
I

rn "Too1 int'egration and d.esign environments" edited by F.J.Rammig, North-Hollandto appear in 1988.

Open Erarnework of Interactive
and Communicating CAD tools.*

L.Claesen, R.Severyns, P.Six, W.De Rammelaere, H.De Mant
IMEC Kapeldreef 75, 8-3030 Leuven Belgium

J.Cockx, Ph.Reynaert
Siluar-Lisco, Abdijstraat 31, 8-3030 Leuven, Belgium

G.Schrooten
Philips Res. Labs., Prcf, Holstlaan, NL-5600 JA Eindhoaen, Netherlands.

Abstract

This paper describes an open system architecture fot interactiae and, communicating CAD

interface between CAD tools. The goal of the system architecture is to provide a direct dz-
teraction and feedbac& between the primary design tools (schematics editors, symbolic layout
editors, module generators etc.) and intelligent verification tools (electrical debugging, timing
verification simulation etc.). The tools run in parallel and have bid,irectional interactiae corntnlt-
nication by pointing to objects in primary design inputs and passing information to verification
tools and by allowing verification tools to highlight objects in primary design editors.

Keywords: CAD, Open ftameworks, CAD architecture, Object Oriented Systems, tool
integration.

1 Introduction

The design of VLSI chips or VISI modules encompasses several aspects where CAD tools can
assist. Even today most designs are directly entered in layout editors. However several, more
appropriate design entry tools become accepted such as schematics editors [22] for semi-custom
designs, symbolic layout [14,15] and parameterized module generators [17,16].

During the global design process, the verification and characterization of the correctness of
the circuits takes a considerable amount of the design time. For the verification of MOS circuits
logic-, switch-level- and circuit level simulation is used most often. Currently new approaches
are being developed for verification to reduce the requirements for extensive simulations. For
the correctness verification of MOS circuits, knowledge based approaches are used [7] for ver-
ifying design soundness about composition rules, electrical rules, electrical debugging. Other
tools have been developed for the verification of timing correctness [8,9,10,1lJ. The major goal
of these analysis tools is to try to reduce the need for extensive circuit simulations. Circuit

*Research performed within the scope of the ESPRIT-1058 project
tProfessor at Kath. Univ. Leuven Belgium

simulation will however always remain important. Therefore circuit simulation techniques for
large circuit modules are being developed based on waveform relaxation techniques [12] and
explicit integration techniques [13].

One bottleneck in the effi,cient application of these wification techniques is the interactiaity
between aerification and simulation tools and the designer.

The current design practice is that CAD tools are run one at a time and that communi-
cation of information is aia files and cross-reference lists. This is extremely time consurning
in a verification or debugging phase where the feedback between design definition and design
debugging is currently taking most of the designers time. An other disadvantage of the current
CAD tools is that they often require different formats for representing netlist information,
which necessitates the use of cross reference lists and makes it harder for the designer to relate
information from a simulator or a timing verifier to the original information.

To allow for a much faster feedback between knowledge based verification tools and the
module designer, an open and interactive system architecture is under development as described
in this paper.

2 open system architecture for interactive cAD.
Much attention is currently put on the issue of open system architectures for electronic CAD
Programs [t] and prornising prototypes are under development [2,3,4,5]. Up to the authors
knowledge, there are currently-nlnper3'AD anvifonments eoffirarcially'afailablc that allow'
to ernbed strongly interactive CAD tools in an easy way.

This paper explains the outline for an open architecture allowing fot bidirectional commu-
nication between interactive CAD tools running in parallel [18]. It is conceived in such a way
that it is possible to interactively communicate between user-interface tools and simulation
and verification tools by user-pointing and screen highlighting of structural objects. The archi-
tecture is set up in such a way that individual tools can be developed independently. (or that
independently developed tools can be integrated with minor work). The system architecture
majorly integrates around the concept of structural data that is comrnunicated between tools.
To integrate existing tools easily, they are not much constrained. Tools ore allowed to have
their own "primary data". It is only required that the tools are also able to generate the
structure information in a standard way from this "primary data". Because there are not too
many constraints on the tools themselves allows that existing CAD tools can be integrated
without too much difficulty. This fact together with a good definition of procedural interfaces
for communicating to other tools contributes to the aspect of an open system architecture.

Important in this architecture description is the philosophy of allowing CAD tools to com-
municate interactively to the user via the primary input descriptions. In this ryay a much
faster feedback is achieved to the designer and also a more efficient design cycle is achieved.

In this system the tools are organized around the concepts of:

Common Database Organization . This does not imply the use of one database or the
use of the same formats. (Nevertheless it is encouraged.) This is to access the files as a
whole in a standard way, not the contents.

Comrnunicating application programs: In the underlying system it is required that two
or more programs can communicate with one another in a bid,irectional way. This is
necessary to allow highlighting of and pointing to structural items. To achieve this a
structure comrnunication standard SPI is used [19].

Uniformization of structure data: By structural data is assumed data about:

cells These items are also lcnown by the database interface.
components or instances of cells.

ports of cells
ports of components
nets

as well as some general attributes that can be associated with each of the structural
entities described above. Parameters are & special type of attributes that are associeted
with cells (formal parameters) and components (actual parameters).

Databases used by application programs: To be able to put as few constraints on ap-
plication programs as possible, the general rule is that each application tool is allowed,
to haae its own formats for d,atabases o? data files. The requirement is only that the
designer, or some design tools have to indicate to the DMS database interface which
view (generated by which tool) contains the primary data for the cell from which the
structural data can be derived. The structural data is standarfized. This data should
be extracted from the own data structures of structure generation tools and passed in a
standardized way to tools that act on the structural data. Because the other databases
are not that constrained is advantageous to incorporate existing CAD tools in the system.
It also puts less constraints on new tools that have to be developed.

