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Abstract

The new SLOCOP-II timing verification system for the accurate perfor-
mance analysis of MOSVLSI circuits is being presented. The algorithms
in SLOCOP-II solve the serious problem of "false paths" that occur in all
existing timing verifiers, by taking inte account the logic functionallity of
the circuits at hand. To allow this for eustom MOSVLSI designs, new event
determination algorithms based on binary decision tree (BDT) have been
developed and are presented in this paper. The algorithms to avoid the
indication of "false longest delay paths” can take a long calculation time.

Therefore two new techni have boen developed: 1) by preprocessing the
constrained event geaph, compiled code can be g ted that can ¢
orders of mngnitude faster and 2) by loiting the hi hy ilable in

circuits. These algorithms have been implemented in the SLOCOP-II timing
veriflention systeun. lMesulls and comparative opu times on poempeterined
modules in the CATHEDRAL-II library arc presented in the paper.
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1 _Introduction.

The fact that integrated circuit designs must be verified for their cor-
rectness before they are produced is generally accepted. Simulation on
all levels is still used to a large extent for this verification. However,
analytic methods such as timing verification tools [1] for the verification
of the delay characteristics ate more and more used. Timing analysers
determine the critical delay paths, time slacks and violations against
sot-up and hold times. This is done in a way that is independent of spe-
cific logical values of the signals. Timing verifiers specifically adapted
for MOS circuits have been published [2,3,5]. Alternative methods have
been propesed in order to increase the accuracy of the delays [4,8].
However, existing timing verifiers [3,2,5] do not take logical propaga-
tions conditions into account and compute the longest delay paths with
PERT like algorithms. This may cause problems, as can be seen in fig-
ure 1. The longest path in the circuit on thic left can not be sensitised:
the "1’ on both circuit inputs make the '0” on the multiplexer input
impossible and thus the output is not sensible to transitions on the
bold input. The real longest path is given on the right. This situation

Figure 1: A circuit with an unsensitisable path

occurs in time optimised circuits, such as the carry bypass ALU [9] in
the CATHEDRAL-II library [13] where the delay is overestimated by
a factor of 2.
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Algorithms that assist in solving the false path problems have been
proposed in [8,11,12]. These new algorithms require modeling the logic
functionality end the event graphs for the subcircuits. This can be ac-
complished by using characterized library cells {11,12] or by using rule-
based pattern matching techniques [6]. However, these approaches are
limited to either the cell libraries, or to the circuit patterns described
in the rule-base and are not applicable to general MOSVLSI circuits,
without each time extending the rule base and/or the library to new
circuit patterns and design styles. Traditional timing verificrs [3,2,5]
are not directly restricted to specific circuit patterns or design styles
but do not allow to model the logic functionalities and input-output
event dependencies as required by the new algorithms [8,11,12] for false
path avoidance. New event and propagation condition determination
algorithms for general MUSSVLSI circuits are presented in this paper.

Unfortunately, the application of these algorithms on MOSVLSI
circuits is very time consuming. In order to accelerate the evaluation
of the longest delay paths, the concept of code generation has been
introduced (5]. The calculation of the delay is deferred to when the
code is being evaluated. This can be done by implementing the delay
evaluation by means of abstract date-types (7].

Another way of increasing the speed is to introduce hierarchy. This
avoids the problem of long preprocessing times that occur when han-
dling large circuits with the code generation method.

In section 2 the SLOCOP timing verification environment is intro-
duced. In section 3 the event graph with logical signal propagation
constraints will be explained, together with the methods that are used
to extract the propagation conditions from the logic functions. Section
4 describes the algorithms to determine the longest sensitizable path.
Thereafter section 5 describes the algorithms that transform an event
graph with logical constraints into a compacted event graph without
logicel constraints. In section 6 the use of hierarchy is explained. The
practical results are discussed in section 7.

