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Abstract.
Narrowly seen, this paper presents an on-line

si.gnature verifcation s),stem, based on 3D force pattcrns
and pen inclination angles, as recorded during signing.
The feature extraction mechanism is based on the well-
known elastlc matching technique. In contradiction to
previous work in the same area however, we emphasise
the importance of the final step in the process: the
discrimination based on the extracted features. We show
that by choosing the right discrimination approach we
are able to improve the quality of the entire verffication
process drastically. The techniques we compare for
discrtmination, however, are not specific to signature
verification, but should be considered carefully in every
process, where a classiJication decision is made out of a
set of parameters.

1.. Introduction.

The problem of proving a subject's identity is as old
as mankind itself. Just think about the use of a simple
key, a password etc. Within the area of identity
verification we denote two basic approaches: biometric
and non-biometric verifi cation.

Until now, non-biometric methods are most popular,
mainly because of their simplicity. The disadvantages of
this approach are obvious. The person whose identity is
to be verified has to do a considerable effort. He has to
remember a PIN-code or password, or to cÍury a
characteristic object with him. Furthermore, the ,,secrets"

that are used for identification can be easily stolen or
lost. Biometric identity verification on the contrary is
based on the use of physiological or behavioural
characteristics. As a consequence, the disadvantages
mentioned higher are no longer present, but the systems
are much more difficult to implement. An overview of

several biometric identity verification methods is
presented in [1].

In this papcr we deal with on-liue signature
yerification. This means that we use signals like pen-tip
position, velocity or acceleration, forces on the pen-tip,
pen inclination angles etc. to verify whether a person is
who he claims to be. A general overview of the field of
on-line signature verification is given in [2] and [3].

The organisation of this paper is based on the
different steps that should be taken when a signature is
classified. In section 2 we describe very briefly the
process of collecting and pre-processing the data used for
verification. Section 3 describes the feature extraction
process. Section 4 compares different discrimination
approaches. 4.1 describes the result of Sato's
discrimination approach t4). 4.2 describes the statistical
approach, while 4.3 focuses on Artificial Neural
Networks. General conclusions are drawn in section 5.

2. Data collection and pre-processing.

Our input-instrument, the SmartPenrM (Figure 1 and
[5]), looks like an ordinary pen. However, when a person
is writing, 5 different signals are registered. These are the
forces on the pen-tip in 3 directions, and the pen
inclination angles. As we are not interested in rotations
of the pen around its own axis, 2 angle signals instead of
3 are sufficient. All 5 signals are low-pass filtered with
cut-off-frequency 40 Hz. It is generally accepted (e.g.
[2]) that the bandwidrh of handwriting is about 20 Hz, so
the margin we use is safe. The resulting signals are
sampled at 100 Hz. As already mentioned, the orientation
of the pen in the signer's hand is not characteristic, but it
does influence the other signals, as those are measurèd
relative to the pen. We eliminate the effect of these pen-
rotations by redefining the co-ordinate system that is
used. The new reference axis's are chosen as the ones
with extreme energy contents.
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Flgure'l: The SmartPen.

3. Feature extraction.

In every approach to signature verification we can

recognise a feature extraction and a classification process'

Somótimes this separation is obvious, for instance when

using a puÍe statistical approach [7]. In other cases it carl

be very difficult to clearly separate the two stages, e'gj

when using neural nets to do verification [8]. In literature

two classes of verification approaches are described, the

parameter-based and the function-based approach' In the

parameter-based approach we don't need a complete

ieference signature in order to classify a new signature, so

typical paÍameteÍs are energies, durations etc' In the

function-based approach on the contrary, we do need a

reference. Characteristic parameters used here are for

instance conelation-coefficients. Since the main aim of
this paper is to emphasise the importance of the

classification process, we do not care very much about the

actual feature extraction. Instead, we use a cbmmon

function-based approach called dynamic time warping

@TVD. This technique was introduced in the signature

verification field in t4l. The aim of the algorithm is to

find a to some criterion optimal time-alignment between

the test (T) and reference (R) pattems to be compared' A

time-alignment P is denoted as:

p = c(0), c(1), c(2),... , c(K) (l)
pr = c(k) = (i(k[(k) Q)

