Project No. 1058

1

During the global design process of VLSI chips or VLSI modules, the verification
of the correctness of the circuits takes a considerable amount of the design time.
One bottleneck in the efficient application of this verification is the interactivity

SPI: A Practical and Open Interface for

Electronic CAD Tool Integration *

J. P. Schupp, J. Cockz !, L. Claesen, H. De Man?

IMEC Lab.}, Leuven, Belgium, Phone: +32-16-281203

Abstract

This paper describes the SPI Interface as a practical and open interface to
integrate electronic CAD tools. The goal of the interface is to provide a di-
pect communication and interactive feedback between the primary design tools
(schematics editors, symbolic layout editors, module generators etc.) and in-
telligent verification tools (electrical debugging, timing verification, simulation
etc.).

The SPI Interface is the specification of a Structure Procedural Interface
together with some utilities to standsrdise the communication among CAD
Tools and to support their integration.

The data model of SPI is compatible with the ECIP [Eci 88a][Eci 88b] data
model. The EDIF [Edi 87] terminology is used. Bindings do exist for C, Pascal,
Lisp and Fortran, implementations do exist on a variety of Unix workstations.

The utilities are software tools and libraries. The software tools are a file
dumping and a file restoring program. The software libraries include hierarchy
and bus expansion, a browser, interprocess communication, merging of netlists
from different producers into one netlist and tracing.

Because SPI offers an interface that supports, in an easy and efficient way,
the integration of in-house as well as foreign CAD Tools, SPI will be made
available and promoted in the European Electronic CAD Community.

Introduction

*Research performed within the scope of the ESPRIT 1058 project: "Knowledge Based Design
Assistant for Modular VLSI Design”. Partners: IMEC Leuven Belgium, INESC Lisbon Portugal,

Philips Eindhoven The Netherlands, Silvar-Lisco Leuven Belgium.

1Silvar-Lisco, Abdijstraat 34, B-3030 Leuven, Belgium, phone: +32-16-200016
$Professor at K.U.Leuven
$Interuniversity Microelectronics Center

e T

between the verification tools and the designer. The current design practice is
that CAD tools are running one at a time and that communication is via files and
cross-reference lists. This is extremely time consuming in a verification phase where
the feedback between design definition and design verification is currently taking
most of the designers time. Another disadvantage of the current CAD tools is
that they often require different formats for representing design information, which
necessitates the use of cross-reference lists and makes it harder for the-designer to
relate information from a verification tool to the original information.

To allow for a much faster feedback between verification tools and the designer,
the SPI Interface is developed. The overall methodology and design philosophy of
the SPI concept is described in more detail in [Ram 87] and [Cla 87].

In the area of CAD and Tool Integration in commercial applications and research
of electronic design, a lot of effort is ongoing on DataBase Management Systems
(data modelling, version-handling, maintenance, etc.) [Ram 87). This could be
considered to be horizontal integration, this is an indirect interaction among CAD
Tools, see the horizontal double arrows in Figure 1. One can see that a tool only
interacts with a user and a database. Interaction among tools must be performed
along this database delaying the interaction with the designer.

Graphlc
<3 e Editing
Tools

A

Textual
<t - Edhting
Tools

i

Slmulation
Toole

Y

v

A
Y

User Interface

[)
Y

Database Interface

verillcation
tool

1
\

Figure 1: Horizontal and Vertical Integration of CAD Tools.

Instead of this horizontal integration the SPI Interface [Coc 89] concentrates on
the direct interaction among CAD Tools. This could be pointed to as the vertical
integration, see the vertical double arrows in Figure 1. Direct communication and
interactive feedback is performed by the possibility to highlight, select and back-
annotate (see subsection 3.2). The SPI Interface is not intended to be a DBMS
to integrate horizontally, but to be complementary to existing frameworks and
databases. Each CAD tool may have its own database but the use of some uniform
database (and DBMS) is desirable.

