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Abstract—Nowadays, the planning procedure for orthognathic
surgery consists of a manual workflow which relies on cost and
time consuming tasks. The burden that this procedure has on
the surgeon and the medical staff can be reduced by substituting
the current procedure with a digital workflow. In the novel
workflow the surgeon uses a haptic feedback device to mimic
the haptic information perceived from the manual procedure.
However, highly complex 3D medical scan models of the upper
and lower jaw are needed to reproduce a realistic feeling. These
complex models stress the need for an efficient collision detection
algorithm to obtain the necessary update rate of at least 1 kHz for
haptic feedback devices. In this paper the potential of the Inner
Sphere Tree (IST) data structure is analyzed for application in the
orthognathic surgery digital planning workflow. An open-source
C++ program is developed on the CHAI3D platform for the
implementation and evaluation of the IST. For the evaluation, the
detection speed, but also the accuracy of the collision detection, in
terms of the error introduced by the proximity of the minimum
distance between bounding volume hierarchies (BVHs), are taken
into consideration. Various tree traversal algorithms, distance
and backtracking, are implemented and evaluated. Finally, a
multi-point tree traversal algorithm is developed to find multiple
contact-points between two ISTs. Due to the added optimizations
and by using these tree traversal algorithms, the required update
speed is reached.

Index Terms—Orthognathic surgery, Digital workflow, Colli-
sion detection, Haptic rates, Inner sphere trees

I. INTRODUCTION

Orthognathic surgery is the medical field specialized in
the repositioning of the mandible (i.e. lower jaw) and/or the
maxilla (i.e. upper jaw). Nowadays, the planning to perform
such surgical corrections consists of a manual workflow. This
procedure starts with a wax-bite taken from the patients teeth
of which two plaster casts are derived. The surgeon uses the
plaster casts to find the right occlusion between the teeth
based on an optimal fit. Once the right occlusion is found
the plaster casts are sticked together and a wafer is produced
in a dental lab. This wafer contains the dental imprint of the
desired occlusion and is used during the operation as depicted
in Fig. 1.

The manual procedure is costly and time consuming. A
digital workflow where 3D models represent the upper and

Fig. 1. Mandible repositioning [1]

lower jaw in combination with haptic feedback devices could
provide a solution. However, these haptic feedback devices
are constrained to an update rate of at least 1 kHz to mimic
a realistic feedback. Due to this constraint there is a need
for time-efficient and accurate data structures. In this case
a bounding volume hierarchy (BVH) can be used as data
structure. A BVH is a tree structure where every node is made
of a simple geometric object (e.g. a cube, a box, a sphere, ...)
to approximate the 3D model. There are several methods for
the construction of BVHs. The most used are the top-down
and the bottom-up methods. The top-down method starts with
one simple geometric object that covers the entire model,
which is called the root node. Then the model is divided into
subregions. Each subregion is again represented as one simple
geometric object which covers the part of the 3D model in
that region. The deeper the tree is traversed the better the
object is approximated by the simplified objects, where the
leafs are the closest representation of the actual model. The
bottom-up method starts from the leaf nodes and combines
them to create the internal nodes. This process is recursively
repeated until the root node is reached. The advantage of
the tree structure is its spatial coherence, which allows fast
exclusion of certain object regions for collision detection.
In case there is an intersection between the root nodes of
both models, the algorithm will search for an intersection in
the next level of the tree. These nodes are already a better