Primary"Data-Assumption-"'In -th:e modulddesign=mvi:ronment -it-ii:assum:ecl
tha.at th..:e de-

signer declares for each cell which tool defines the correct primary data. (This is done
through the DMS.). In the database this is reflected because for each cell there must
be information which tool has defined the primary data for that cell. The primary data
corresponds to the information that the designer has initially entered as specification of
the design. An example is symbolic layout [14]. Secondary data is then for example the
physical layout generated from the symbolic layout. Other "so called" primary data may
also exist but is not considered as primary in this text. An example is a cell with the
symbolic layout declared as primary data by the designer, and of which also a schematic
has been made. Here the schematic data is "so calledt' primary data but not t'the"
primary data. The meaning is that the schematic is not the primary definition for the
structure of the cell. The structure as represented by the schematic can be compared to
the primary structure by a netlist comparison program such as for example WOMBAT
[20]. The DMS design management system has to be aware of which view primarily
defines the structure for each cell, because this information will be used by preference for
further verification work.

Implernentation details: All operations of CAD programs that are communicating together
via SPI are considered to be sgnchronizeil. This means that only one tool will be activated
at a specific time. Other processes are then in a waiting state.

3 Tool surnrnary and interaction.

Figure 1" gives the major communication. The notational conventions used are indicated in
the figure. The functionality of the system is of prime importance. An implementation of the
system can be done over one or more processes running on one or more machines.l The DTM

lln the actual implementation all tools are in separate processes. For the understanding of the system
architecture, one could as well think that all tools are integrated in one large program,

data 8 tool manager is the main controller and selects active projects (or cells) and activates
CAD-tools. The DMS desfgn rnanagernent system selects the database files from the operating
system file system. The SPI structure procedural interface is the structure communication bus
between the CAD tools.

Now follows a further discussion of the functionality of the individual modules depicted in
fis.1.

3.L DTM : Data & Tool Manager.

The Data and Tool Manager is the main process controlling the global CAD activity. This tool
allows to define lhe cunent project(s)on which actions are to be performed. Then the CAD
tools such as editors, verifiers and simulators can be called. DTM is aware of the available tools
and of the available cells and it controls the switch box function around the SPI procedures
such that data is routed from the appropriate structure generation tools to the appropriate
structure receiver tools.

The DTM consists of the main control loop with the user. The designer can:

o either indicate projects to be used by the programs.

r or control the execution of application programs and inter process cornmunication be-
tween application programs.

The functionality of the DTM could be extended on top of the functionality of existing
"monitol" programs encountered in several CAD systems [25]. The extension required by
this architecture is the ability to manage several communicating CAD-tools, ingtead of only
managing one tool at a time.

3.2 Application programs.

The application programs can be classified in two major groups:

1. Structure generation programs.

2. Structure receiving programs.

The two classes of application programs are further discussed in the next subsections. One
program can also belong to the two classes. An example is a preprocessor program that takes
structure and transforms it into other structure.

3.2.1 Structure generation programs.

The structure generation programs consist of the application programs that have a direct
graphical interaction with the user. These programs are for the most part editor-like and
communicate in a graphic way. These programs are mostly used to provide primary input of.

design data to the system.

Examples of these foregrorrnd application programs are:

o schematics editor.

DBI
Database lnterlace

!
i,1:.1:. 'i':.

D
TI

n
l':d

m
Ho
!:
(l)
v,
o

o

oo

FI
o

an
od u

Data Hanlino
Iodule v

sPr
Slrrclurr
Plocrdurrl
lrtrrlrcr

t- I

Fllr
Syrh

sPt
lo
Fllr

rl nr
lrlor

EX
Erprndrr

rrrl -
flrrFllr

lo
sPt

utr

clr
rll c

Global $ystem rchitecture

PEX
Purnrtl Erpudrr

Gonnrnlcrllon S*ltclbor

DT IT

Data & Tool lanager

User

o layout editor.

r sticks editor.

o textual editor.

o algorithmic floorplanner, parametric module generator

3,2.2 Structure receiving programs.

The structure receiving programs are the programs that do not have a direct input capability
for primary design data.

Examples are:

r simulators [12,13]

o tirning verification programs such as STOCOP [10]

o electrical verification programs such as DIATOG [7].

r floorplanner, block place & route

o place & route programs.

The major reason behind this subdivision of application progrems, is that it is intended
that there will be a strong interaction between the application progroms and the designer/user
of these programs. Therefore structure generation and structure receiving programs mugt be
interlinked closely. This allows the designer to pass information on his design from the structure
generation programs to the structure receiving application programs and get feedback in the
reverse way by user pointing to structural items and highlighting. In this way two tools can
act as one global integrated tool.

3.3 SPI : Structure procedural interface.

The structure procedural interface [19] is a switch box and a standard way to comrnunicate
in a bidirectional uay structure information (cells, components, ports, nets and attributes on
these) between structure databases, editors (for interactive highlighting) and verification and
simulation programs.

As part of the structure procedural interface there are two expanders available HEX and
PEX. A hierarchy expander (HEX) which removes hierarchy in a hierarchical description and
a parameter expander (PEX) which removes structural parameters in a parameterized struc-
ture description. This is necessary if verification or simulation tools, that only understand
flattened information, want to communicate with one of the user-interface editors by pointing
and highlighting.

SPI is a standard procedural interface on structural data, suited for programs. The same

interface can be used to communicate between editor and files, in which all structured infor-
mation is stored, and between these files and vetiffcation and simulation programs, but only
in one direction (no highlight). Besides SPI, there is also a directly derived textual representa-
tion, to be used for archival purposes and for the communication with tools where no coupling
via procedures is possible. Conversion between these direct textual representations in files and
SPI procedures are provided by tools File-to-SPI and SPI-to-File in figure L.

Dual to the SPI procedures there is also a designer oriented textual representation HILAR-
ICS. Tlre coupling between lhe designer oriented teilual representation and the application
programs will be provided by a HILARICS to SPI compiler. In this way application tools
should only use the SPI procedural interface. HILARICS is then i(the" primary input.