The objective of the SPI Interface is briefly illustrated in Figure 2. A schematics
editor contains a design called ALU with invertors and other gates. The invertor
has been implemented as a set of rectangles in a layout editor. Both are visible in
different windows, using different editors. A verification tool has been started in a

> verify ALU
% [RROR: bad W/L for INV37/PMOS |
*¥% | error found. -

>

Figﬁre 2: An example of tool i:n—;éra-tioﬁ with SPI.

third window. It issues an error message for one of the transistors of the invertor in
ALU and highlights this invertor in both editors (sce dashed lines). The schematics
editor is for example an in-house editor integrated in some database environment.
At the other side, the layout editor is a foreign tool with its own database. With
SPI it is possible to communicate interactively from the verification tool to these
two editors. These two editors can communicate with each other such that they
produce one netlist to the verification tool. If there was no direct commaunication,
the two netlists should have been merged in some way together with the generation
and use of cross-references. If there was no interactive feedback, the interpretation
of the error should have been very painful because then one had to interpret it
using the cross-references and the two different netlists.

In the section 2 of this paper the Global System Architecture of the SPI Interface
will be discussed. Section 3 is an introduction to the specification of the Structure
Procedural Interface. In section 4 the integration of electronic CAD tools with the
SPI Interface will be shown with an example and within the scope of the E-1058
project.

2 Global System Architecture

Figure 3 gives the major information flow (communication) in the architecture of
the SPI Interface. The notational conventions used are indicated in the figure.

An implementation of the system can be done over one or more processes running
on one or more machines. The functionality of the individual modules and the
interfaces, depicted in Figure 3, will be cxplained in the following subsections.

2.1 UTM: Unix Tool Manager

The Unix Tool Manager is the main process controlling the global CAD activity. It
is a very simple manager. It is no more than the possibility to execute additional
commands under a Unix-shell. One can control the structure producers: e.g. to
reset a process from a waiting state to an active state. Also from the shell one can

e S S — UTM
Unix Tool Manager

| | [)
| | i

[imim I)

primesdiior

cellbroker

g Y SPI

notalional convertions . 5 |
— Information flow
—_— control of processes Browser
———— Inerface
D procoss o exsoutable modle

HEX BEX
same concept

Figure 3: Global System Architecture.

start or delete the cellbroker or execute cellbroker commands. All the structure
producers and consumers are started or ended in their own environment.

2.2 Application Programs

The application programs are the programs (the CAD Tools) which are to be inte-
grated. The SPI Interface is built on the distinction between structure producers
and structure consumers. A program can belong to the two classes. An example is a
preprocessor program that takes structure and transforms it into another structure.
With the SPI Interface the producers can run in parallel. The consumers must run
sequentially unless a synchronising protocol is constructed among the consumers.

2.2.1 Structure Producers

The structure producer programs consist of application programs that have a direct
graphical interaction with the user. These programs are for the most part editor-
like and communicate in a graphical way (e.g. Schematics Editors). Sometimes
a structure producer can be a textual editor with textual interaction (e.g. Struc-

ture Description Language Editors). The structure producer programs generate
structural data that a structure consumer can read in via SPI calls.

2.2.2 Structure Consumers

The structure consumer programs are the programs that use structural data to
perform new transformations on this data; for example a (timing) verification tool.

2.3 HEX: Hierarchy Expander

The hierarchy expander is a utility that provides a flattened circuit to a specific
structure consumer from hierarchical structure producers using information ob-
tained via SPI calls. With the use of the cellattribute ezpansion_level the depth of

expansion can be controlled.

2.4 BEX: Bus Expander

The bus expander is similar to the HEX module. It is a utility that generates a
circuit without busses (that is, all the busses are expanded) to a specific structure
consumer.

2.5 Cellbroker

The cellbroker is a simple database that maintains and controls information about

all cells defined in the different producer(s).

2.6 Switcher

The switcher can determine from the cellbroker where a certain cell is located and
create a link from the consumer to the correct producer. It will also match and
merge cells, instances and ports based on their (user)names.

2.7 Browser

This module is a software tool to browse through the design hierarchy during high-
light and select actions.

2.8 UI: User Interface
Each CAD Tool may define its own user interface.

2.9 The Primeeditor Interface

With the so-called primeeditor interface a user can tell the cellbroker that a certain
cell must be taken from a certain producer; e.g. when two producers define the
same cell, a user must be able to indicate the producer that contains the primary

data'. To allow the user to specify this, the cell command has been implemented.
The cell command allows the user to set and list the prime producer for one or
more cells.

2.10 The Cb._ Interface

With this interface one can tell the cellbroker to add or delete a structure producer
or to add or delete a cell.

3 SPI: Structure Procedural Interface

The SPI Interface is a Structure Procedural Interface together with some utilities
to standardise and to support:

e the transfer of structure from structure producers fo structure consumers.

o the transfer of structure related information, called attributes, in a bidirec-
tional way between structure producers and consumers using attribute- and
backannotation operations.

o the interactive communication between structure producers and consumers
using highlight and select operations.