approximation of the object. When there is no collision the
algorithm stops traversing the tree. On the other hand when
there is a collision, the algorithm moves on to the next level.
This procedure is repeated until the leaf nodes are reached. If
the leaf nodes collide it is assumed that the two models are
also colliding. Research towards different kind of geometric
primitives has already been conducted and includes the
implementation of Axis Aligned Bounding Boxes (AABB)
[2], Oriented Bounding Boxes (OBB) [3], Discrete Oriented
Polytopes (k-DOP) [4], Spheres [5], ... In this paper the use of
spheres as geometric representation is examined. Sphere trees
can be constructed according to various principles. Hubbard
[5] builds tight fitting sphere trees for the object that needs to
be approximated. To achieve a tight fit, the object’s Voronoi
diagram is derived and used as the medial-axis approximation.
This medial-axis is then used to construct the leaf spheres.
The bottom-up approach is applied to build the sphere tree.
An adaptation on this approach is made by Bradshaw et al.
[6]. The concept of implicit sphere trees is introduced by
Ruffaldi et al. [7]. A sphere hierarchy is constructed from
octree nodes during the traversal of the octree for collision
detection. Finally, Weller et al. [7] propose the use of inner
spheres to approximate the volume of a 3D model. The inner
spheres are non-overlapping spheres and serve as the leafs of
the sphere tree. The sphere tree is constructed by applying
the top-down technique, starting from a root sphere enclosing
all inner spheres. Next the leaf spheres are partitioned and
the spheres covering these partitions form a next layer in the
tree. This process is repeated until a desired depth is reached.

In this paper the Inner Sphere Tree (IST) algorithm is
examined for collision detection between two different
high-poly 3D medical scan models of the upper and the
lower jaw. The principles behind the IST are explained in
section II. Different tree traversal algorithms, including a
novel multipoint tree traversal algorithm, are described in
more detail in section III. Section IV covers the experimental
results regarding the speed and the obtained accuracy for
collision detection. Finally, section V concludes the paper
and gives some suggestions for further improvements.

II. INNER SPHERE TREES

A. Voxelizer

To create inner spheres a voxelizer is needed, which fills
the model with voxels. A voxel is a finite interval in a
n-dimensional space, in this case a 3D-space, that contains
the position and the shortest distance to the surface of the
model. The bounding box of a model is filled with potential
voxels of which the final set of voxels, contained in the
model, is derived. Next, a ray is casted out from the position
of a potential voxel to the infinite x-direction, however this
could be any direction. If the ray intersects the surface of the
model an odd number of times, the voxel is contained within
the model. Otherwise it is located outside the model and the
voxel will be discarded. After repeating this procedure for

every potential voxel, only the voxels positioned inside the
model will remain. To check for collisions between the ray
and the model, the Möller-Trumbore intersection algorithm is
used as described in [8]. This algorithm checks for collisions
between a ray and a triangle. To check for intersections with
the model, every triangle of the model needs to be verified.
However, optimizations, to speed up this process, are made by
implementing a tree structure. A binary tree of axis-aligned
bounding boxes is constructed where every leaf contains
exactly one triangle of the model. If the ray intersects the
root bounding box, it is checked if the ray collides with
the two children of this bounding box. This process repeats
itself until a leaf is reached. When it intersects the leaf, the
Möller-Trumbore intersection algorithm is applied. Finally
the voxelizer uses the distance map generation algorithm
as described in [9]. This algorithm calculates a largest
distance to a set of triangles (i.e. the model) for a set
of points (i.e. the voxels) using a BVH. In other words a
distance mapping is created between the model and the voxels.

B. Inner Spheres

The inner spheres, which become the leafs of the sphere
tree, are constructed from the voxels obtained after the vox-
elization step. The voxel that has the largest distance towards
the surface of the model is used to create the first inner sphere
with a radius equal to this distance and a center equal to the
voxel position. This means that the created sphere touches the
surface of the model but does not penetrate it. Next, all other
voxels are iterated. If one of the other voxels is contained
within the created sphere, it will be discarded. On the other
hand if it is not contained within the sphere but the distance
to the sphere is shorter than the distance to the surface of the
model, the largest distance of the voxel is replaced with the
distance to the sphere surface. Otherwise, the voxel remains
unchanged. This step is repeated for every voxel. An example
of the creation of the first 2 inner spheres is depicted in Fig.
2.

Fig. 2. The creation of the first 2 inner spheres. The orange line is the
shortest distance to the surface or to a new sphere.

