
PoseLab: A Levenberg-Marquardt Based
Prototyping Environment for Camera Pose

Estimation
Michiel Darcis, Wout Swinkels, Aydin Emre Güzel and Luc Claesen

Department of Engineering Technology
Hasselt University

Diepenbeek, Belgium

Abstract—A pose identifies the 3D position and 3D rotation of
an object with respect to a reference coordinate system. Cameras
can be used to determine the pose of objects in a scene. Fiducial
markers on a object make it easier to segment the object. For
applications where either high-accuracy, high speed and/or very
low latency are required, dedicated hardware architectures are
needed as regular processors are not performant enough. The
dedicated hardware needs to be designed such that the constraints
are taken into account in order to meet the requirements. A
software prototyping environment PoseLab is presented which
can be used to evaluate the effects of various design trade-offs.

I. INTRODUCTION

In many applications it is interesting to know the 3D
position and 3D rotation of objects in space with respect to
a known coordinate system. The combination of 3D position
and 3D rotation is also referred to as the 6 degrees of freedom
pose or 6DoF pose. There are a lot of methods that use
a camera to determine the 6DoF pose of an object. The
position information is usually embedded in known features
of a printed color booklet or by a simple black and white
pattern that can be detected by an image sensor in a tablet
or a VR-headset. It is currently common practice in publicity,
virtual models of furniture, gaming etc... Movies often benefit
from using human actors to animate 3D virtual persons or
animals. The movements of head, limbs, arms, fingers and
body is tracked with cameras using visual markers attached to
key feature points on the body. 6DoF position determination is
also useful in VR-headsets and hand controlled tools. Robotics
benefits from accurate position estimation of objects to be
manipulated. The objects can be identified by simple dots
made out of retro reflective material, so that the reflection
of light sources mounted near a camera and pointing to the
object are easily detectable.

Camera-based pose estimation is also starting to be used
in applications that require high speed and high accuracy.
An example of such an application is prospective motion
correction [1]. The resolution of MRI images that can be
obtained is limited by the movement of the patient inside the
scanner. Even small movements, caused for example by the
heartbeat or breathing, lower the quality of the resulting image.
Camera-based pose estimation is used to track the movement
of the patients head in real-time. A marker attached to the
head is used by a camera to calculate the pose of the patient.

This information is used to adjust the imaging pulse sequence
of the scanner accordingly.

The problem today is that software-based methods are
computationally expensive and this makes them difficult to
integrate in applications where high speed and high accuracy
are important. Currently, the prospective motion correction
application can only reach 80 Hz [2]. Application-specific
hardware is needed to effectively achieve higher frame rates
and enable low latencies. Direct hardware implementation has
the potential to realize the algorithms exploiting the capabili-
ties of the parallel processing in dedicated hardware circuits.
It also has the advantage to be able to directly interface to the
image sensor, eliminating unnecessary delays.

Creating a hardware solution is not an automatic process
but demands the intelligence of human engineers to be able
to obtain efficient results. It requires the understanding of
the mathematical problem at hand, the algorithmic options
and possibilities to reformulate the problem such that it is
suitable for exploiting the capabilities provided by a direct
hardware implementation. In order to be able to evaluate
various algorithmic and architectural alternatives as well as
the potential exploitation of the intricacies of the hardware and
image sensor interfaces, a mathematical framework is needed
to help the engineer trade-off specific application requirements
and possible architectural choices.

This paper presents a prototyping environment PoseLab.
It can be used by the engineer to test and evaluate various
design trade-offs to help create efficient hardware solutions for
camera pose estimation applications. In section II, the basics
are explained of how the pinhole camera model is employed
to obtain the pose of the camera. Section III describes the
Levenberg-Marquardt optimization method that is used to
compute the pose. PoseLab is implemented in MATLAB with
the goal that every detail of the algorithm can be adjusted.
Some of the implementation details are explained in section
IV. Section V describes the experiments that were performed
to verify the correctness of PoseLab.