I and j denote the i-tt/j-th sample in respectively R

and T. As described in [9] several obliged and optional

consftaints exist for the alignment, but these will not be

explained further here. Defining

d(pr)=d((ku(k))= lln-r,ll (3)

Ë w(k).d(P)
D(p)= er- (4)

à*t*l

we aÍe looking for the alignment P with D(P) minimal.

The weight vector w can in theory be used to stress the

importance of certain parts of a signature, but normally its

elements are determined only by the local shape of the

warping path t9l. The 2 features we use to classify are:

xpesl = D(P) (5)

xModon=.,àrlli-jll (6)

4. The discrimination process.

The purpose of the discrimination process is to

extract a binary (genuine/forgery) decision out of a

prèviously computed feature vector.

In the following sections we compare different

discrimination approaches. Sato's approach is included to

illustrate the importance of the classification scheme. In

the statisÍical approach we try to conshuct an optimal

(Bayes) classifier by estimating probability density

functions (PDF's) from the populations involved. Using

ne$ral nets, we assume the net will be able to learn how

to êombine the available features in an optimal way.

As a performance indicator we will use the Equal

Ertor Rate (EER). This is the enor-percentage that

occurs when False Acceptance Rate (FAR) and False

Rejection Rate (FRR) are equal. The databases we use

have been constructed as follows. 18 persons provided us

with 20 original signatures each. These signatures have

been registered in 3 sessions spread over 3 months. For

the consfiuction of the discriminant functions we use the

10 originals resulting from the first session. The

remaining 10 originals are used when testing the system

performance. As forgeries for a certain person we use the

genuine signatures produced by the other 17 participants.

An other group of 4l persons provided us with a set of 15

random forgeries each. This set is, when appropriate,

described as the "population". Since we are basically

comparing classification-methods, we do not care about

the rather poor quality of our forgeries.

4.1 Satots approachr.

The discriminant-function used by Sato (D506) looks

as follows:
Ds.r(6) =E'.n'r.E 0)
6 = [xro* xMo,ioo]' (8)

fI = E*ieindr(E'E') (9)

fI, and thus the classification performance, is

dependent on the reference selected. Since ideally ( = 0

rReading [4] one will notice that the author did not

use exactly the same parameters as we do. However, we

chose features with a similar statistical distribution.
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we choose the reference that minimises det(ll). The EER
using this approach is ll.l 7o.

4.2 Statistical approach.

From a statistical point of view the design of an
optimal classifier is easy, since we can obtain a
mathematical expression for the expected cost (C)
associated with a certain decision function.
c= K.ap,.Íp($oÉ+K.ap, Jp(g.d( (lo)

Rr Rr

The symbols have the following meaning:
Kr4: The cost for misclassifying a genuine/forged

signature.
aprl6 The a priori chance for a certain observation to

be an originaUforgery.
p*/((): The probability density function for the

gcnuine/forged signatures.

&4: The region where a certain feature vector is
considered as coming from a genuine./forged
signature.

Substituting Íp(().0Ë by t- jp(().d( one can
Rg RÍ

easily derive that the frontier between \ and R1 is
defined by:
p(€) _ K.ap'

P(É) 
: 

K"p, (11)

As we can not determine exact costs or a priori
chances, the only relevance of (11) to us is that it is
important to look at the value of:
p(Ë)

p(q) 02)

to make a decision.
First we take a look at Mahalanobis decision making,

which assumes a Gaussian probability distribution of the
parameters used. Afterwards we describe the more
general kemel approach.