Essentially the SPI Interface consists of two main concepts:

o The (paper) specification of the Structure Procedural Interface (including the
data model).

e The Utilities including hierarchy and bus expansion, interprocess communi-
cation, merging of netlists from different producers into one netlist, tracing,
browser? and file dumping and restoring; this is the only software of the SPI
Interface. The utilities are designed and implemented such that they are
transparant for the structure producers and consumers.

The SPI data model and the specification of the Structure Procedural Interface
will be described in this section.

3.1 The SPI Data Model

The major foundation for CAD Tool Integration is communication. To facilitate
successful communication a common data model is required. Together with this
data model a procedural interface can be defined. The data on which the interface
and the data model operate on, are netlists. Therefore structure producers and
consumers are sometimes called netlist producers and consumers.

The SPI data model is illustrated in Figure 4. A netlist consists of cells. A cell
can have ports, which define its external interface. A cell can contain instances of

1The primary data corresponds to the information that the designer wants to enter as the spec-
ification of the design.
3The browser is under development.

Cell FF Cell NAND Cell PMOS

p!

L4

v
Is-copy-of
s
e

Instanee P

Figure 4: The SPI netlist data model: an example.

other cells and nets. When Cell NAND is instantiated in Cell FF, the ports of Cell
NAND are also instantiated in Cell FF; these instantiated ports are called instance
ports, see Figure 4. A net® connects zero or more instance ports and zero or more
cell ports. The fact that an instance port is connected to a net is called an internal
connection. The fact that a cell port is connected to a net is called an external
connection.

Cell, ports, nets, instances and instance ports can have attributes, which consist
of names and values.

The terminology used to describe netlists here reflects a similar definition from
EDIF [Edi 87). The data model is compatible with the ECIP [Eci 88a](Eci 88b]
data model. .An ECIP-style conceptual diagram of the SPI data model is given in
Figure 5% Note that the terminology used in EDIF and ECIP differs. SPI uses

CELL I1s-located-in
ic-cell
1s-copy-of

N T INSTANCE
_Oé
is-part-of ic-cell-copy
PORT
ic-cell-terminal Is-part-of
1 - -
is-located-in As copy-of
INSTANCE PORT
/?\ interfaces-as |ic-cell-terminal-copy
NET 3 *
ic-cell-net fs-connected-to

Figure 5: The SPI netlist conceptual model.

30ne could also handle busses in the SPI Interface, but this will not be explained in this paper.
4The upper-case notations are SPI notations, the lower case ECIP.

the EDIF terminology, see the names between brackets. All the other names and
notations are the ECIP conventions.

3.2 The Specification of the Structure Procedural Interface

The specification of the Structure Procedural Interface [Coc 89] is written using C
syntax and contains the following sorts of procedures:

e control: for setting up the datastructure, initialization of the structure pro-

ducer(s)
e request structure information: to get structure information from the producer

o request structure related information (attributes): to get attributes from the
producer

o backannotation of structure related information: to create or modify structure
attributes in the structure producer from a structure consumer.

o highlight structure objects: to highlight objects in graphical representation
(e.g. schematics editor) or in textual form (e.g. textual editor)

o request selection of a structure object by the user: selection of an object by
the user by pointing to it (e.g. with a mouse), or by referencing it by name
(e.g. type name at keyboard)

o ask for usernames of structure objects: to pass the username of an object.

In the specification, only long integers and character strings are used. Therefore
each language which has these two types (e.g. C, Lisp, Pascal, Fortran) can imple-
ment these specifications; CAD tools written in different languages can therefore

be integrated together.
An example of a specification of a procedure for the request of structure infor-

mation is

long SPIgetCell (name)
char *name;

paramecters:

char *name The name of a cell of which the netlist con-
sumer would like to know the object handle.

returns: The object handle of the cell with that name, or zero.
usage: The netlist producer returns the object handle of the cell with the

requested name, or zero if it does not know such a cell.

Remark: The (user)names of objects and the attributes (and values) are also stan-
dardised in the SPI Project [Sev 89][Coc 89].