II. PINHOLE MODEL

To extract the 6DoF information of a camera from known
3D points, a model is needed that describes how a 3D point in
the world is projected onto the 2D image plane. The pinhole



camera model is used for this purpose and is illustrated in
figure 1. The mapping of a 3D point (X,Y, Z) to the 2D pixel
coordinates (x, y) can be summarized in matrix equation (1)
[3], [4].

Fig. 1. Projection of 3D point onto 2D image plane using the pinhole camera
model [5]

τ
[
x y 1

]T
= K

[
R t

] [
X Y Z 1

]T
(1)

In (1), K is the 3 × 3 camera calibration matrix and is
assumed to be known. This matrix can be estimated using the
Caltech camera calibration toolbox [6] or the OpenCV library
[7]. Both tools use Zhang’s calibration method [8]. However,
there are other calibration methods such as Tsai’s technique
[9]. The extra 1 coordinate comes from the use of normalized
homogeneous coordinates. The scaling factor τ results from
the fact that homogeneous points are equivalent when their
coordinate values are proportional. The 3× 3 rotation matrix
R and 3 × 1 translation vector t describe the 6DoF pose of
the camera with respect to world coordinate system that is
used to represent the 3D points in the world. Despite having
9 parameters, the rotation matrix R has only 3DoF. Using an
axis-angle transformation [10], the rotation can be described
by only 3 parameters.

The goal is to find the 6DoF pose described by R and t. In
the assumption that K is already estimated, R and t can be
calculated from (1) when enough 2D points xj = (xj , yj) and
their corresponding 3D points Xj = (Xj , Yj , Zj) are known.
This is called the perspective-n-point problem [11]. Each 2D-
3D point correspondence gives rise to 2 equations, 1 for x
and 1 for y. Thus to estimate the 6 pose parameters, at least
3 2D-3D point correspondences are needed to find a solution
for R and t. To eliminate ambiguities however, a 4th point
correspondence is needed.

The known points identifying the position of an object in a
scene should have known coordinates in the object coordinate
system. In order to make these easily identifiable spheres,
corners on a flat checkerboard etc.. are used. Cameras have a
limited accuracy to determine the (x, y) position in the camera

image. This is amongst others related to the pixel resolution,
noise, characteristics of the point feature in space etc.. When
using cameras to determine the pose of an object, the accuracy
of the position measurement can be increased by using more
than 4 correspondence points.

Another important aspect of the pinhole camera model is
that it does not include the lens of the camera. In practice,
lenses introduce distortions in the image [3]. To be able to
correctly use the pinhole model, these distortions need to be
eliminated beforehand. This is done via distortion parameters.
The two most important kinds of distortion are radial and
tangential distortion. The parameter values that model these
distortions can also be found using the Caltech toolbox or
OpenCV library.

III. LEVENBERG-MARQUARDT FOR CAMERA POSE
ESTIMATION

There are many solutions for the perspective-n-point prob-
lem such as EPnP [12], DLS [13] and P3P [14]. However, the
most state-of-the-art methods use the Levenberg-Marquardt
non-linear optimization algorithm [15]–[17].

A. Cost Function

Levenberg-Marquardt is used to find the parameters of
a model so that it matches the experimental data. In this
case, the model is the pinhole camera and the 2D-3D point
correspondences are used as the experimental data. A cost
function is setup to represent how much the model disagrees
with the data. Finding the parameters of the model that
minimize this cost function ensures that the best possible fit is
found. For Levenberg-Marquardt, the cost function is defined
as the summation of the squared error of every data point.

For camera pose estimation, the reprojection error, illustrat-
ed in figure 2, is used as the error metric. It is the difference
between the 2D image point xj and the reprojection x̂j of the
corresponding 3D point on the image plane using the pinhole
camera model. This reprojection error consists of two parts, the
difference in x-coordinate and the difference in y-coordinate
as shown by equations (2) and (3). The reprojection depends
on the calibration matrix K, distortion parameters q, rotation
matrix R, translation vector t and the 3D coordinate Xj . For
a total of m point correspondences, a vector valued function
f(Θ) is defined as shown by (4). The 6DoF pose parameters
are put together in a vector Θ. Using this notation, the cost
function can be defined as in equation (5). The factor 1

2 is
there to simplify the derivation of the derivatives.