9.4 HEX : Hierarchy expander.

The hierarchy expander provides a bidirectional link between structural data on level 1 (hi-
erarchical) to structural data on level 0 (flat). To provide the possibility for bidirectional
comrnunication, local storage of datastructures is necessary to keep the links between struc-
ture data on level 0 and structure data on level 1. The user determines via the DTM and the
application tools which data has to be expanded.

3.5 PEX : Parameter expander.

The PEX module is similar in functionality to the HEX module. It provides a bidirectional
translation between tools that generate structural data on level 2 (parameterized) and struc-
tural data on level 1. The same observations as made for the HEX module also hold here.
This expander is mainly used for the expansion of parameterized structure descriptions in the
HITARICS language.

3.6 DMS : Design Management System..

The Design Management System performs a mapping of design objects such as designs, cellc,
aiews and versions in the file system. A design object is the basic building block to be used
at the design management level (schematic, layout, behavioral model of a cell, parameterized
description of layout, ...). It returns a unique identification of a file on which the other tools
can act. The DMS is not aware of the contents of the design objects. The contents of the
design objects is determined by the tools that act on it.

There are many alternative implementations possible for a DMS [23,24]. The specific
implementation is however hidden behind the DMS-access procedures. Depending on the
needs in a specific design environment, the implementation can have extended features and
facilities (such as protections etc.) or can be elementary. Within the scope of the system
architecture, the functionality of handling basic design objects is the major requirement.

The DMS also knows for each cell which view define s lhe primary data that determine the
structural data for the view under consideration. This information with each cell is required
such that the DTM together with the SPI can decide which tool has to be called for each level
of cell, to generate the required structural information for the structure receiving tool.

In the DMS also an attribute with the usage leuel of each cell should be inficated. The usage

leael is for example circuit level. This means that the SPI procedures should call starting
from the top cell, structure generating tools until the circuit level (transistors, capacitors etc.).
This information could be entered for example via the DTM.

3.7 UIM Llser Interface Module

The UIM provides a consistent user interface to be used for all tools. It is not essential for
the system architecture as such. However if two tools are being integrated, a consistent user

DMS database vlew
rnultSxS (MCE)

fulladd
(CAI,IEIEON)

booth
(cAl.rELE0N)

mux
(ctMErEoN)

Figure 2: Sample database organization

interface is advantageous: menus, windows, highlighting, selecting, message handling are done
in a consistent way. Therefore a conunon UIM is encouraged because it contributes to the
openness of the system architecture,

4 Description of a sample session.

To understand better the operation of the system architecture, an informal description of a

sample session is given.

4.L Sample design situation description.

Assume that a design of a multiplier has been made and that an instance of an 8 by 8 multiplier
is available in the database. Assume that the cells are organized by the DMS as shown in figure
2. The 8 by 8 multiplier is represented in the DMS as the cell multExS. Assume that this
cell is constructed using components from cells fulladd, booth and mux. The cell rnultSx8
is generated by the MGE module generation program [16]. Assume also that the designer has
defined that the structure is primarily defined by MGE for the top cell mult8x8. The structure
of the leaf cells is primarily defined by the symbolic layout program CAI.IEIE0N. Notice that the
DMS is aware of which program primarily defines the structure.

Assume that the designer has indicated to the DMS the usage leoels for the cells. In
that sense the circuit leuel has been assigned to the cells fulladd, booth and mux. This is
necessery afterwards for the SPI implementation to lcnow until whet level the design has to
be passed to the application program by the SPI procedures. DIALOG [7], a circuit simulator
like SPICE or SWAN [12], a timing verifier like SLOCOP [10] all require circuit leael.

Suppose that the designer wants to do interactively an electrical verification by using the
DIALOG [7] program.

Via the DTM the designer can interact with the DMS. He can see what information is in
the databases.

Interacting with stand-alone tools such as editing-only sessions is done in the normal way.
This means that projects from the DMS are selected by the designer through the DTM and
that the appropriate CAD tools are started in a stand-alone way.

In this way the information in the database for MGE or CIMELE0N could for example be
created.

The case where more tools are activated at the same time is described in the following
sessions.

4.2 Initiation of a veriffcation session.

Suppose the designer is at the point of checking the multEx8 design for electrical bugs. There-
fore he first has to enter the DTM, (via a special monitor window on the screen). There the
designer can browse trough the available projects managed by the DMS. He will than choose
mult8x8. This defines the top cell in the hierarchy. Together with one DTM the designer can
start one or more CAD tools that will cooperate in a synchronous uroy under the direction of
the DTM.

Now the designer con start one or more CAD tools, (each as separate processes and in
separate windows).

In this design application the designer could start a window (process) with the module
generator MGE and leave MGE in a waiting state controlled by the DTM. In the same way
CAMELEON could be started in a window (process) and be left in a waiting state under control
of DTM. Notice that in this example situation two different programs are started. These

Programs can be made active by the DTM to do editing or by the DTM and SPI to load a
specific cell and generate structural data for the SPI interface.

Suppose that MGE and cAltELE0N are both active and that the designer starts DIALOG from
the DTM.

After this action DTM gives control to DIALOG for doing its initialization and for loading
the information for the project at hand rnult8xS. Therefore DIATOG gives the control back
to the DTM, which will now activate the SPI module.

SPI will now recursively go trough the DMS design tree and activate each of the appropriate
structure generation tools with the appropriate DMS-cell indication. Each of these tools will
then for each of the cells call the appropriate SPI procedures to download the structural
information to the SPI module.

This means that the SPI will start from the top cell mult8xS and ask the DMS for the
primary view. In this case this is HGE. SPI activates MGE with cell mult8x8. MGE then
generates the structure information via the SPI calls. MGE keeps the information of this cell
in its datastructure and goes back in a wait state and gives back the control to SPI. SPI then
knows via the SPI calls of t{cg which cells are used as components of mult8x8. Now SPI can
again activate tools to generate the structure information for the cells of which it does not
have the structure information yet. This is the case for the cells fullad, booth and mux. SPI
therefore goes through this list one by one and performs the following actions:

It asks the DMS for the primary view of the cell at hand. First this will be
fulladd with primary view CAMELE0N. Then SPI starts CAMETEON with cell
fulladd. CAMELEON will then ask the specific CAMEIE0N file in the database for

cell fulladd through the DMS. It loads the information and passes the derived
structural information to SPI. CAMELEON keeps this information and goes to the
wait state again. Control goes back to SPI. SPI will than take the next cell (e.g.
booth and repeat the same actions).