4 Integration with SPI

The SPI Interface is supporting the task of integration. Figure 6 gives an example.
The main aspects of SPI Interface helping the task of integration are

\ Y v
A
[pato Sequent
CAMELEON [\ CELLBROKER
b SPI
V\]
Apolio \ a Apollo Vax
~ X s
— ME SWITCHER TOOL
L d
e
S
__highlight
Apallo e backannotation
cass [
select .
transfer of netlists

Figure 6: A possible session on different machines.

e standardisation: The standard procedural interface allows that the pro-
cesses understand (can communicate with) each other. It also makes possible
the implementation of utilities which can be shared among all the CAD Tools.

o interprocess communication: Allows editors to run on different Apollo
workstations, cellbroker on a Sequent-machine, a verification tool on a VAX-
Ultrix-machine.

e netlistmerging: The three editors, together defining a hierarchical design,
produce 1 netlist to the consumer.

e direct communication and interactive feedback: transfer of netlists,
highlight, selection and backannotation.

4.1 What do CAD Tools need to do to integrate with SPI?

Each CAD Tool can be developed independently and within its own environment
(user interface and database). For this reason, together with the fact that different
languages and different machines can be used, the SPI Interface is said to be open.
Therefore making a coupling with SPI is not very complicated, What a structure
producer and consumer have to do is described in the next 2 subsections. It is
important to notice that this integration work can be done after the design and
implementation of a CAD Tool.

4.1.1 The structure producers

A producer has
e to implement all the SPI Procedures as specified in [Coc 89)

o to tell the cellbroker (by calling cb. interface routines) which cells it has in
its own database.

The communication and usage of the SPI Utility (interprocess communication) is
established by simple linking with the utility library.

4.1.2 The structure consumers
A consumer can
o call SPI Procedures.

The communication and usage of the SPI Utilities (interprocess communication,
netlistmerging, hierarchy or bus expander, browser, tracing) are established by
simple linking with the utility libraries.

Remark: The file dumping and restoring utilities are stand alone utilities which
need not to be linked with the CAD Tools. Utility libraries only have to be linked
because they are transparant software utilities (due to the standardisation).

4.2 How does the result of the integration of CAD Tools
appear?

Assume that a design of the ALU cell has been made in MGE (a Module Generation
Environment) using instances of the cells GFB & CARRY BYPASS. These cells are
designed in both Cass (a Schematics Editor) and Cameleon (a Symbolic Layout
and Compaction System). Suppose that the designer wants to do interactive timing
verification using the cells as viewed in Figure 7.

(MGE)

GFB CARRY BYPASS
(Cameleon) (Cass)

Figure 7: A view of the design of an ALU.

Description of a (artificial) session:

sy

1. Take Figure 6 as the working environment. The user starts the 3 editors on
3 different Apollo workstations and the cellbroker on the Sequent-machine.
The editors will tell the cellbroker which cells they have. In this case the
cellbroker will known that MGE contains an ALU, Cameleon and Cass a GFB
and a CARRY BYPASS.

2. To use only the cells as viewed in Figure 7 the user tells the cellbroker which
cells are the primary cells. Here, the user indicate that the GFB cell has its
primary data in Cameleon and the CARRY BYPASS cell in Cass.

3. Now, the user can start the timing verification tool on the VAX.

4, The tool wants to know which cell has to be verified. Therefore the select
procedure is called. With the browser the selection is possible in all the
editors. In this case the selection will be done in MGE.

5. After selection of the ALU in MGE the tool reads in the netlist. Because
the timing verifier must have a flattened netlist without busses, it will use
the hierarchy and bus expander. With the knowledge of the cellbroker, the
switcher, in co-operation with the expander, can merge the netlist of the 3
cells in the 3 editors (ALU, GFB, CARRY BYPASS) into one flattened netlist.

6. The tool computes the longest path in the ALU and highlights this path with
the highlight procedures. With the browser the user can browse through all
the editors and cells to highlight the hierarchical path of his choice.

7. Then the tool and/or user will change the dimension attributes of one or
more transistors in the longest path to speed up this path. The new attribute
values will be backannotated in the right editor and cell by the use of the
expander, the switcher and the knowledge of the cellbroker.