dj,x = xj,x − x̂j,x(K, q,R, t,Xj) (2)

dj,y = xj,y − x̂j,y(K, q,R, t,Xj) (3)

f(Θ) = [d1,x, d1,y, ..., dm,x, dm,y]
T (4)

F (Θ) =
1

2
f(Θ)Tf(Θ) (5)



Fig. 2. Minimizing the reprojection error [18]

B. Finding the minimum

To find the minimum of cost function F (Θ), the function
is approximated at Θ by a Taylor series as shown by equation
(6). The goal is to find step h that minimizes this approxi-
mation. This can be done by taking the derivative of (6) with
respect to h and set it equal to zero. This results in equation

(7). The vector g =
[
∂F
∂Θ1

, ..., ∂F∂Θ6

]T
is the gradient which

contains the first-order partial derivatives with respect to every
parameter. Matrix H is the Hessian matrix and is defined as
Hi,j =

∂F
∂Θi∂Θj

with i,j ∈ [1..6].

F (Θ + h) = F (Θ) + gTh+
1

2
hTHh (6)

Hh = −g (7)

It can be shown that g is equal to JTf(Θ) [15]. The matrix
J is called the Jacobian matrix and is given by (8). It contains
the first-order partial derivatives of all the entries in f(Θ) with
respect to each parameter in Θ. It can also be proven that the
Hessian H is equal to JTJ + f

′′
(Θ)Tf(Θ) [15]. In the

assumption that f(Θ) is linear, f
′′
(Θ) = 0, Hessian H can

be approximated by JTJ . Substituting g and H in (7) leads
to equation (9), known as the matrix notation of the normal
equations.

J =



∂d1x
∂Θ1

· · · ∂d1x
∂Θ6

∂d1y
∂Θ1

· · · ∂d1y
∂Θ6

...
. . .

...
∂dmx

∂Θ1
· · · ∂dmx

∂Θ6
∂dmy

∂Θ1
· · · ∂dmy

∂Θ6

 (8)

(JTJ)h = −JTf(Θ) (9)

The minimum of F (Θ) is found in an iterative manner.
In every iteration, the step h is calculated that minimizes the
linear approximation using (9). This is then used to update the
parameters Θ. This process is repeated until convergence.

C. Levenberg-Marquardt

Using (9) to find step h is also known as the Gauss-Newton
method. The Levenberg-Marquardt algorithm expands on the

Gauss-Newton method by introducing a damping parameter
λ > 0. Equation (10) shows the new normal equations.

When λ is small, equation (10) reduces to (9) and the
Levenberg-Marquardt method becomes the Gauss-Newton
method. The advantage of Gauss-Newton is that it converges
very rapidly when close to the minimum. For large values of
λ, (10) reduces to λh = −JTf(Θ) or h = − 1

λ · g. Step h is
now along the direction of the gradient which represents the
steepest descent direction of the cost function. The size of the
step is controlled by the factor 1

λ . This approach is known as
the gradient descent method. It ensures a rapid decrease when
the current solution is far from the minimum. By controlling
the value of λ at every iteration, Levenberg-Marquardt can
switch between Gauss-Newton and gradient descent to provide
rapid convergence. The damping factor λ thus controls the size
and the direction of step h.

(JTJ + λI)h = −JTf(Θ) (10)

IV. POSELAB IMPLEMENTATION DETAILS

PoseLab uses the Levenberg-Marquardt optimization
method described above to find the 6DoF pose of a camera.
This section explains some of the details on how PoseLab is
implemented in MATLAB.