After this CAMELEON has been activated three times by SPI with three different cells.
The inforrnation of these cells is each individually kept in CAMELEON datastructures and
has been passed to the SPI module via SPI procedures.

Now all information is available in the SPI module. Because DIATOG only understands
flat circuit descriptions, the HEX module in the SPI block will be used. In the HEX hierarchy
expander all links between the hierarchical network and the expanded circuit are kept, to allow
comrnuni c ation aft erwards.

After the expansion all information in the SPI module is passed to DIALOG via SPI
procedures. After this action by SPI control is given to DTM, which forwards control to
DIATOG which can start its verification work.

4,3 Interactive communication between editors and application
program.

Npw the case-of a-highlight will-be described.--The.case.of a.user select operation.is dual.to
the highlight.

Suppose that DIALOG wants to communicate a possible electrical bug to the user via the
editors. Therefore DIATOG will mention in its own window a textual description of the kind
of bug it has found.

DIATOG will now show to the SPI module which structural item(s) need to be highlighted
in the editors.

In a highlight or a select operation SPI will pass control to the user, so that the
user c&n choose the components in which the highlights or selects have to be done.
For the case of highlight, this means that after DIATOG has passed control to SPI,
SPI will give control to the user and let him/her choose among the available (and
possibly affected) components that he/she wants to see. This is necessary because
highlights and/or selects can affect more cells in a design. It is most often even
different in components of the same cell.

The control that SPI gives to the user is by a (hierarchical) table of the components used
in the design.

During these highlight or select operations the designer can look at the primary data as has
been entered in CAMETEON or MGE, Remember that all cells in this project muItSxS are
available in the data structures of these structure generation tools. Remember also that SPI
keeps al the hiererchical relations between the fattened circuit Bnd the hierarchical circuit.

After the highlight or select operation, the user can indicate to the SPI process that the
highlight or select operation is finished. Now SPI can give control back to DIALOG, which
can do further verifications with possible highlights or selects.

After the DIALOG verification session finishes, the control is given back to the DTM.

UIM

Application

program

?

DBM

? ?

linker

t

SPI database DMS

Figure 3: Integration of application progr&m in the system architecture.

5 Interfacing of tools in System A,rchitecture.

The interfacing of the tools in the system architecture is illustrated in fig.3. To obtain a system
that is as open as possible, and also to allow a gradual integration of tools in the architecture
some interfaces are mandatory and others are optional.

Mandatory interfaces These interfaces are required if a bidirectional comrnunication of
the tool with an other tool is envisioned. It requires the interfacing to the following
modules:

SPI structure procedural interface to communicate (either receive or generate structure)
with other tools.

DMS Design Management System. To indicate which design objects are handled by the
application program. This is required to know by the DTM what design objects are
being handled by which programs.

Optional interfaces

UIM User interface module to have a uniform appearance to the user.

DBM Database module to store the proprietary data of an application program on a
design object.

Linker module : this is only of importance for system design tools that require infor-
mation of parameterized cells.

To allow highlighting of structural items in more cells, tools need to be able to be activated
with more cells at once. Otherwise if highlights or pointing has to be done, the tools need to
be started per cell. This would require too much processes.

I

!.

rri

-.'t.-

+

+

+

sCALE I

' ''li ii- {i.

FIL'EI
coxIF4
OEL2
OEL'
oaL,ntEu
OUI
OUIAE

5U8tt
croffis
voo

ExtFeling 814...
€xr.*ting EL2 ...
Exl.rot iE E! . ..
E:t.stiB ULI , ..
Ext.*ri€ cqlu
Exl.erl€ f&tEt.

slz4r

sfl €orl
EXIER ELEIE
ffi c@Y
INTE PUT

6lIGr rcl*4
SlYtlosIzffi
rD LOCregtS
sd oalcls

cop cd
cMssI*

Figure 4: Interactive comrnunication between schematics capture system CASS and the rule-
based electrical verification system DIATOG

6 Current implenrentation examples.

The SPI interface has been used on VAX/VMS for the interactive interface between the SLO-
COP [10] timing verifier and the CAMETEON [14,1b] symbolic layout system. This allows to
highlight critical delay paths directly in the generated layouts.

The current implementation of this system architecture is under development on Apollo
workstations. To improve portability as much as possible use is made of standards such as
uNIx, TCP-IP, UNIX sockets for interprocess communication.

Figure 4 illustrates the interactive coupling between two separate programs: schematics
editing system CASS [22] and the rule-based electrical verificati,on systembtnlOC [Z]. The
interactive comrnunication between the two tools allows that the d.sigoer can point to struc-
tural items in the schematics editor window and pass this information directly to the DIALOG
verification program' DIATOG on its turn can give information to the designer by highlight-
ing structural objects in the schematics editor. Notice that this is performed without u"trruUy
stopping either of the programs.

The integration of DIATOG with the CASS schematics editor also illustrates the open
character of the systern architecture presented here. The two tools have their own database
structures. They are written in different computer languages (IISP and FORTRAN). They
operate in different processes' The main requirement for integration has been that the tools
had to be interfaced to the SPI structure procedural interface.

t

7 Surnrnary.

In this paper' a fl,edble and open framework for interactiae C,LD tools has been presented.
The emphasis is put on the interactiaity of the CAD verification tools. This is required to
be able to comrnunicate in an interactive way with the graphical design tools a designer is
confronted with. In this way the design cycle is shortened and verification tools can have
closer comrnunication with the designer. An'example of such a tool is DIAIOG [7] that can
directly, while doing its analysis, indicate possible design errors in the schematics. Another
representative analysis tool is the STOCOP [10] timing verifier that can directly indicate critical
delay paths in the schematics or symbolic layout by immediate highlighting, without stopping
either the tirning verifier or the schematics- or the symbolic layout editor. As less as possible
constraints have been put on the tools themselves to be able to integrate already existing tools
and tools obtained from outside with minor efforts.