2 The SLOCOP-II system

The timing verification environment that has been realised consists of
two systems: one that deals with the verification in an hierarchical way
and one that operates on flattened circuits. Both systems are shown
in figures 2 and 3. The difference between the systems is mainly due
to different input mechanisms. Once the input has entered the system,
the functionality is largely the same.

o The non-hierarchicel system tekes in a file that has been prepro-
cessed by the DIALOG [10] preprocessing and electrical verifica-
tion program. This file contains the flattened circuit information
and the result of a preprocessing step. The preprocessing splits
up the circuit in DC connected components (DCN’s) and deter-
mines the logic functionality of cach of these subnetworks as a
function of their inputs. This logic functionality is used to de-
termine the relations between transitions (events) on the inputs
of the DCN’s and the transitions on the outputs. The necessary
conditions on the other inputs for these transitions to occur are
also determined. The necessary delay for a given input transition
to reach the output can then be calculated and the result is an
event graph (see section 3) that can be analysed in several ways:
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Figure 2: The SLOCOP-II system.

— TVG: timing view generation. Timing views are event graphs
in which no false paths remain and where some non essential
events have been eliminated to increase the efficiency.

— LSP: the longest sensitisable path is searched.

— PERT: a simple but fast PERT analysis is performed.

The hierarchical system is connected with various structure gen-
erators (schematic editors, module generator, symbolic layout ed-
itor ...) through standardised SPI (structure procedural inter-
face) routines [14]. It has two kinds of inputs:

— the circuit composition, with each of the components given
as a black box and the interconnection of these boxes.

~ the timing views of the back boxes that contain their event

graphs.

With these inputs we can construct the event graph and perform
the same analyses as we did in the non hierarchical system.
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Figure 3: The hierarchical SLOCOP-II system

3 Event and propagation condition
determination

To illustrate the method of event generation we show a small example
in figure 4. The gate that is shown will, after analysis, have 6 edges in
the event graph. Delays and propagation conditions will be associated
with them in a similar way as with the one shown in the figure.

3.1 Definitions

We need the following definitions:

o Events: these are logical transitions at circuit nodes, they can be
either UP or DOWN. Events are connected through edges, which
are weighted with the delay between them. This is the only in-
formation used in traditional timing verifiers [3,2,5]. For the false
path algorithms it is also necessary to store the propagation con-
ditions with the edges. In figure 4 these propagation conditional
are A=1 and B=1 for the one edge that is shown.

DCN: (DC connected network) a network we want to verify is
split up in DCN’s, these are parts of the network that are con-
nected through the source-drain nodes, with the exception of Vdd
and Gnd nodes. Their inputs are gate nodes, the transistors or
external inputs of the circuit under consideration. Their outputs
are nodes that are connected to gate nodes of transistors that are
not in the DCN. With these nodes we can associate a logic pull-up
and pull-down function that we obtain from DIALOG [10].

BDT: a Binary Decision Tree that represents a logic function [17].
The vertices of the tree have the following properties:

— Node: a field that contains a reference to & circuit node.

— Value: a field with the logic value € {0,1, X} of the vertex.
Only leaf vertices have values different from 'X’.
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Figure 4: Dlustration of the event graph

Figure 5: The Dbinary decision tree for
(NOT (AND A B C))

— High: a field that contains a pointer to the vertex we go to
if the node to which the Node field refers is set to '1°.

— Low: a field that contains a pointer to the vertex we go to
if the node to which the Node ficld refers is set to '0'.

The edges in this tree are the High and Low pointers of each
vertex. An example of such a tree is given in figure 5, where the
tree for the pull-up function of the three input NAND gate of
figure 4 is given.

8.2  Analysis of the BDT’s

Motivation Most existing methods for timing verification do
not use a logic model so they do not have problems with the determi-
nation of propagation conditions associated with certain events. To the
authors’ knowledge, no general method does yet exist to determine the
event dependency and propagation conditions. In cell based design the
logic functionality can be included in the library. This was done in [6].



However, with custom design we need a general method for the
determination of events and their associated propagation conditions.
We can obtain the logic functionality of the circuit via DIALOG [10].
The logic function of a subcircuit is then translated into a BDT and
analysed.

A new and general algorithm to derive the events and the propaga-
tion conditions on the non-switching inputs as in figure 4 is presented
in the following paragraph.

