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This paper degcribes the application of a practical
multi-level formal verification approach that is used
for the independent veriflcation of the results of a
high-level synthesis system by means oÍ SFG-Trocing.
SFG-hucing is a formal veriflcation methodology that
allowg to verify observational behavioral equivalence
between two ffnite state systems: one can be seên as
a speciffcation and the other as an implementation.
The two representations can be on a different level
of abstraction in space and in time. The methodology
makes use ofthe concept ofreference signals and three
value logic symbolic state space evaluation in order to
be able to partition the problem at hand in manage-
able pieces. A practical implementatíon of SFG-I)acing
has been realized for the veriflcation of the results of
a high level synthesis system from algorithmic speci-
ffcations down to the gate or transistor netlists. The
veriffcation is fully automatic and has been demon-
gtrated by the veriflcation of systems of 2SO'OOO tran-
sistors. Design bugs have been uncovered that were
previously not found using traditional simulation.
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The realization of complex systems has become design
lámiteil instead of technology limited. The challenge is
indeed to design electronic systems first time right. This
is required to avoid costly redesigns, and delays in market
introduction ofnew products. These economic reasons are
the drive behind research efforts to check the correctness
of designs with respect to their specifications. A well-
known illustration of the possible negative effects of design
that are not discovered in time is given by the well known
ttPentiumt'bug.

To achieve correctness of designs with respect to spec-
ifications, two aspects have to be envisioned. First the
design specifications have to be formalized. Second the
ilesign implementation has to realized in accorda^nce to
the specifications.

In the case automatic synthesis tools are being used,
it is also good practice to cross check the results of au-
tomatic synthesis tools with independent verification al-
gorithms. This is motivated by the high costs, and time
involved in processing iterations for integrated circuits.
This strengthens the confidence in the design correctness.

I. InrnooucrroN

A. Wby vefifr.cation?

The possibilities offered by the steadily increasing com-
plexities enabled by the VLSI technology have resulted
in the fact that more and more complex systems can be
build on integrated circuits.

Complex arithmetic algorithms as required by digital
signal processing applications can now be implemented in
real time. This has resulted in applications such as dig-
ital audio, speech processing, telecommunication, mobile
telephony (GSM), wireless communication systems, im-
age recognition systems, robot control, automotive con-
trol, efficient satellite communication and radar applica-
tions, digital television, ISDN, ATM, micromechanic and
mechatronic applications [17]. Most of these applications
have been enabled by the current complex integrated cir-
cuit technologies.

'research results sponsored in part by the ESPRIT 6018
CHARME Basic Research working group.

This of verification is also for a
long time in the t'correct by construction approacht' of
standa,rd cell or gate array layout from schematics spec-
ifications. After the layout design, a circuit extraction
and a netlist comparison is performed in order to raise
the confidence in the design correctness. This will fur-
ther avoid the overlooking of software bugs, or erroneous
manual interventions in desigas,

Tladitionally simulation (at multiple levels of design ab-
straction) is being used, a^nd is standard industrial prac-
tice, to verify the correctness of electronic designs before
they are produced. It is however very well known that
for even moderately sized circuits and systems it is not
feasible to try out all possible input excitations in these
simulations, due to the combinatorial explosion problem
in the number of patterns.

B. Apptoaches in Formal. Cottectness Vetification.

If one would use simulation for verification of a (con-
trolable a,nd observable) design with m inputs and n reg-
isters, a number of zn+n simulations with specific input
signal values should have to be performed, which is im-
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possible for every realistically sized design.
Instead of using specific values for performing simula-

tion, symbolic oolues can be used, to allow performing
simulations [10] for a more general number of signal val-
ues. Symbolic simulation on its own however does not
solve the problem of proving correctness of an implemen-
tation with respect to its higher level specification.

By a method based on Floyd's inductive assertions [16],
Darringer [1a] has proposed a method, where assertions
are added to the specifications, so that symbolic simula-
tion can be used to verify a number of execution paths in a
ha.rdwa,re implementation. This however requires the in-
troduction and definition of the appropriate assertions in
the design descriptions, in order to allow the appropriate
verifications.

For pipelined hardware, verification based on symbolic
logic simulation has been proposed by Bose and Fisher
[1].

