
model used by Chu et al. Water can be added to the canvas by a
virtual brush and will flow and spread by the water simulation.
In addition, the virtual brush can carry pigments that will be
deposited on the canvas. These pigments will move with the
flow of water and is simulated by the pigment simulation.
The output of the pigments is rendered to a VGA output. This
architecture is depicted in Fig. 4.

A. Water simulation

At each timestep, if a cell is affected with additional water
by the virtual brush then the fluid density in the cell is
increased by the amount of water on the virtual brush. This
step is performed when calculating the fluid density. The
lattice Boltzmann approach is also extended with variable
permeability, boundary pinning and evaporation.

Variable permeability allows the creation of interesting wa-
ter flow patterns, and can be realized by dynamically blocking
the lattice Boltzmann propagation step. This reduces the flow
of some particle distribution functions fi, that bounce back in
the opposite direction [8]:

Ki =
W (0, 0)K +W (−ei)K

2
(15)

f̄i = Ki ·W (0, 0)fv + (1 −Ki) ·W (−ei)fi (16)

=
Ki ·W (0, 0)fv

F
+W (−ei)fi −

Ki ·W (−ei)fi
F

(17)

Here, fv is the particle distribution in the opposite direction
of ei, K is the blocking factor of a cell and F is the fixed
point accuracy of K. A cell is augmented with a dynamic
blocking factor that changes over time. By averaging the
blocking factors of the participating cells an equal propagation
is ensured in both directions. The blocking mechanism is also
used to prevent water from flowing off the simulation grid.
Equation (16) can lead to loss of mass ρ when using fixed
point arithmetic due to truncation errors, and is corrected in
(17). Currently the prototype uses a small set of constant
blocking factors K to avoid using embedded multipliers. In the
prototype these blocking factors K are calculated based on the
boundary pins. Boundary pinning is used to model the rough

N,1...

2,1

1,20,24,13,1

1,1

2,25,1

0,1

0,2

1,10,1

1,2

2,1

2,01,00,0

2,2 N,2... 1,30,34,23,2 2,35,1

...5,04,03,0 N,0

in

out

sliding motion

W(-1,1) W(0,1) W(1,1)

W(1,0)W(0,0)W(-1,0)

W(-1,-1) W(0,-1) W(1,-1)

Fig. 3. Sliding window approach. Left: 3x3 matrix window. Right: Long
FIFO shiftregister with 3 taps.

Memory

Pigment
Simulation

FPGA

VGA

Virtual brush

Lattice
Boltzmann
Simulation

Fig. 4. Architecture of the watercolor paint system.

spread of water, and uses pinning sites to obstruct movement of
water. Pinning sites are gradually depinned to allow the water
to spread. Simple rules are used to determine pinning sites: a
cell is a pinning site if it is dry and the fluid density of its
direct neighbours are below a threshold. To enable pinning,
the blocking factor of that cell is set to a very high value,
preventing water to go through that cell.

Water evaporation is modelled by reducing the fluid density
ρ of each cell by a small amount each timestep. An extra
loss of water occurs at pinned sites, to induce migration of
pigments towards the boundary resulting in a subtle darkened
edge. This can be realized by reducing the particle distribution
functions fi that bounce back.

B. Pigment simulation

For the pigment simulation, cells are augmented with pig-
ment information. The CMY color model with cyan, magenta
and yellow pigments is used for simplicity. Each pigment
uses 10 bits, matching the word length of the prototype VGA
DAC. Each timestep, a cell is checked if it is affected by new
pigments coming from the virtual brush, and those pigments
are added to the cell. In the current prototype, brush pigments
simply overwrite the current pigment in a cell.

Pigments on the canvas are mainly affected by the flow
of water and a simple advection scheme is used to simulate
the movement of pigments. For simulating pigment advection,
pigments are propagated to their direct neighbours, similar
to the lattice Boltzmann propagation step. The amount of
pigment propagated to the neighbours is relative to the particle
distribution functions fi of a cell. This is expressed as follows:

ĝ = W (0, 0)g

(
1−

8∑
i=1

W (0, 0)fi

)
+

8∑
i=1

W (−ei)fi ·W (−ei)g(18)



Fig. 5. Prototype setup.

Here, ĝ is the resulting pigment after advection and Wg

represents the pigment of a cell in the window. The left term
represents the pigment that remains after propagation, and the
right term represents the incoming pigment from the neighbour
cells. This equation is calculated in fixed point arithmetic for
each of the CMY pigments. Since a subtractive color scheme
is used, darkened colors will appear when different pigments
clump together. More experimentation is being done to get a
more expected linear blend when advecting pigments.