A. Axis-angle transformation

As mentioned earlier, the rotation of the camera can be
described by 3 parameters using an axis-angle representation.
A 3 × 1 vector w = [wx, wy, wz]

T indicates the axis of
rotation. The magnitude ‖w‖ specifies the angle of rotation
around w. It can be shown, through a power series expansion,
that ebwcx represents a three dimensional rotation matrix [10].
Here, bwcx is the skew-symmetric matrix of the vector w.
The relationship between a vector w and its corresponding
rotation matrix can be derived from the power series and is
described by (11). In the case where w = βŵ, with ŵ being
the unit vector of the rotation axis and β the angle around this
axis, equation (11) simplifies to (12). This is known as the
Rodrigues transformation and is the most widely implemented
representation. For this reason, the Rodrigues transformation
is used by PoseLab to switch between the rotation matrix R
and the axis-angle representation w.

ebwcx = R = I +
sin(‖w‖)
‖w‖

bwcx +
1− cos(‖w‖)
‖w‖2

bwc2x
(11)

R = I + sin(β)bŵcx + (1− cos(β))bŵc2x (12)

B. Reversing lens distortions

A necessary step before a 2D-3D correspondence can be
used in the optimization, is to correct the 2D image point for
lens distortion. The implementation in PoseLab is based on
the OpenCV library [19]. Equations (13) and (14) show the
distortion model that is utilized. It contains 8 distortion param-
eters, 6 for radial distortion (k1, ..., k6) and 2 for tangential



distortion (p1, p2). The value r is the distance of the distortion
free coordinate to the point where the image plane intersects
the optical axis, known as the principal point.

xdist = x · 1 + k3r
6 + k2r

4 + k1r
2

1 + k6r6 + k5r4 + k4r2
+ (2p1xy + p2(r

2 + 2x2))

(13)

ydist = y · 1 + k3r
6 + k2r

4 + k1r
2

1 + k6r6 + k5r4 + k4r2
+ (p1(r

2 + 2y2) + 2p2xy))

(14)

An iterative algorithm is used to remove the lens distortions
[20], [21]. First, the lens distortion is estimated using the
coordinate, and thus r, of the original distorted point. However,
when the distortion is again applied to the undistorted point
using its coordinate, the reprojection will not be at the original
image point and this gives rise to an error. The Euclidean
distance is used as the error metric. The algorithm then uses
the coordinate of the undistorted point to refine the estimate of
the lens distortions. This is repeated until a point is found that,
when the distortion model is applied, leads to an error that
is smaller than a predetermined tolerance. Another stopping
criterion is when a maximum number of iterations is reached.

C. Calculating the Jacobian

The Jacobian matrix is given by equation (8). The com-
putation of this matrix is taken from [17]. Here, the cal-
culation happens on a row-per-row basis. Before executing
the Levenberg-Marquadt optimization, symbolic expressions
need to be found for the row vectors

[
∂djx
∂Θ1

, · · · , ∂djx∂Θ6

]
and[

∂djy
∂Θ1

, · · · , ∂djy∂Θ6

]
. The expressions are determined using the

symbolic math toolbox of MATLAB. Equations (2) and (3) are
written in symbolic form and then the jacobian function of the
toolbox can be used to find the symbolic expressions of the two
2 row vectors. During the Levenberg-Marquardt iterations, the
Jacobian can then be constructed by substituting the symbolic
values in the symbolic expressions with the values available
at the current iteration.

D. Calculating the step

Previously, it was stated that (10) should be solved for h to
obtain the step. However, there is another way to calculate
step h. It can be shown that (10) is the solution to the
linear least squares problem shown by (15). This linear least
squares problem, Ax∗ ≈ b, can also be solved via orthogonal
transformation. This method is more accurate as the normal
equations can be ill-conditioned [22]. Here, A is the matrix[

J√
λI

]
and b is equal to −

[
f(Θ)

0

]
. The vector x∗ that needs

to be found corresponds in this case to the step h.
First, the QR decomposition of the matrix A needs to be

calculated so that QTA =

[
R1

0

]
, where Q is an orthogonal

matrix and R an upper triangular matrix. The solution for
x∗ is then found by solving R1x

∗ = QT
1 b using backward

substitution [23].