Veriflcation of Boolean functionality. Good results
(especially at the lower levels of design abstractions) have
been reported and are commercially available. For the
verification of Boolean functionalities of gate level im-
plementations to structural RT level specifications, the
methods based on OBDD's (Ordered Binary Decision Di-
agrams) 14, 271have become a de facto sta^ndard. Ex-
tremely code optimized and efficient OBDD packages have
become available 127, 3, 23].

For the case where the implementation a,nd the spec-
ification are known to have the same encodings for the
state variables in the registers, the verification problem of
such sequential systems can be reduced to the verification
of a number of combinatorial logic functions by means of
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set of well chosen relerence signals of the specifying flow
graph and of the implementation. The global verification
problem is reduced to a manageable size by partitioning
the information in the global signal flow graph into acyclic
subgraphs and providing correspondence (mapping) func-
tions between the interface values (reference signals) in
the partitioned graph and the signal values at specific
cycle and clock phase times in the implementation. The
correctness of each individual subgraph is proven by mak-
ing use of a (switch-level) symbolic simulator that acts on
the actual switch level models of tra^nsistor circuits.

To give an indication of the information explosion from
high level behavioral (SFG) specifications down to the
implementation, consider the modem pulse shaper and
equalizer chip [29]. This system implements the fi.lter flow
graph that can be formally specified in the SILAGE lan-
guage in 70 lines of text. The chip implementation as syn-
thesized by CATHEDRAL-II [29] results in a micro coded
architecture with 3 ALU's of 14 bits and consists of more
than 31000 transistors. Together with the explosion in
terms of elements a^nd space, there is also an expansion of
the time concept: from sample periods at SFG level over
micro-code instruction cycles, clock phases down to clock
\ryave forms at the switch level. Notice that all the sig-
nals that appear in the SFG specification occur in some
form during specific times at specific places in the tran-
sistor implementation of the chip. Operations in the SFG
can however occur on the same hardware blocks such as

ALU's at different instances of time. This relationship
between algorithmic SFG signals and signals in space a^nd

time of the implementation forms the basis for the SFG
Tracing verifi cation methodology.

In this paper we present the application of the Sig-
OBDD'S

Veriffcation of sequential systems. By using sym-
bolic state space representation methods, it has become
possible to verifiy sequential systems a.nd also check ad-
herence to temporal logic formulae [13, 9]

Behavioral veriflcation by means of SFG-Tracing
In this section we present the method that is underlies
the automatic verification from the behavioral signal flow
graph specification down to lower implementation levels.
These can go down to the gate- or tra.nsistor switch level if
a suitable symbolic simulator is used. In line with the au-
tomatic verification algorithms, as much as possible the
structure available in the problem at hand is being ex-
ploited. The first application target has been the auto-
matic verification of high level synthesis results as ob-
tained by the CATHEDRAL silicon compilers [15]. The
methodology is however generally applicable.

The algorithms are intended to operate with as little
interaction from the user as possible. The underlying as-
sumption is that the flow graph specification is synthe-
sized while keeping track of mapping relationships of. a

nal Flow Tra SFG-I1ra for
of high level synthesis results in

CATHEDRAL. In line with the automatic verification al-
gorithms, as much as possible the structure available in
the problem at hand is being exploited. The first applica-
tion target in the resea.rch in IMEC is in the verification
of high level synthesis results as obtained by the CATHE-
DRAL silicon compilers [L5].

IL SFG-Tracing MernoDoI,ocy.

The goal of the verification process is to verify the be-
havioral input-output correctness of the lower level imple-
mentation with respect to the high level signal flow graph
specification. Of course it would be the most interesting
to perform the verifi.cation from a level as high as possi-
ble to an implementation as detailed as possible. In this
paper, we consider the SILAGE SFG level as the specifica-
tion, a^nd the transistor switch level as the representation.
Higher levels of the implementation could also be consid-
ered (such as gate level or sRT or bRT level). The same
techniques as indicated below would apply in each of these
cases. The switch level implementation is however pre-

I
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ferred, because it reflects the best the circuit implemen-
tation. Appropriate symbolic analysis techniques based
on Bryant's method [5, 6] for the switch level have been
developed and a,re supported in CAD tools [7, 21,26].