The distance between the voxels influences directly the
number of inner spheres that will be created. If the voxels
are closer together, more spheres are created. If, however, the



voxels are separated rather far apart from each other, less
spheres are created. The number of spheres influences also
the accuracy of the model approximation. The more spheres
there are used to represent the model, the better the accuracy.
In Fig. 3 a 2D-representation of the Stanford bunny with a
completed sphere-packing is displayed.

Fig. 3. The inner circles of the Stanford bunny model. This is a 2D-equivalent
of a 3D sphere packing.

C. Batch Neural Gas algorithm
After the creation of the tight sphere packing, the IST

is created recursively. The algorithm performing the IST
construction process greatly influences the efficiency and
thus the speed of the tree traversal. In [10] the BNG
clustering algorithm is proposed to create the tree structure.
This BNG algorithm is used for clustering data-points with
similar characteristics and is applied in AI applications. In
this case the spatial characteristics of the object are taken
into consideration to provide efficient partitioning of the
leaf spheres. First, all leaf spheres are enclosed by a root
sphere. Repeatedly the leaf spheres are partitioned by the
BNG algorithm, creating a number of disjoint groups. After
each partitioning step the grouped leaf spheres are enclosed
creating a number of new spheres representing nodes on a
lower level in the tree. The process stops when the desired
tree depth is reached.

The BNG algorithm provides a fast and robust clustering
method independent of initialization and with guaranteed
convergence by iteratively minimizing a cost function. The
algorithm provides n new prototypes wi for i ∈ {1..n},
in our case midpoints of new nodes. During each iteration
step the prototypes converge further by assigning weights
to each prototype and leaf sphere pair. For each midpoint
these weights represent how close the midpoint is to each
prototype. Next the prototypes are adjusted considering the
weights, the positions and the volume of the leaf spheres as
proposed in [10]. The maximum iteration number and the
minimum movement of all prototypes are implemented as
stop criteria. These values have a great influence on the final
tree structure and thus the collision detection speed.

The adaptations during each iteration step are:

kij := |{wi : d(xj ;wk) < d(xj ;wi)}| ∈ {1..n} (1)

wi :=

∑m
j=1 hλ(kij)xjV (xj)∑m
j=1 hλ(kij)V (xj)

(2)

The new prototypes are calculated based on a monotonous
decreasing Gaussian shaped curve hλ. This curve ensures
convergence and decreases during each iteration step. A
thorough mathematical foundation of the algorithm is given
in [11].

Fig. 4 shows the grouping in a sphere packing applied on
a mandible (i.e. lower jaw) model. Next each partition is
enclosed by a sphere which hereby creates four new nodes
in the tree structure. Finally, the BNG algorithm is applied
recursively to each partition in order to create more tree levels.

Fig. 4. Four partitions in a mandible sphere packing created by the BNG
algorithm to obtain four new nodes in the tree structure.

III. TREE TRAVERSAL

To traverse the IST, several algorithms are implemented and
optimized to speed up the collision detection. The first opti-
mization is the broad-phase collision detection which checks
if the root nodes are intersecting before starting to traverse
the ISTs of both jaw models. Another optimization is that the
models are only verified for collision if one of the objects has
moved further than a predefined distance. When a collision
check has been performed but the objects did not collide,
an approximated distance between the objects is calculated.
This approximation is always smaller than the actual minimal
distance between the two objects. A collision check is only
performed if the models have moved a certain distance, relative
towards each other, which is greater than this approximated
distance.

A. Distance traversal

The first tree traversal algorithm that will be discussed is
the distance traversal algorithm. This algorithm performs a



query returning a minimum distance between two ISTs and–if
one exists–a contact-point. This traversal algorithm starts at
the root sphere and descends the tree as long as the distance
computation between two spheres indicates that there is an
intersection. When the level of the leaf spheres is reached and
both spheres are still intersecting then the collision position
is set. When there is no longer a collision, while descending
the tree, the tree traversal will stop and the minimum distance
calculated between two spheres so far is returned.