[
f(Θ)

0

]
+

[
J√
λI

]
h ≈ 0. (15)

E. Updating the damping factor

To obtain an appropriate value for the damping factor λ, the
mechanisms proposed in [15] are used. Here, λ is initialized as
a value proportional to the maximum value of the diagonal of
matrix JTJ . This can be expressed as η ·max

{
diag(JTJ)

}
where η is a small value and was chosen to be 10−8. The
update of λ at every iteration is based on the gain ratio %
defined by equation (16). When the gain ratio is equal or less
than zero, step h does not lead to a decrease in cost function.
In this case, λ is multiplied by a factor υ, which is initialized
to 2. The factor υ itself is doubled and a new iteration is
started in an attempt to find a better step h. If the gain ratio
% is larger than zero, the cost function decreases by applying
step h and λ is multiplied by max{ 1

3 , 1 − (2% − 1)3}. The
factor υ is set equal to 2. This method does not give rise to
flutter which can be present in other approaches and slows
down convergence.

% =
F (Θ)− F (Θ + h)

1
2h

T (λh− g)
(16)

F. Stopping criteria

In [15] they suggest 3 ways to stop the Levenberg-
Marquardt from iterating. Firstly, it is known that the gradient
g = JTf(Θ) should be equal to 0 at the minimum. This
condition is met if the supremum norm ‖g‖∞ is less than
a predetermined threshold ε1. The threshold is chosen to be
10−8. Secondly, the algorithm also needs to stop when the
step h is too small. This is when the Euclidean norm ‖h‖ is
smaller than ε2(‖Θ‖+ε2). Here, ε2 is also set equal to 10−8.
Finally, a maximum number of iterations is set to prevent an
infinite loop.

V. EXPERIMENTS

A. The Test Bench

A test bench was made to verify the correctness of PoseLab
[24]. An A4 1200 dpi flatbed scanner (1200 dpi × 1200 dpi)
is mounted on a table. A custom construction has been made
to firmly attach an 8×11 checkerboard marker to the scanner
bar. The rear camera of a Samsung Galaxy S8 is used to take
the images and is clamped on a stand. A bluetooth click device
is used to take images remotely. This way, there is no need to
touch the camera which can alter its position. The AdaFruit
Arduino Motorshield v1 [25] is used to drive the stepper motor
of the scanner. The laptop connected to the Arduino is put on
a different table.

The stepper motor moves the checkerboard pattern along the
shaft on the flatbed scanner. It can be assumed that a precise
linear motion is possible because in a scanner it is important
to position the head correctly with an accuracy of 1200 dpi
which corresponds to 20 µm. The measurements have been
done for movements of entire steps taken by the stepper motor.



This is done to get better repeatable results and to avoid less
accurate positioning when microstepping would be used. It
was measured that the checkerboard moved 0.673 mm ± 0.003
mm when one full step is taken.

B. The Procedure

A total of 4 experiments have been made. In each case, the
checkerboard starts at the end of the scanner and is moved
linearly along the scanner. The checkerboard is moved 10 full
steps after which an image is taken. This is repeated until a
total of 250 steps are made. This leads to a total of 26 positions
or 26 images per experiment. For each image, the pose of
the camera is calculated with respect to the world coordinate
system defined in the upper left corner of the checkerboard as
illustrated in figure 3. Figure 4 shows the starting position for
each of the 4 experiments. In experiment 1, the checkerboard is
moved in the Y-direction. Secondly, the checkerboard is moved
in the Z-direction. In the third experiment, the checkerboard is
turned 45 degrees and moves away from the camera. Finally,
the camera is turned roughly 45 degrees with respect to the
scanner so that the movement is not along the optical axis.

Fig. 3. The coordinate system

C. Results

For every experiment there were a total of 26 estimated
positions. Because a linear movement was made, it should be
possible to fit straight lines to the course of each coordinate.
Table 1 gives the slopes of these straight lines. To evaluate how
well the straight lines match the estimated coordinate values,
the deviations from the straight line, or residuals, for the X-,
Y- and Z-coordinates for every experiment are given in figure
5.