4.2.1 Mahalanobis distances.
A very well known discriminant function is based on

the use of the Mahalanobis distance function. This vector
to cluster distance (Duomr-nui*) is defined as follows:
Dr,r*urunou.(6) = 1(-lu;'.Dt. (E-6r,) (13)

Ëp = Eo,ieinu,(6) (t+)
E = Eo,ieinar,((6-qil. (Ë-qr,)') (15)

Mahalanobis decision making is, when the right
offset is chosen, optimal on condition that p(l) is
constant, and pr(() is multivariate normal. The EER
using Dyo1o1uno66(() equals l.6%o. The evolution of FAR
as a function of FRR can be seen in Figure 2.
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Figure 2: FAR and FRR Íor diÍÍerent
classification approaches.

4.2.2 Kernel-approach.
Figure 3 contains a plot of a typical one-dimensional

Gaussinn PDF that has been constructed uut of the
original xyolloo-dêta for a given person. Clearly, the
Gaussian approximation is not very accurate.

0.25

0.05

o.2

0.15

0.1

J{

A

0
oooao60 Ë;ftóloEggBBB

x&uot

Figure 3: pDF-estimations.
Using the kemel approach we are able to perform a

more accurate estimation of one or both the pDFs used by
the Bayes-classifier. A complete description of the kemel
method can for example be found in tl0l. The key idea
behind the approach is to describe a pDF as a sum of
(kemel) functions, one for each observation point xi. In
theory, any type of function can be used as a kemel
function (k(x)). Our results are best with:

, (x-xr)2

k(x,x;; =1.s--É (16)
h

h can be chosen for optimal performance. Our
results are best with h equal to 3.stdo,ir1nu1.(x). Since we
assume xy61;sn tÍld xpslm aro independent, we can easily
construct the global distribution function pr(() out ofboth
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one-dimensional ones pg,ro*(XrorJ alrd pg,uorion(xuo6on) ês

follows:
p'(E) = Dn.rn-(xFor.).Pe,t"Iotion(xpÍotion) (17)
'"'-This 

method proáuces an EER of 0'4Vo' Figure 2

shows FAR as a function of FRR. The reason for the

good performance can be seen in Figure 3' The PDF

Ëonrtru"ted by using kemel functions looks like a much

more natural approximation of the real PDF than the

Gaussian one. 
- 

For instance, the right-skewness of the

original distribution is clearly present in the kemel PDF-

approximation.
So far, we have been approximating only pr(()'

assuming p(() constant. (12) stresses that information

about the-population of forgeries can be useful when

trying to irnp.on" classification. Using the kernel

uóprJu.ft to aiproximate both pr(() and p(()2, and (17) to

prifot. the actual classification, we obtain an EER of

b.37o. Cluttification results are once more visualised in

Figure 2.

4.3 Artificial neural networks (ANN)'

A general overview of ANN's can be found in [11]'

We use the most common ANN-classification approach: a

feedforward net using logsig activation functions ([ll])
and trained by backpropagation. Since we have only 2

features, we can easily use an augmented input space

[12], consisting of our 2 features and the 3 quadratic

ierÀs that can be constructed out of them' Results are

best when we use a single hidden layer with only 2

hidden neurons. In this case we have l'37o FRR' and

1.57o FAR.

5. Conclusion.

It is shown that the actual performance of a signature

verification system is highly dependent on the

discrimination process used. Several possible

discrimination techniques are evaluated' Best results are

obtained when the kernel approach is utilised to estimate

the real PDF for the class of original signatures' This is

because using the kernel approach we can approximate

this PDF much more accurately then when using for

instance a Gaussian approximation' The resulting PDF

simply has to be compared to a threshold' This reflects

ttreiact that using random forgeries to constÍuct p(€) is

not relevantly better than assuming p(É) constant' In

other words: a set of random signatures doesn't tell us

very much useful about the characteristics of the class of

t The kernel approximation of p(6) is computed

using the set of signatures previously described as the

"population".

forged signatures for a certain signer. This last remark is

confirmed by the observation that ANN's, which

normally need information about both classes of original

signatures and of forgeries do not result in a good system

performance at all.
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