Algorithm We shall first introduce the algorithm intuively, and
then present it in a more formal way. Consider the BDT node « in
figure 6. If we want to find the events caused by the switching of this
node, we start with a begin value, say ’0’. The tree is searched via
Low until an output is reached, and while doing so the path we follow
in the tree is recorded, see figure 6.a. Recording the path amounts
to recording the propagation conditions for the output value that is
reached. We then trace back until we are at input a and go the other
way, in this case via ’1’. This represents an input transition on input a.
The tree is then searched again, under the constraint that whenever a
node that has been recorded in the path of the first traversal is reached,
the same direction as recorded (Low or High) must be followed. In
figure 6.b the case that we arrive at an opposite output is shown. An
event at the output caused by an event at the input has thus been
detected. In this case we andd the events and the propagation conditions
to the event graph, while in the case of figure 6.c no change in the output
occurs and no event is recorded.

e =4
bo b

Figure 6: An intuitive explanation

To analyse the logic functions represented in a BDT we use a tree
traversal algorithm based on depth first search. Thete arc two basic
parts:

1. First we look for a starting value and the input vector associated
with it. A pseudo code description of this procedure is given

below.
void run_tree(tree)

if (tree—svalue 1= "X')/* the vertex is a leaf */

{

output=tree—value
find_transition(output,top_tree)

zlse{/*the vertex is in the middle of the tree*/
record_value(1)
run_tree(trec—High)
record_value(0)
run_tree(tree—Low)
record _value(X)

}

The procedure record_value(logical value) records the way in which
we proceed through the graph.

2. The procedure find_transition(value,tree) that appears in the pre-
vious algorithm is used in finding transitions that can occur with
the recorded input vector, given the output valuc arrived at. It
proceeds in the following way:

o Consecutively mark each input that is not recorded with
value ‘X’ as switching.

Start processing the tree again. Each time a vertex for which
a value has been recorded in the input vector is encountered,
continue the traversal in the given direction. That is, pro-
ceed through the Low edge if a '0’ has been recorded and
vice versa. However, in the case an input that is marked
switching is reached, follow the opposite path. That is, pro-
ceed through the Low edge if a ’1’ has been recorded. If
a vertex for which no value has been recorded in the input
vector occurs, both available paths have to be investigated.
In doing so the followed direction has, at least temporarily,
to be recorded in the input vector.

Eventually, a leaf vertex is reached. If the logic value of this
vertex is opposite to that recorded in ’output’, we can con-
clude that there is an event that starts at the marked input
and causes a transition at the output. An edge can then
be added to the event graph between these nodes, together
with their input vector.

Once we have all the edges and their propagation conditions the delay
associated with each edge is determined. This is done using RC-models
proposed by Pennfield, Rubinstein and Horowits [16] or by circuit sim-
ulation if higher accuracy is nceded.

_Example For the BDT shown in figure 5, corresponding to the
NAND gate of figure 4, this works as follows:

o Assume we search for events on the output caused by the switch-

ing up of input A.

o When A is Low, the output is '1’. We thus have an event if the
output goes to ’0’ when A switches.
Since A is the switching input, we backtrack until we arrive at A
end go the other way, that is through High.

The only way to arrive et ’0’ on the output is to go via B.High
and C.High.

Thus the only way that a rising transition on A can cause an
event on the output is with conditions B=’1' and C="1’ and it
has to be a falling event.

4 The longest sensitizable path

We now have a weighted directed graph representing the timing be-
haviour of the circuit.

During the search for the longest sensitizable path according to
the method presented in (8], before adding a new edge to the path it is
necessary to check that the propagation conditions are compatible with
the propegation conditions of all the other edges already in the path.
Those conditions must not only be checked locally, but they must be
propagated through the logical model of the circuit to all the related
nodes.

The problem is thus equivalent to searching the longest path in a
conditional graph. A depth first search is used, with following proper-
ties :

1. The search is guided by a low cost heuristic, namely PERT.

2. The search space is reduced by pruning : if the longest pert-path
through a node is shorter than the longest sensitizable path al-
ready found, then the subgraph of that node must not be searched
because the longest sensitizable path through that node can never
be longer than the path already found.

With respect to the CPU-times of this longest sensitizable path
algorithm, the following remarks can be made :

e When the longest PERT-path is not a false path, the algorithm
is almost as fast as PERT.



¢ For small circuits where the number of paths to check is small,
the CPU-times are of coutse also manageable.

¢ But for large, "real life” circuits with many false paths, the CPU-
times explode and it takes too long before the longest path is
found. For a 24-bit ALU with bypass circuitry, it takes more
than one CPU-hour to search the longest sensitizable path (8].