B. Distance backtracking traversal

The second algorithm is a backtracking traversal. The first
collision is found according to the principles of the distance
traversal algorithm. When the first collision is known and the
traversal starts again, due to changing positions of the 3D
models, the tree traversing starts at the parent sphere of the
previous collision. Once the child nodes of the parent are
visited and there is no collision, the algorithm starts searching
for a collision one level higher. Now the children of this parent
sphere are examined to find the collision. When traversing the
tree starting from this sphere the subtree of the previous parent
is ignored to avoid checking this branch multiple times. In the
worst case this algorithm needs to track back to the root and
traverse the tree again. However, the assumption is made that
this is a very rare condition because of the small positional
changes of the 3D models during each iteration. Algorithm 1
and 2 show the corresponding pseudocode.

Algorithm 1: checkDistanceB(A,B,minDist)
Input : A,B = spheres in the inner sphere tree
Output: Boolean indicating if there is a collision or not
In/Out : minDist = overall minimum distance seen so far

if A or B == nullptr then
// root sphere
checkDistance(rootA, rootB, minDist)

if !checkDistanceR(parentA, parentB, minDist) then
return checkDistanceB(parentA, parentB, minDist)

return true

C. Multipoint traversal

The final algorithm is the multipoint traversal, which is
based on the backtracking algorithm. This algorithm tries
to find a number of collisions in contrast to the previous
algorithms, which only search for one collision. The first
time the traversal starts at the root node. If there is a collision
found then the parent of this sphere located at a certain split
depth is excluded for further examination. The split depth is
thus an indicator of how close different colliding points can
lie together. The next search starts again from the root node
and excludes the branch of the parent spheres on the split
depth from the previous colliding points. The algorithm stops
traversing the tree when there are no more collisions or when

Algorithm 2: checkDistanceR(A,B,minDist)
Input : A,B = spheres in the inner sphere tree
Output: Boolean indicating if there is a collision or not
In/Out : minDist = overall minimum distance seen so far

if distance(A,B) >minDist then
return false

else
minDist = distance(A, B)

if A and B == leaf and distance(A,B) == 0 then
pos = position of the collision
stop iteration
return true

if distance(A,B) >0 then
// When no leaf but minDist is adjusted
return false

forall the children a[i] of A do
if node a[i] already visited then

Skip this node
forall the children b[j] of B do

if node b[j] already visited then
Skip this node

checkDistanceR(a[i], b[j], minDist)
if stop iteration then

return true

return false

a specified number of collisions are found.

The next time the tree is traversed, the previous collisions
are checked first. The colliding points that are no longer valid
are now the starting points for the backtracking. The parent
spheres at the split depth of the other points, that are still
valid, are set. These branches are no longer examined. If a
new collision is found then the parent at the split depth of
this sphere is also set. In case a sphere that is the starting
point for backtracking has now the same parent at the split
depth because of the new colliding point, then the parent of
this split depth parent is taken as the starting point.

In case the split depth is not chosen properly it can prevent
the algorithm to find collisions.

IV. RESULTS

For the calculations and the algorithm implementations a
Windows 10 laptop with an Intel i5 2.6GHz dual core CPU
and 4GB of RAM is used. Collisions are tested between two
highly-complex jaw models, one with 119k vertices and the
other with 106k vertices.

To test the accuracy and speed, an identical hand recorded
motion is used for the evaluation of all detection algorithms.
The predefined distance optimization, discussed in section



III, is removed and no backtracking is implemented. This
is because data regarding the inner sphere tree structure is
needed, and not about the optimization algorithms.

A. Sphere packing

The sphere packing algorithm provides a tight packing for
the test models. Three different accuracies are generated by
the program. Two of those three accuracies are also tested
with multiple depth levels in the tree. The tight packing is
illustrated in Fig. 5 for the Stanford dragon model. In this
picture it is clear that the big spheres in the body of the dragon
are surrounded by smaller spheres to fill up the tiny spaces.
This is as expected.

Fig. 5. The sphere packing algorithm applied to the Stanford dragon.