TABLE I
SLOPES OF THE FITTED STRAIGHT LINES (MM PER 10 STEPS)

Experiment 1 Experiment 2 Experiment 3 Experiment 4

X -0.0260 -0.3565 -0.0711 -0.3299

Y -6.691 0.0446 -4.8659 -0.1034

Z -0.0561 6.861 4.8655 6.8632

D. Discussion

Observing the plots of the residuals, it can be concluded
that the fitted straight lines matched the data well. From the Y-
coordinate of experiment 1 and the Z-coordinate of experiment
2 and 4, it is possible to retrieve the size of a full step of the
stepper motor. Because 10 steps are taken between images,
dividing the slope by 10 gives the change in the coordinate
value as a result of a single step. In experiment 1, this leads to
a change of 0.6691 mm in Y-coordinate per step. In experiment
2, a step changes the Z-coordinate by 0.6861 mm. Similarly,
a step in experiment 4 leads to a change of 0.6863 mm. These
values are close to the measured step size of 0.673 mm.

The deviation from the measured value can have many
causes. The main cause is that the test setup is a low cost
solution. There is no way to align the optical axis of the
camera in the correct manner. Furthermore, the checkerboard
is not perfectly parallel to the scanner. These reasons not only
cause the measured step size to be different, but also induces
a change in the values of the other coordinates. That is why
their slopes are not equal to 0, as indicated in table I.

From the residuals, it can be noted that the size of the
deviations from a linear motion is generally smaller in the
Z-coordinate than in the X- and Y-coordinate. This is unusual
because measuring a change in depth is harder than measuring
a change in the X- or Y-direction. A reason can be that the
distortion parameters were not accurately estimated because
the checkerboard was placed in the middle of the images
used during calibration while the distortion is most significant
at the edges of the image. In addition, the accuracy of the
pose estimation itself plays a role. The ability to accurately
retrieve the 2D-3D point correspondences is the main obstacle.
Many factors need to be taken into account. Some of them
are: resolution, quality of the marker, lightning conditions and
the distance to the camera. The quality of the camera, and in
particular the lens, also has an influence.

VI. CONCLUSION

Currently, the software algorithms to calculate the pose
of a camera are too computationally expensive to achieve
high frame rates in real-time applications. Application-specific
hardware will be needed to meet the requirements. This
paper presents PoseLab, an experimentation platform created
in MATLAB. Because everything in the implementation is
fully adaptable, an engineer can use it to evaluate various
application-specific trade-offs and architectural choices which
will facilitate the development of dedicated hardware solu-
tions. PoseLab calculates the pose of the camera using 2D
coordinates in an image with known 3D coordinates in the
world. After the 2D coordinates are compensated for lens
distortions, the Levenberg-Marquardt optimization method is
used to find the optimal pose of the camera. To verify that
PoseLab is correctly implemented, a total of 4 linear move-
ment experiments were made. The calculated values agreed
well with the specified linear movement.



(a) Experiment 1 (b) Experiment 2 (c) Experiment 3 (d) Experiment 4

Fig. 4. Starting positions of the different experiments

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3 (d) Experiment 4

Fig. 5. Deviations from the fitted straight lines for every experiment

REFERENCES

[1] J. Maclaren, M. Herbst, O. Speck, and M. Zaitsev, “Prospective mo-
tion correction in brain imaging: A review,” Magnetic Resonance in
Medicine, vol. 69, no. 3, pp. 621–636, 2013.

[2] J. Maclaren, B. S. R. Armstrong, R. T. Barrows, K. A. Danishad,
T. Ernst, C. L. Foster, K. Gumus, M. Herbst, I. Y. Kadashevich,
T. P. Kusik, Q. Li, C. Lovell-Smith, T. Prieto, P. Schulze, O. Speck,
D. Stucht, and M. Zaitsev, “Measurement and Correction of Microscopic
Head Motion during Magnetic Resonance Imaging of the Brain,”
PLoS ONE, vol. 7, no. 11, p. e48088, 2012. [Online]. Available:
http://dx.plos.org/10.1371/journal.pone.0048088

[3] G. Bradski and A. Kaehler, “Camera Models and Calibration,” in Learn-
ing OpenCV, 1st ed. Sebastopol: O’Reilly Media, 2008, pp. 370–403.
[Online]. Available: http://shop.oreilly.com/product/0636920022497.do

[4] C. Stachniss, “Photogrammetry I - 15a - Camera Ex-
trinsics and Intrinsics,” 2015. [Online]. Available: http-
s://www.youtube.com/watch?v=DX2GooBIESs&index=28
&list=PLKEuOzA9RZ2WnWf7vj2hQEXRIeB8hpxHa