5 Code generation

An event graph with propagation constraints as shown with the
dotted lines in figure 7 can not be used as such for code generation
as p:fsn_nted in LEADOUT (5], because a sequential algorithm, similar
to exfstmg algorithms (8] would have to be generated including back-
tracking and iterations. It is more desirable that code can be generated
that can be evaluated in one pass such as is the case with event graphs
without propagation constraints.

A first attempt to solve the problem could comsist of an explicit
path enumeration technique [1], followed by a removal of false paths.
In this case the amount of code to be generated corresponds to the ex-
panded number of events in the enumeration. The disadvantage of this
approach is that the expanded number of events can grow exponentially
in terms of the number of events and causalities.

A first improvement is possible by sharing non-conflicting initial
path segments and eliminating the subgraphs that are not sensitizable.
This results in a graph without propagation constraints, of which code
can be generated. However in the case of reconvergent false paths such
as in optimized ALU structures [Y] the resulting event graph will still
grow exponentially in terms of the number of events and causalities.

In the aforementioned approach all events downward from the root
are expanded in order to obtain an event graph without propagation
constraints. We implemented an algorithm that tries to build a com-
pacted event graph without propagation constraints, where compatible
subgraphs are merged again. The fact that certain event sequences in
the (unconstrained) expanded event graph can be shared is used to re-
duce the amount of generated code. It should be noticed however that
there are several ways of compacting the resulting unconstrained event
graph. Therefore the heuristics described are applied. For the example
in figure 7 the result of the compacted event graph is show in figure 8.
This results in event graphs without constraints, where the amount of
events is only doubled. This allows to gencrate code with an efficiency
comparable to the PERT algorithm that does not consider logic com-
patibilities. The compaction algorithm is based on & depth first search
event graph with logical propagation constraints. The results are pre-
sented in table 1. Note that the generation of an unconstrained event
graph becomes very time consuming when larger examples are used.
However, the evaluation of the generated code remains very fast.

6 Hierarchy

8.1 _Motivation

By looking at the occurrences of false paths in the circuit, it can be
observed that most false paths occur due to one of the following two
reasons :

o false paths due to local logical incompatibilities.

o circuits where the designer intended to create false paths by
adding bypass circuitry for speeding up the global circuit.

Examples of local logical incompatibilities can be found in the fulladder
circuit of figure 9. Figure 10 gives the event graph and the logical con-
ditions of the carry generation part of this fulladder cell. On this graph
can be seen that the logical conditions of some paths are incompatible
and these paths are false paths. E.g. the path from 17 | through 14 |
to 8 | is false due to the incompatible conditions on input 19.

If all thesc local logicel incompatibilities could be eliminated, there

would remain less false paths and this would speedup the LSP-algorithm.

This can be done by using the hierarchy of the circuit.
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Figure 7: An event graph with logical constraints on signal propagation.
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Figure 8: Compacted event graph without explicit logical constraints
The new hierarchical [15] method can be summarized as follows :

o Generate the timing views for all the basic cells and for the bypass
circuitries together with the bypassed cells.

o Compose these timing views o become an event graph for the
whole circuit,

e Run the LSP-algorithm on this event graph to find the longest
sensitizable path in the circuit.

6.2 Timing view generation

The timing view generation method consist of 2 new graph manipula-
tion techniques : the elimination of local logical incompatibilities and
a graph reduction by event elimination.

Elimination of local logical incompatibilities As shown in
figure 2 the circuit description and the logical functions in the circuit
are derived by DIALOG [10]. Also the event graph [5] of the circuit is
set up. An event corresponds either to a falling or & rising transition on
an electrical node in the circuit. Each edge in the graph, the causality
relationship between two events, has a corresponding delay, calculated
with a Horowits type of RC-models[16] or & simulation, and & corre-
sponding set of logical propagation conditions for signal propegation.
The total graph is a combined logical and event graph.

False paths can occur in the graph and have to be eliminated. Out
of the old event graph, a new event graph without false paths has to
be generated. This can be done in several ways [18,19]:

Path enumeration ¢ All the paths are enumerated and the paths
with logical incompatibilities are deleted. This method is very
easy and would work, but is not efficient because the memory
requirements are too large.