8 A'ppendix: The SPI Structure Procedural Interface.

The structure procedural interface SPI 1.6 is described in its specification[l9]. Currently
language bindings are defined for C and for Pascal. Additional bindings have been set up for
FORTRAN and LISP. In this appendix the C-bindings are explained.

This appendix gives a short summary of the SPI procedures as they are available in SPI
1.6.

SPI procedures are provided for the following functions:

o control

o request structural information

o request extra information as attributes, and backannotate

r highlight structural objects

o request selection of a structural object by the user

r ask for user names of structural objects

In the following subsections the main procedures for the above functions are described
briefly.

S.L Control

SPI consists of procedures called from a structure receiver and implemented in a structure
generator (can be in an other process via interprocess communication protocols). Therefor
the structure generator is conceptually viewed as a submodule of the receiver. The following
procedures allow the receiver to initialize this module, activate it, and clean up before halting
the program.

void SPfinit o

parameters.' None.

returns: Nothing.

usage: This function initializes the structure generator. It must be called exactly once before
calling any other SPI procedure.

void SPlnewStart o

parameters.' None.

returns: Nothing.

usage: This function will activate the structure generator to do its job. It must be called before
starting SPI communication on a new structure. It may be called any number of times in
each program tun. Note: the structure in the structure generator can change during this
call; therefor all old object identifiers become invalid! Object identifiers are explained in
the next section.

void sPrexit ()

parameters.' None

retsTns; Nothing.

usage: This function will do any operations necessary in the structure generator before halting
the program. It must be the last SPI procedure call and must be called exactly once.

8.2 Structural Information

8.2.1 Terrninology

The terms used for structural objects have been taken from the EDIF standard. A cell is a
building. block representing a part of the circuit. A cell communicates with the outside world
through ils ports. A cell can either be a leaf cell or be composed of instances o/ other cells.
The ports of these instances and of the cell itself can be connected. A set of connected ports
is called a net. Connections of instance ports are called internal connections. Connections of
ports of the cell itself are called external connections.

8.2:2 ldentiffcatior sf st_ruclural qbjeqts

For efficiency reasons, all structural objects are referenced using arbitrary non-uero integer
numbers instead of names. Each cell must have a unique identiffer. Port, net and ingtance
numbers must be unique within a cell. Instance ports do not have their own identifier; they
are referenced using the instance number and the port number.

8.2.3 Representation of busses

Like all other structural information, bus ports and nets are represented explicitly in SPI using
extra parameters in the structure communication procedures. For uniformity, every port is a

bus port and every net a bus net. The width of a bus con either be fixed when the port or
net is first referenced, or it can be left unspecified until connections are made. Normal ports
and nets have a fixed bus width of t. The wires in a bus are always numbered from 1 to the
bus width. These numbers need not be equal to the user name for each wire, which can be an
arbitrary string.

8,2,4 Declaration in C

cellNr = SPlgetCell(name)

parameters,' char *nam€ a cell name

returns: The number used to identify the cell with the specified name, or zero if such a cell
does not exist in the structure generator.

uso,ge: It is normally used to obtain the identifier of the top cell of a circuit; the identifiers of
subcells are returned by SPlgetlnst.

portNr = SPlgetPort(cellNr, prevportNr, width)

parameters.' int ce1lNr a cell identifier

int prevPortNr the identifier of a port of that cell, or zero.

int *width theaddressof anintegertoreceivethebuswidthof thenextport. Thebus
width is 1 for normal ports, and zero for ports with an unspecified bus width. A
structure receiver that cannot process busses should set this parameter to NULL.

returns: The identifier of the next port. If "prevPortNr" is zero, the first port will be returned.
If "prevPortNr" corresponds to the last port, zero will be returned.

usa,ge: Normally used to read all the ports of a cell one by one. The "prevPortNr" argument
makes sure that the function has no side effects.

netltlr = SPIgetNet(cellNr, prevNetNr, width)

parameters.' int cel1Nr a cell identifier

int prevNetNr the identifier of a net of that cell, or zero.

int *width the address of an integer to receive the bus width of the next net. The
bus width is L for normal nets, and zero for nets with an unspecified bus width. A
structure receiver that cannot process busses should set this parameter to NULL.

returns: The identifier of the next net. If "prevNetNr" is zero, the first net will be returned.
If "prevNetNr" corresponds to the last net, zero will be returned.

usage: Normally used to read all the nets of a cell one by one. The "prevNetNr" argument
makes sure that the function has no side effects.

instNr = SPfgetfnst(cellNr, prevlnstNr, inst0f)

pararneters; int ceIINr a cell identifier

int prevlnstNr the identifier of a inst of that cell, or zero

int *inst0f the address of an integer to receive the identifier of the cell of which the
next instance is an instance.

returns: The identifier of the next instance. If "prevlnstNr" is zero, the first instance will be
returned. If "prevlnstNr" corresponds to the last instance, zero will be returned.

usage: Normally used to read all the instances of a cell one by one. The "prevlnstNr" argument
makes sure that the function has no side effects.

netNr = SPfgetlntConn(cetlNr, instNr, portNr, portfndex, netlndex, width)

netNr = SPfgetExtConn(cellNr, portNrr portrndex, netrndex, width)

parameters; int cellNr a cell identifier

int instNr the identifier of an instance in that cell

int portNr the identifier of a port of that instance

int *Portlndex the address of an integer used to loop through the wires of a bus port.
Set it to zeto for the first call. The structure generator will increment it, and return
the net and netlndex for the resulting portlndex. When there are no more wires in
the bus port, the structure generator will reset the portlndex to zero. A structure
receiver that cannot process busses can set this parameter to NUtt.

int *netlndex the address of an integer to receive the index in the net to which the port
is connected. A structure receiver that cannot process busses can set this parameter
to NULL.

int *width the address of an integer to receive the width of the connection. This is the
number of wires of the current port and net that are cotulected in sequence: current
portlndex to current netlndex, next portlndex to next netlndex, and so on. This can
be used as a shortcut for regular bus connections. Connections in reverse order (next
portlndex to previous netlndex ...) can be specified with a negative value for width.
If the structure receiver uses this shortcut, it. must increment portlndex accordingly
for the next call of SPlgetlntConn or SPlgetExtConn. A structure receiver that
cannot handle this shortcut for busses can set this parameter to NUtt.

returns: The identifier of the net to which the port is connected, or zero if the port is not
connected.

usage: Used to read the internal or externol connections of a cell. In the general case, bus
connections can be complexl therefor a few examples are given below.