[5] R. Owens, “Camera calibration,” 1997. [Online]. Available:
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/OWENS
/LECT9/node2.html

[6] J.-Y. Bouguet, “Camera Calibration Toolbox for Matlab,” 2015.
[Online]. Available: http://www.vision.caltech.edu/bouguetj/calib doc/

[7] “OpenCV Camera Calibration and 3D Reconstruction,” 2018. [Online].
Available: https://docs.opencv.org/2.4/modules/calib3d/doc/
camera calibration and 3d reconstruction.html

[8] Z. Zhang, “A Flexible New Technique for Camera Calibration (Tech-
nical Report),” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 11, pp. 1330–1334, 2002.

[9] R. Y. Tsai, “A Versatile Camera Calibration Technique for High-
Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cam-
eras and Lenses,” IEEE Journal on Robotics and Automation, vol. 3,
no. 4, pp. 323–344, 1987.

[10] R. Hartley and A. Zisserman, “Representations of rotation matrices,”
in Multiple View Geometry in computer vision, 2nd ed. New York:
Cambridge University Press, 2004, pp. 583–587.

[11] R. Duraiswami, “Lecture 23: 3-D Pose Object Recognition,” University
of Maryland Institure for Advanced Computer Studies, Tech.
Rep., 2005. [Online]. Available: http://legacydirs.umiacs.umd.edu/ ra-
mani/cmsc426/Lecture23 3Dpose.pdf

[12] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An accurate O(n)
solution to the PnP problem,” International Journal of Computer Vision,
vol. 81, no. 2, pp. 155–166, 2009.

[13] J. A. Hesch and I. Stergios, “A Direct Least - Squares ( DLS ) Method
for P n P,” in IEEE International Conference on Computer Vision, 2011,
p. 4.

[14] G. Xiao-Shan, H. Xiao-Rong, and T. Jianliang, “Complete solution clas-
sification for the perspective-three-point problem,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 930–943,
2003.

[15] K. Madsen, H. Nielsen, and O. Tingleff, “Methods for non-linear least
squares problems,” Technical University of Denmark, Tech. Rep., 2004.

[16] R. Hartley and A. Zisserman, “Iterative Estimation Methods,” in Multiple
View Geometry in computer vision, 2nd ed. New York: Cambridge
University Press, 2004, pp. 597–602.

[17] P. Mittrapiyanuruk, “A Memo on How to Use the
Levenberg-Marquardt Algorithm for Refining Camera Calibration
Parameters,” Purdue University, Tech. Rep. [Online]. Available:
https://engineering.purdue.edu/kak/computervision/ECE661 Fall2012/
homework/hw5 LM handout.pdf

[18] M. Gourlay and R. Held, “Head-Mounted-Display Tracking
for Augmented and Virtual Reality,” 2017. [Online]. Available:
http://informationdisplay.org/IDArchive/2017/JanuaryFebruary/
FrontlineTechnologyHeadMountedDisplay.aspx

[19] OpenCV, “undistort.” [Online]. Available: http-
s://github.com/opencv/opencv/blob/master/modules/imgproc/src/
undistort.cpp

[20] P. Drap and J. Lefèvre, “An Exact Formula for Calculating Inverse
Radial,” MDPI Sensors, no. 1, pp. 1–18, 2016.

[21] P. Abeles, “Inverse Radial Distortion Formula.” [Online]. Available:
http://peterabeles.com/blog/?p=73

[22] S. Marschner, “CS3220 Lecture Notes : QR factorization and orthogonal
transformations,” Cornell University, Tech. Rep. March, 2009.

[23] H. Douglas, “Backward substitution,” 2005. [Online]. Available:
https://ece.uwaterloo.ca/ ece204/howtos/backward/

[24] T. Aerts, “Calibration and evaluation system for 3D camera systems,”
Ph.D. dissertation, Hasselt University, 2018.

[25] L. Ada, “Adafruit Motor Shield,” 2015. [Online]. Available:
https://learn.adafruit.com/adafruit-motor-shield/overview