A. FIow Gtaph Specifrcation.

In what follows, we will describe the SFG-Tracing veri-
fication methodology. This methodology starts the verifi-
cation from the specifying signal flow graph topology (in
fact by "tracing" the specifying SFG). The methodology
can be used to verify lower level implementations. These
can be either at the bRI-, the sÏUI- or the switch level.
The lower the verification methodology is used in terms of
levels of design abstraction, the more practical useful the
methodology becomes. For the explanation of the method
it is irrelevant to which level we are considering the veri-
fication. As we believe it will be a feasible approach, the
more challenging verification up to the MOS switch level
is described here. This is also motivated by the existence
of excellent MOS symbolic analysis CAD tools [5, 6].

The symbolic simulatioT of a lower level implementa-
tion is always done over a number of cycles and clock
phases within the global SFG sample period.

For the SFG-tracing, two aspects have to be considered.
Thefirst consists ofthe verification ofthe initialization se-

qaence, and the second aspect consists of the verification
of. the steailg state behoaior. The initialization sequence is

used to bring the implemented system in a known state.
Sta^rting from that known state, cycles and clock phases

ca,n be defined, which correspond to the SFG level sam-
ple periods. The initialization sequence consists of the
sequence following for example the reset pulse. The sym-
bolic simulator will have to be started from the initial-
ization sequence in order to be able to bring the imple-
mented system in a known state. The SFG specffication
also contains initialization information (initial values at
SFG level registers). The verification will consist of two
phases: the initialization and the steady state. Although
similar techniques can be used for both phases, this paper
will concentrate further on the verification of the steady
state behavior.

As mentioned before, behavioral system level specifica-
tions at the SFG level only specify the algorithmic depen-
dencies of variables, but not how the algorithm is imple-
mented in actual ha,rdware.

In this paper, we consider the SILAGE language [22].
In order to use the SPG-Tracing algorithms, only the ba-
sic signal flow graph semantics of SILAGE are important.
SILAGE, as an applicative language, allows for function
abstraction, the use of manifest firnctions [22] and vari-
ables. The commands included for the C preprocessor
can be removed by simple substitution, the manifest vari-
ables can be computed at compile time. The user defined
functions can be expanded in terms of primitive functions
(built-in operators such as shift, add, subtract, multiply
etc.).

For the conditionals in the SILAGE description, one

could either build poÍft, conilitions or expand the condi-
tions in the flow graph representation.

Path conditions as introduced in [14] indicate the logical
conditions under which specific constructs (nodes in the
flow graph) could be reached. These path conditions a,re

Boolean expressions describing the condition of the signals
to be in that part of the signal flow graph or code.

The conditionals in the SILAGE description can also be
expa,nded to all of the nodes that are affected by it. This
results in extra conditional nodes in the expanded signal

flow graph. It has the disadva^ntage of loosing the insight
in the structure of the conditionals on SILAGE descrip-
tions, but it has the advantage that the specification ca,n

be represented completely as a flow graph.
'We assume that all of these higher order features of

SILAGE have been removed at compile time, and that
the system is descibed in the basic SILAGE signal flow
graph semantics.

B. Basic SILAGE SiCnaJ FIow Gmph Semantics.

The basic SILAGE signal flow graph semantics are

modeled by a graph g(V,E).

The set of vertices V of this signal flow graph f are

defined by vertices u; €. V corresponding to the primitive
operations in SILAGE. Examples are: arithmetic opera-
tions (addition, subtraction, multiplication...), shift, logi-
cal operations and conditionals.

The set of edges is .E is defined by edges ei €. E,
where each ej corresponds to a signal in the SILAGE flow
graph. In SILAGE signals are defined as one-sided infinite
streams, characterized by a specific sampling rate.

Two functions
Inpu,ts: V -+ .E* and
Outputa:V '-+ E*

ca^n be defined:
Inputa(u;) = {e*,e1a1 , ...ep} and
Output s (a 1) = {e 1, e ;",1, ...e n}

which describe the inputs and outputs of operators in
SILAGE. In SILAGE only one output is used per opera-
tor.