B. Detection speed

The speed depends on the tree depth, the number of leaf
nodes within the tree and the settings of the BNG algorithm.
Fig. 6 shows the collision detection speed with respect to an
increasing number of voxels and thus an increasing number
of leaf spheres. If the quality of the voxelization rises, the
speed decreases. Fig. 7 and 8 depict the effect of an increasing
tree depth on the average detection speed. The speed rises if
there are more levels in the tree until a certain point, then the
speed starts to decrease again. Results also show that slightly
different settings of the BNG algorithm, such as stop criteria
or prototype start values, can result in a higher or lower update
rate.

C. Accuracy

The accuracy depends only on the amount of leaf spheres
in the IST which on its turn depends on the quality of
the voxelization. As depicted in Fig. 9, an increase in the
voxelization quality results in a better accuracy. The results
are expressed as a relative error percentage. A slow but very
accurate PQP library has been used to calculate the exact
distances between the models. The relative error percentage
is calculated by dividing the absolute error by the distance the
models are removed from each other.

Fig. 6. The average collision detection speed for multiple accuracies.

Fig. 7. The average collision detection speed for multiple depth levels of a
tree with 3K leaf spheres.

D. Backtracking

In certain cases, the backtracking algorithm can result in far
higher detection speeds compared to the distance algorithm.
When the backtracking algorithm searches its first contact
point or if there is no contact point, it is equally fast to
the distance algorithm. However, if the two jaw models are
already colliding, the backtracking algorithm can speed up the
detection 50 times compared to the distance detection speed.
It is presumed that small changes happen in the movement of
the jaw models, which is true in normal cases.

E. Multipoint

The multipoint algorithm can find multiple contact points
by using the backtracking algorithm multiple times within one
collision check. When there is no contact between the models,
it is as fast as the distance algorithm. For the multipoint
algorithm a predefined number of possible collisions is set.
Then, the algorithm tries to find this number of collisions. If
there are more contact points than this number, it can increase
the detection speed up to 50 times. But when there is only
one contact point, this algorithm slows down significantly.
This is because the first point will be found quickly using the
backtracking algorithm, but for the next point the algorithm



Fig. 8. The average collision detection speed for multiple depth levels of a
tree with 16K leaf spheres.

Fig. 9. The error on the collision detection algorithms decreases when more
leaf nodes are added to the IST.

will have to traverse the entire tree because it will not be able
to find a collision point.

V. CONCLUSION

An open-source C++ program is created on the CHAI3D
platform [12] to build the IST of 3D models. The packing
of inner spheres is performed properly and verified by the
Stanford dragon model and two jaw models which resemble
the same result as described in [10]. The implemented BNG
algorithm cannot be compared to the one used in [10].
Although it has the same basic functionality, the settings
cannot be optimized to construct the perfect tree. The depths
of the tree are crucial with respect to the update rate. The
speed reaches a maximum at a certain depth, therefor further
expanding the tree is non-beneficial. The accuracy depends
on the amount of leaf spheres in the tree. This is also directly
related to the quality of the voxelization. Thus the higher the
quality of the voxelization, the higher the collision detection
accuracy. However, the voxelization quality has also an effect
on the speed of the collision detection. A trade-off between
the speed and accuracy is necessary and should carefully be
made for every model.

After implementing tree traversal optimizations haptic up-
date rates are reached. The first optimization is the back-
tracking algorithm, which improves the detection speed when
the two models are colliding. If the two models are not
colliding, the algorithm calculates a certain distance that the
models are allowed to move relative towards each other before
it is necessary to check their relative distance again. This
is the second optimization. Combining these optimizations,
results in haptic update rates for every scenario. In the future,
parallelization could be added to the program. This will result
in higher speeds and could provide haptic rates without any
other optimization.

Future research includes the implementation of a collision
response algorithm to model the appropriate forces once a
collision is detected. A second aspect that needs further
investigation is that currently it is still possible that some small
areas inside the model are not covered. This is due to the
fact that non-overlapping spheres cannot cover the complete
volume of an arbitrary object because of their geometry.

The open-source code can be found at the follow-
ing link: https://github.com/caspervranken/BachelorThesis
Pirotte Vranken.
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