8. Then the user might restart the iteration (in point 5.) to reach a global
optimum.

4.3 Integration in the Esprit-1058 Project
In the E-1058 the integration of CAD Tools has been achieved with the SPI Inter-

face. Figure 8 shows the structure producers (above the SPI-line) and consumers
(down the SPI-line) of the E-1058 project that have been integrated.

e The structure producers are

— Cass, a Schematics Editor
— MGE, a Module Generation Environment

— Cameleon-1, a Symbolic Layout and Compaction System

Hilarics-2, a Structure Description Language
SPICEtoSPI, a SPICE Netlist to SPI Netlist Translator

e The structure consumers are

7}

Cass MCGE Cameleon| |Hilarics | [SPICEtoSPI

editors SPI

tools

Dialog Vera Cinnamon| |Cswan | |Slocop-ll | |Logmos| [SPItoSPICH

Figure 8: A very simple overview of the integration of the CAD-tools in E-1085.

Dialog, a Knowledge Based Verification System

Vera, a Knowledge Based Verification System
— Cinnamon, a Circuit Simulator

— Cswan, a (Parallel) Circuit Simulator
Slocop-II, a New Timing Verification Tool

— Logmos, a Registor Transfer Simulator
SPItoSPICE, a SPICE Netlist producer for SPICE-simulations

For the above CAD Tools the effort to couple a structure consumer to SPI is
about 1 weck, and 3 weeks for a structure producer. The implementors of these
tools are satisfied with the simple and easy SPI Interface; simple and easy because
SPI only handles structures (netlists). Therefore the SPI Interface is a practical
interface.

5 Conclusion

In this paper, a practical and open Interface for interactive CAD tool integration has
been presented. In addition to facilities provided by design management systems
and DBMS, SPI provides a direct communication between structure producers and
structure consumers. In this way the design cycle is shortened and verification tools
can communicate more closely with the designer. An example is a timing verifier
that can directly indicate the longest path in the schematics or symbolic layout by
immediate highlighting without stopping cither the timing verifier or the schematics
or symbolic layout editor.

The SPI Interface is open because as few as possible constraints have been put on
the tools themselves to be able to integrate already existing tools. Once a CAD Tool
is integrated, a lot of other CAD Tools becomes available. It is also practical due

A2

to its simplicity and ease of use and because its scope is limited to communication
of netlist structures only.

The reason for the development of the SPI Interface is to standardise the inte-
gration of CAD tools. Therefore, to promote the use of the standard, efforts will
be made in order to make SPI and its utilities available to the European Electronic
CAD Community.

Acknowledgements

The work described in this paper has been performed in the scope of the ESPRIT
Project 1058 with the following participants: IMEC (Belgium, Prime Contractor),
INESC (Portugal), Philips (The Netherlands) and Silvar-Lisco (Belgium). Many
people have contributed to the success of the project, and we thank in particular L
Bolsens, K. Croes, P. Das, A. Demaree, W. De Rammelaere, P. De Worm, P. Jo-
hannes, T. Kostelijk, P. Lauwers, B. Lynch, L. Marent, G. Mole, H. Neto, P. Odent,
P. Petroni, J. Raposo, Ph. Reynaert, L. Rijnders, G. Schrooten, R. Severyns, P.
Six, E. Vanden Meersch, E. Willems, for many discussions and for their continuing
efforts in the integration with SPIL

References

[Cla 87] L. Claesen, Ph. Reynaert, G. Schrooten, J. Cockx, I. Bolsens, H.
De Man, R. Severeyns, P. Six, E. Vanden Meersch, Open System
Architecture of an Interactive CAD Environment for Parameterized
VLSI Modules, Proceedings of the 4th Annual ESPRIT Conference,
Brussels, sept. 28-29, 1987, pp. 251-270.

[Coc 89] Cockx, J., SPI version 2.3 Revision 2302, Silvar-Lisco, Belgium, 6
February 1989.
[Eci 88a] The ECIP Conceptual Modelling Working Group, ECIP Conceptual

Model of Electronic Products, November Tth, 1988.

[Eci 88b] Chalmers, D., Meys, F., Successful CAD Integration Needs A Stan-
dard Conceptual Model, Proceedings of the 5th Annual ESPRIT
Conference, Brussels, November 14-17, 1988, pp. 170-185.

[Edi 87] Electronic Industries Association, EDIF - Electronic Design Inter-
change Format Version 2 0 0, Washington D.C., May 1987.

[Ram 87] Rammig, F., J., Tool Integration and Design Environments, Pro-
ceedings of the IFIP WG 10.2 Workshop, Paderborn, FRG, Novem-
ber 26-27, 1987.

[Sev 89] Severyns, R., Naming Conventions in SPI and in Tools Communi-
cating with SPI, Imec, Belgium, April 4th, 1989.