Figure 9: A fulladder circuit



Path enumeration with optimal compaction : Take as much events

as possible together so that a minimal graph results. This method
is not usefull because it would take to much CPU-time to find the
optimal solution.

The SLOCOP-method : A method in between the two previous
methods is developed. A depth first search is applied with check-
ing for logicel incompatibilities as in the LSP algorithm. During
the forward search, the path is created and checked for semsiti-
gability. While backtracking, if a sensitizable path is found, the
following algorithm is used for compaction : Two events in the
graph are taken together if they refer to the same circuit node,
have the same transition, and have the same subgraph.

Algorithm :

1. Initialige : ev = rootevent;
2. while (3 NOT INVESTIGATED out-edge of ev) {
/* FORWARD */
Take edge and mark it INVESTIGATED;
if (edge compatible with current path) {
Push current state on stack;
Add edge to current path;
ev = out-event of edge;

}

3. /* BACKWARD */
if (ev == rootevent) exit;
Try Lo cotnbine ev wilk vlher eveunls;
Pop previous state from stack;
go to 2,

This results in a graph without logical incompatibilities where some
events have been duplicated. The event graph in figure 10 of the ful-
ladder circuit in figure 9 becomes after elimination of the logical in-
compatibilities the graph in figure 11.
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Figure 10: The event graph of the carry generation part of the fulladder

Graph reduction by event elimination As described in the
previous section, the number of events has increased due Lo Lthe elimina-
tion of logical incompatibilities. In this section, a method is described
to compensate this effect by event elimination in a post processing step.

If an event is eliminated, all the in-edges and all the out-edges of
that event are replaced by edges from all the in-events of the eliminated
event to all the out-events of the eliminated event. The resulting delay
of a created edge is the sum of the delays of the two replaced edges and
the resnlting logical propagation conditions are the conjunction of the
two replaced edges.
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Figure 11: The event graph with logical incompatibilities eliminated

Because the events are eliminated in a post processing step, the
CPU-time required by the method must be very low and a very simple
algorithm has to be used. The following simple criterion for elimination
is used : eliminate an event if the number of created edges is smaller
than the number of replaced edges. In other words, eliminate an event
if the sum of the in-edges and out-edges of the event is larger than their
product,

8.3 The hierarchical composition

The timing views can be hierarchically composed and an event graph
for the higher level cell is generated. This event graph has less (or none)
false paths because all the local logical incompatibilities are eliminated
during the timing view generation.

The LSP-algorithm can run on this event graph and the required
CPU-times will be much lower than running it directly on the whole flat
circuit because all the local logicel incompatibilities are eliminated. In
meny circuits there will be no false paths any more in the hierarchically
composed event graph.

Results of this approach are presented in table 2.

7 _Conclusion

In this papet a new and general timing verification environment SLOCOP-
II for MOSVLSI circuits has been presented that allows to avoid indi-
cation of false paths that is a well known problem in all currently ex-
isting timing verifiers. This has required to take into account the logic
propagation conditions on individual events in subcircuits, for which
new algorithms have been worked out and implemented. Efficiency
in longest path searches in SLOCOP-II is obtained by using compiled
code generation and the exploitation of the hierarchy. The SLOCOP-II
program is illustrated with the timing verification results on a number
of CATHEDRAL-II modules.

cpu time(s)

circuit compiled code | interact.

step 1 | step 2 LSP
falsef 0.3 0.1 0.3
8 bit comp. 8.3 0.3 0.3
8 bit counter 4.9 0.3 0.2
7 bit carry-sel. 141 0.4 0.1
4 bit alu 16.0 0.3 0.2
12 bit elu 347.5 1.0 15.8
14 bit alu 5109.6 1.8 1258.2
18 bit alu 18272.4 2.2 1903.2
24 bit alu 73587.3 2.5 4235.1

Table 1: Code generation



circuit | interact. Hierarchical longest

LSP (s) | prep. | analysis path
alul2 0.6 - - | 65.4ns
alul4 760 6.0s 0.5s | 55.9ns
alulf 1070 | 6.0s 0.6s | 58.3ns
alulg 1574 | 6.0s 0.7s | 58.3ns
alu20 2275 | 6.0s 0.8s | 61.2ms
alu22 3280 6.0s 0.9s | 61.2ns
alu24 4020 6.0s 0.9s | 63.7ns

Table 2: Hierarchical verification
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