V. PROTOTYPE IMPLEMENTATION

A scalable proof-of-concept hardware prototype for interac-
tive watercolor paint simulation based on the lattice Boltzmann
fluid dynamics simulation was developed on an Altera TerasIC
DE2-70 FPGA board. The board contains a Cyclone II FPGA,
and the onboard 2MB SSRAM was used for storing the 256-
bit cells of the 160x120 simulation grid. The setup can be
seen in Fig. 5. Fig. 6 shows the contents of a cell. And Fig. 7
provides an overview of the implemented HDL modules. The
DSP elements are used as embedded multipliers.

The double scanline buffer needs to store two scanlines
for the VGA output screen, and the sliding window needs
to store three horizontal lines of the simulation grid. Thus the
used blockram scales linearly with the width of the simulation
grid and width of the VGA output screen. The combinationals
and registers are mostly unaffected by the used resolution
or framerate. The VGA output was scaled to 640x480 and
achieves full VGA framerate at 60 fps using an internal clock
of 25MHz. In the current implementation the memory size and
bandwidth is the bottleneck, not the clock frequency.

VI. CONCLUSIONS

Detailed fluid dynamics and physical model based active
canvas paint simulation systems require huge amounts of
computation. A new and dedicated hardware SoC architecture
is presented based on the lattice Boltzmann model for the
real-time paint simulation. A prototype has been realized on
a memory bandwidth limited educational FPGA board. Future
work will focus on the development of a paint system based
on new high-performance and high-bandwidth FPGA systems.
The SoC architecture presented could also be extended for

Description Bits Amount Total
Particle distribution functions fi 12 9 108
Pigment concentrations g 10 3 30
Boundary pin 1 1 1
Grid boundary cell 1 1 1

140

Fig. 6. Bit information stored in a cell.

Module name C R BRAM DSP
dblscanline 26 0 9660 0
vgacontroller 86 20 0 0
ssram256controller 121 177 19904 0
simulator 5230 1860 44800 60

calculatecell 4910 248 0 60
windowshift 12 8 44800 0

Fig. 7. Logic elements usage. From left to right: Module name, used
combinationals, registers, blockram bits, and DSP elements.

other fluid-dynamics based simulations, such as air-flow sim-
ulations for virtual wind-tunnels, simulations of water, smoke
and fire in advanced graphics and more.

REFERENCES

[1] W. Baxter, J. Wendt, and M. C. Lin, “Impasto: a realistic, interactive
model for paint,” in NPAR ’04: Proceedings of the 3rd international
symposium on Non-photorealistic animation and rendering. New York,
NY, USA: ACM, 2004, pp. 45–148.

[2] N. S.-H. Chu and C.-L. Tai, “Moxi: real-time ink dispersion in absorbent
paper,” in SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers. New York,
NY, USA: ACM, 2005, pp. 504–511.

[3] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer, and
D. H. Salesin, “Computer-generated watercolor,” in SIGGRAPH ’97:
Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1997, pp. 421–430.

[4] T. Van Laerhoven and F. Van Reeth, “Real-time simulation of watery
paint: Natural phenomena and special effects,” Comput. Animat. Virtual
Worlds, vol. 16, no. 3-4, pp. 429–439, 2005.

[5] P. Vandoren, L. Claesen, T. Van Laerhoven, J. Taelman, C. Raymaekers,
E. Flerackers, and F. Van Reeth, “Fluidpaint: an interactive digital
painting system using real wet brushes,” in ITS ’09: Proceedings of the
ACM International Conference on Interactive Tabletops and Surfaces.
New York, NY, USA: ACM, 2009, pp. 53–56.

[6] P. Vandoren, T. Van Laerhoven, L. Claesen, J. Taelman,
C. Raymaekers, and F. Van Reeth, “Intupaint: Bridging the gap
between physical and digital painting,” in TABLETOP-2008 3rd IEEE
International Workshop on Horizontal Interactive Human Computer
Systems. IEEE, October 2008, pp. 65–72. [Online]. Available:
http://dx.doi.org/10.1109/TABLETOP.2008.4660185

[7] J. Stam, “Stable fluids,” in Proceedings of SIGGRAPH 99, ser. Computer
Graphics Proceedings, Annual Conference Series, Aug. 1999, pp. 121–
128.

[8] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and
Beyond. Oxford University Press, USA, August 2001. [Online]. Avail-
able: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0198503989

[9] X. He and L.-S. Luo, “Lattice boltzmann model for the
incompressible navier-stokes equation,” Journal of Statistical Physics,
vol. 88, no. 3, pp. 927–944, Aug 1997. [Online]. Available:
http://dx.doi.org/10.1023/B:JOSS.0000015179.12689.e4

[10] K. Sano, O. Pell, W. Luk, and S. Yamamoto, “Fpga-based stream-
ing computation for lattice boltzmann method,” in Proc. Field Pro-
grammable Technology. IEEE, December 2007.

[11] H. De Man, L. Claesen, J. Van Ginderdeuren, and L. Darcis, “A struc-
tured multiplier-free digital filter building block for lsi implementation,”
in ECCTD’80: Proceedings European Conference on Circuit Theory and
Design. Warsaw, 1980, pp. 527–532.