L' Simple non-bus connections: if the port specified by (instNr,portNr) is a normal port
connected to a normal net, portlndex, netlndex and width will all return 1 and the
function will as always return the net number.

2' Simple bus connection: if the port is a bus port N wide, and it is connected to a bus
net also N wide, and portlndex is zero on input, the following values can be returned:
portlndex:l, netlndex=l, width:N. This connects all the wires of the bus at once.
Alternatively, each wire can be returned separately: the first call can return portlndex:1,
netlndex:L, width:l", the second (with portlndex:l on input) can return portlndex:2,
netlndex:2, width:1" and so on. The last call, with portlndex:0 on input, will return
portlndex:0. The second alternative is less efficient but more general: separate wires of
the bus port can be connected the other nets.

3. Invertedbus connection: if the first wire of the bus port is connected to the N'th wire
of the net, the second port wire to the N-L'th net wire, and so on, th.e following values
can be returned: portlndex:l", netlndex:N, width:-N.

8.3 Attributes

Extra information associated with a cell, port, instance, instance port or net is called an
attribute. Attributes have a name and a value. The name is represented as a character string.
The value can be a character string or a real or integer number.

SPI provides procedures to obtain the names of all available attributes of an object, to
request the value of an attribute with a given name, and to backannotate an attribute value.

8.3.1 Attribute Names

name = SPlcellAttName(ce1lNr, prevName)
name = SPlportAttName(cellNr, portNr, prevName)

name = SPlnetAttName(ce1lNr, netNr, prevNane)
narne = SPfinstAttName(cel1Nr, instNr, prevName)
name = SPliprt.A.ttNarne(cellNr, instNr, portNx, prevNane)

pararneters.'int cellNr, portNr, netNr, instNr identifiersfortheobjectofwhichtheat-
tributes names are requested

6[a1 {rpr€vName NULL or an existing attribute name

returns: the next attribute name. If prevName:NULL, returns the first attribute name. If
prevName is the last attribute name, returns NUtt.

usage: these functions are normally used to obtain all the attribute names associated with an
object.

8.3.2 Attribute Values

value
value
value
value
value
value
value
value
value
value
value
value
value
value
value

SPlcellAtt (ceIINr, name)
SPlportAtt(cel1Nr, portNr, name)
SPInetAtt(cellNr, netNr, name)
SPlinstAtt(celllrlr, instNr, name)
SPliprtAtt(ce1lNr, instNr, portNr, name)
SPIcellIAtt(cellNr, name)
SPIportIAtt(ceIINr, portNr, name)
SPInetIAtt(ce11Nr, netNr, name)
SPIinstIAtt (cellNr, instNr, name)
SPIiprtIAtt(cel1Nr, instNr, portNr, name)
SPIcellRAtt (cellNr, nane)
SPIportRA,tt(cellNr, portNr, name)
SPInetRAtt(cellNr, netNr, name)
SPIinstRAtt(cellNr, instNr, name)
SPIiprtR.A.tt(cellNr, instNr, portNr, narne)

parameters: int ce11Nr, portNr, netNr, instNr identifiers for the object of which the at-
tribute value is requested

chaltname the attribute name

returns: A pointer to a string, integer or real containing the attribute value. If an attribute
with the specified name does not exist, NUtt is returned.

uso,ge: Read specific attribute values.

8.3.3 Backannotation

void
void
void
void
void
void

SPfcellPutA,tt(cellNr, nam€, value)
SPIportPutAtt(cellNr, portNr, nann€, value)
SPInetPutAtt(cellNr, netNr, name, value)
SPlinstPutAtt(cellNr, instNr, name, value)
SPliprtPutAtt(cellNr, instNr, portNr, nam€, value)
SPIcellPutIAtt (cellNr, nam€, value)

void
void
void
void
void
void
void
void
void

SPIportPutIAtt(cel1Nr, portNr, narne, value)
SPInetPutIA,tt(ceIINr, netNr, narne, value)
SPfinstPutl.A,tt(ce1lNr, instNr, nane, value)
SPIiprtPutIAtt(cellNr, instNr, portNr, narne, value)
SPIcellPutRAtt(ceIINr, neune, value)
SPfportPutRAtt(cellNr, portNr, name, value)
SPfnetPutR.A,tt(ce1lNr, netNr, narne, value)
SPIinstPutRAtt(cellNr, instNr, name, value)
SPIiprtPutRAtt (cellNr, instNr,, portNr, nann€, value)

parameters: int cellNr, portNr, netNr,
tribute value is backannotated

char *name the attribute name

char rvalue the attribute string value

int value the attribute integer value

float value the attribute real value

returns: Nothing.

usage: Rackannotate.

instNr identifiers for the object of which the at-

8.4 Highlight Operations

void
void
void
void
void

SPlhiliteCell(cellNr, color, reason)
SPlhilitePort(cellNr, portNr, color, reason)
SPlhiliteNet(ce11Nr, netNr, color, reason)
SPlhilitefnst(cellNr, instNr, color, reason)
SPlhilitelprt(cellNr, instNr, portNr, color, reason)

parameters.'int cel1Nr, portNr, netNr, instNr identifiersfortheobjecttobehighlighted
int color specifies the highlight color to be used. This parameter can hove the following

values:

SPI-UNHILITE Unhighlight, redraw object in default color
SPI-HIIITE-I Highlight in color number L

SPI-HILITE-2 Highlight in color number 2
SPI-HIIITE-3 Highlight in color number B

SPIJIITITE-4 Highlight in color number 4
SPI-INVISIBLE Make invisible, redraw object in background color
SPI_BtACK
SPI_WHITE
SPI_RED
SPI_GREEN
SPI_BTUE
SPI_CYAN
SPI-MAGENTA
SPI-YELLOW
SPI-RED-YEttOW

SPI_GREEN_YEtLOW
SPI_GREEN_CYAN
SPI_BtUE_CYAN
SPI-BtUE-[4AGENTA
SPI_RED_MAGENTA
SPI-DARK-GRAY
SPIIIGHT-GRAY
For colors number L to 4, the structure generator may choose any color (or line
type or other highlight method) different from the default and background. colors.
The explicit colors are only provided for those tools that want explicit control over
the highlight color. The structure generator may or may not implement them,
and nothing guarantees that any of these colors is different from the default or
background color.

chartreason a string explaining the reason for the highlight operation; this string
should be displayed to the user by the structure generator.

returns: Nothing.

usage: Highlight and unhighlight objects

8.5 Select Operations

ce1lNr = SPlselectCell(reason)
portNr = SPlselectPort(cellNr, reason)
netNr = SPIseIectNet(cellNr, reason)
instNr = SPfselectfnst(cetlNr, reason)
iprtNr = SPlselectlprt(ceIINr, instNr, reason)

parameters: int ceIINr identifier of the cell in which an object must be selected

char *reason a string explaining the reason for the select operationl this string should
be displayed to the user by the structure generator.

returns: The identifier of the selected object. If the user explicitly does not select an object,
zero will be returned. This feature can be used to terminate the selection of a list of
objects.

usage: Allow user selection of objects

8.6 lJser names of structural objects

narn€ = SPlcellName (ceIINr)
nan€ = SPlportName(ceIINr, portNr, index)
nam€ = SPlnetName(ceIINr, netNr, index)
nam€ = SPlinstName(ce1lNr, insilrlr)

parameters.'int cellNr, portNr, netNr, instNr identifiersfortheobjectofwhichthename
is requested

int index the bus index. If this parameter is zero, the full bus name will be returned
(eg "DATA <. 4 : I >"). Otherwise, the name of a wire in the bus will be returned
(eg "DATA< 2 >" for a bus "DATA< 4 : L >,' with index:B).

returns: The user name of the object

usage: Norrnally, the comrnunication between a progrsm coupled to SPI and its user will use
highlight and select operations. Sometimes however, it is useful to know the user name
of some or all structural objects. This is where the above functions are useful.

For hierarchical circuits, these procedures return simple object names. For example,
"OUT" will be returned for port OUT of cell NAND. For expanded circuits, these pro-
cedures return the full path name, excluding the name of the top cell. For example,
"ALU/NAND1/OUT" will be returned for port OUT of instance NAND1 in instance
ALU in cell CPU' These full path names will be constructed by the hierarchy expander.

I SPI Utilities

9.1 The Hierarchy Expander

SPI can be used for hierarchical and for expanded circuits. When a hierarchical editor has to
be interfaced to a tool that processes only flat circuits, an SpI hierarchy exponder is needed.

The SPI hierarchy expander HEX uses SPI for both its hierarchical input and expanded out-
put. It does not only expand the structure, but also translates highlight and select operations
on the expanded circuit to hierarchical highlight and select operations.

With HEX, the structure generator (editor) implements the SPI procedures just as before.
The structure receiver (simulation o! verification tool) calls the SPI procedures, but with a
different prefix (HEX instead of SPI).

9.2 The Bus Expander

SPI can be used for circuits with or without busses. When an editor supporting busses has to
be interfaced to a tool not supporting busses, an SPI bus expander is needed.

The SPI bus expander BEX uses SPI for both its input and output. With BEX, the
structure generator (editor) implements the SPI procedures just as before. The structure
receiver (simulation or verification tool) calls the SPI procedures, but with a different prefix
(BEX instead of SPI).

9.3 SPl-to-file and file-to-SPI modules

In some situations, direct communication between a structure generator and receiver is not
possible. This happens for example when the generator and receiver operate on a different
platform and no comrnunication network is available between them. In these cases, the SPI-
to-file and file-to-SPl modules can be used.

The SPl-to-file module is a structure teceiver that creates a text file containing a description
of a circuit including all its attributes. The file-to-SPl module is a structure generator that
reads such a text file. It does h.owever not implement highlight- and select operations.

References

[1] K.H.Keller, "An Electronic Circuit CAD Framework", Memorandum No. UCB/ERL
M84/54, Ph.D Dissertation, Uniaersity of California, Berkeley,6 July 1984.

[2] D.S. Harrison, P.Moore, R.L.Spickelmier, ,A..R.Newton, "Data Management and Graph-
ics Editing in the Berkeley Design Environmenl", IEEE International Conference on
Cornputer-Aided Design ICCAD-86, November 11-1.3, 1986 Santa Clara CA.,pp.24-27.

[3] Jaan Haabma, "NMP-CAD Base System", Proceed,ings IFIP WG 10.2 workshop: "TooI
Integration and Design Enuironmenfs", edited by F.J.Rammig, North-Holland, L988.

[4] K.Gootheil, G.Kachel, t.Kathoefer, H.J.Kaufmann, B.Kleinjohann, E.Kupitz, J.Miller,
B.Nelke, F.J.Ramrnig, B.Steinmueller, C.White, "The Cadlab Workstation CWS - An
Open System for Tool Integration", Proceedings IFIP WG 10.2 uorkchop: "Tool Integra-
tion and Design Enaironments", edited by F.J.Ramrnig, North-Holland, 1988.

[5] L.-P.Demers, P.Jacques, S.Fauvel, E,Cerny, "An Approach to Object-Oriented Integra-
tion of VISI Tools", Proceedings IFIP WG 10.2 workshop: "TooI Integration and, Design
Entironrnenfs ", edited by F.J.Ramrnig, North-Holland, 1 988.

[6] L.Claesen, H.De Man, I.Bolsens, W.De Ramrnelaere, D.Dumlugol, P.Lanunens, P.Odent,
R.Severyns, E.Vanden Meersch, t'Electrical, Timing and Behavioral Verification in the
Meet-in-the-Middle MOSVTSI Design Environment of CATHEDRAL-II", Proceedings
IEEE International Conference on Computer Design: VLil in Cornputers A Processors,
ICCD-|7, Port Chester, New York, Oct.5-Oct-8, 1987.

[7] H.De Man, I.Bolsens, E.Vanden Meersch, J.Van Cleynenbreughel, "DIALOG: An Expert
debugging System for MOSVLSI Design",, IEEE baneactionE on Computer Aid,ed, Design,
CAD-4, No.3, June 1.985, pp. 303-311.

[8] J.K.Ousterhout, "A Switch-Level Timing Verifier for Digital MOS VISI", IEEE Trans-
actions on Computer-Aided Design, Vol. CAD-4, no.3, pp. 336-348 July 1985.

[9] N.P.Jouppi, "Timing Analysis and Performance Improvement of MOS VISI Designs",
IEEE Transactions on Computer-Aided Design, Vol. CAD-6, No.4, pp. 650-665, July 1987.

[10] E.Vanden Meersch, L.Claesen, H.De Man, "SLOCOP: A Timing Verification Tool for
Synchronous CMOS Logic", Proceedings European Solid State Circuits Conference, ESS-

CIRC'86, Delft, September 16-18, 1986.

[11] J.Benkoski, E.Vanden Meersch, L.Claesen, H.De Man, "Efficient Algorithms for Solving
the False Path Problem in Timing Verification", Digest of technical papers IEEE Inter-
national Conference on Computer-Aiiled, Design ICCAD-|7, Santa Clara CA, November
9-12, 1987.

[12] D.Dumlugol, P.Odent, J.Cockx, H.De Man, "The Segmented Waveform Relaxation
Method for Mixed-Mode Switch-Electrical Simulation of digital MOS VISI Circuits and
its Hardware Acceleration on Parallel Computets't, Proceedings IEEE Conf. ICCAD'86,
Santa Clara, CA, Nov. 1986, pp. 84-87.

[13] t.M.Vidigal, S.R.Nassif, S.W.Director, "CINNAMON: Coupled Integration and Nodal
Analysis of MOs Networks", 23rd Design Autornation Conference, June 29-July 2, 1986,
pp.179-185.

[14] K.Croes, L.Rijnders, "CAMELEON: A Technology Independent Symbolic Layout Sys-

tem", Internal Report IMEC, MR0SKUL-7-83-2, January L986.

[15] K.Croes et a1.,: "CAMELEON, a process tolerant symbolic layout system", Digest of
technical papers ESSIRC-|7, Bad Soden, Germany.

[16] I.Vandeweerd, ttModule Generation Environment: reference manualt', Internal Report ES-
PRrT 1 o 5 8 / rMEC /6.86 iD 86 I e.

[17] P.Six, L.Claesen, J.Rabaey, H.De Man, "An Intelligent Module Generator Environment",
Proceedings of 23ril Design Automation Conference, Las Vegas, June 29-July 2, 1986, pp.
730- 735.

l18l t.Ctaesen, Ph.Reynaert, G.Schrooten, "Open system architecture for comrnunicating
CAD tools", Report E S P R I T 1 0 5 I / IM E C / 1 2. I 6 / D I 6 52, IMEC Leuven, Belgium.

[19] J.Cockx, Ph.Reynaert, "ESPRIT-1058: SPI Specification", Report
E S P n I T I 0 5 I / S L / 1 2. I 6 / D 8 6 5 4, IMEC Leuven, Belgium.

[20] R.t.Spickelmier, "Verification of Circuit Interconnectivity", Report Electronics Research

Laboratorg, Univ. of California Berkeley, June 1983.

[21] E.Vanden Meersch, R.Severyne , "HILARICS: Userts Manual, 2nd efition", Internal report
IMEC, MR03- K UL-7-B 3-2, January 1986.

[22] -, "CASS The Computer-Aided Schematic System: IJser's Guide", Docurnent no. M-002-
9, Silvar-Lisco 8-3030 Leuven Belgium.

[23] N. van der Meijs, T.G.R. van Leuken, P. van der Wolf, I.Widya, P. Dewilde, ('A Data
Management Interface to Facilitate CAD/IC Software Exchanges", P?oc. IEEE Int. Conf.
on Computer Design: VLil in Computers, ICCD'87, New York, Oct.5-8, pp. 403-406.

l24l P. van der Wolf, "Daf a Management for VISI Design: Conceptual Modeling, Tool Inte-
gration & User Interface", Proceedings IFIP WG 10.2 workshop: "TooI Integration and
Design Enaironrnenfs", edited by F.J.Rammig, North-Holland, 1988.

[25] A. Di Janni, "A Monitor for Complex CAD Systems", Proc. 23rd, ACM/IEEE Design

Autornation Conference, June 29 - July 2, 1986, pp. 145-151.

IFIPWG l0.2WorkshoPon
Tool lntegration and Design Environments

Paderborn, FRG, 26-27 November, 1 987

NORTH-HOLLAND
AMSTERDAM 'NEW YORK 'OXFORD .TOKYO

TOOL INTEGRATION AND
DESIGN ENVIRONMENTS

Proceedings of the lFlP WG 10.2Workshop on
Tool lntegration and Design Environments
Paderborn, FRG, 26-27 Novem ber 1 987

edited by

FranzJ. RAMMIG
U n ive rsity of Pad e rb o rn
Paderborn, FRG

((

1988

NORTH,HOLLAND
AMSTERDAM .NEW YORK . OXFORD .TOKYO