To each edge ei corresponds a SILAGE signal,, lhat
is modeled as a stream. However at specific moments
in the algorithm time t"1n, individual element values of
the stream can be considered ei(t"ís). The signals can
be words representing numeric binary values of a specific
word length tl"r. The signal consisting of a binary word
ca,n be represented as eill..w"rl. It is assumed that in-
dividual bits in signals representing binary values are or-
dered from most significant bit (MSB) (index L) to the
least significant bit (LSB) (indexw"i).The k'th individ-
ual bit of the signal'ei is represented as ei[&].
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Bf Reference signals and, Mapping functions.

ln SFG-llacing we make the following assumptions:

1. There exist a number nasy of reference sígnals e, e
Ref Si,gnala(g(V,E)) corresponding to edges in the
SFG algorithm specification and signals at specific
(cycle and clock) times in the implementation. The
specification SFG is implemented in hardwa.re main-
taining the same behavioral relationships for these
reference signals.

For all reference signals e, € ReÍSignals(8(V,E))
the signals en" in the specification and. e,í in the im-
plementation can be defined:

o The reference eignals in the SFG specification
er" (t") have the following semantics in terms of
Boolean bit words:

e"'lk"l(t") e B (1)

for all bits k" e {1..w"} in the SFG signal word
and for a specific sample time Ír. B is the set of
Booleans. Often at the SFG level, the individuat
bits in signal words are not considered.

o The reference signals in the implementation a^re

characterized by:

e"'lk;l(ta,) e B (2)

for individual bits with index k; € {1..u,} at
specific implementation times Í;1,. The index &;

of Í;1, indicates that each bit of a reference sig-
nal has to be considered at a specific cycle and
clock phase individually. This is for example al-
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3. All edges and vertices in 9(V,.8) are reachable via
directed paths starting at the edges corresponding to
reference signals.

4. The reference signal pa,rtitions the gtaph Q(V,E)
such that the subgraphs a,re acyclic.

The most essential form of reference signals would be
the input and the output to the algorithm to be imple-
mented in hardware. The verification effort and complex-
ity can be reduced if more reference signals a.re available.

For the reference signals it is required that mapping re-
lations are available, which state the relationship between
reference signals in the specification and in the imple-
mentation. This could be in the form of a certain word
at a specific sample time in the SFG level begin imple-
mented in terms of bits in specific registers (at specific
tirne phases) at the lower level implementation. Most of
the relationships will be simple correspondences of the
logic values in specification and implementation. Other
relationships could include a specific logic function to con-
vert the logic representation in the speciffcation into the
logic representation in the implementation or vice versa.
The simplest form of this are signals in the specification
that are identical or inverted in the implementation. How-
ever, more complex relationships can be envisioned: e.g.
an integer word at the SFG level represented in the im-
plementation in carry save technique.

The third condition is required so that the SFG Tracing
algorithm can use a directed graph traversal algorithm to
reach all of the parts in the specification SFG in order to
do the comparison.

The requirement that the global SFG is partitioned by
providing reference signals and mapping functions is not
that hard a requirement in order to be able to perform

SFG specifications.

2. There exist a set of. mopping fanctiom f that de-
scribe the behavioral comespondence in space a^nd

time of reference signals in the SFG algorithm specifi-
cation with respect to the lower level implementation
at the specific implementation times.

F t SFG-sig-aemant --- Switch-sig-semant (3)

or:

L. The SFG level representation of a design contains
much less detail than actual implementations. To
illustrate this, compare the high level SILAGE de-
scription in [1 1] of one page, to the ultimate hardware
implementation, consisting of 3L6L4 transistors.

2. When using this methodology to verify results from
high level synthesis (as is the case in our applica-
tion), the required information of reference signals
(and mapping functions) is generated by the synthe-
sis tools as well. The correspondence between signals
at the SILAGE level and lower levels of implementa-
tion is already maintained for most sigrrals in a num-
ber of cross reference lists and naming conventions
used in the CATHEDRAL-II silicon compiler [29].
If errors would be introduced in the tra,nslation of
the reference signals and/or mapping functions, this
would also manifest itself in errors in the SFG tracing
verification.

3. For ma,nual designs, accurate SFG level descriptions
will have to be made and appropriate reference sig-

F : B-i --+ B-'

where 6 is the set of Boolean values.

The function .F is defined as:

(4)

en" (t") : rk,iltl(tn),..e,ilw;l(t;-.11 (5)

This is a vector assignment over the individual bits
of the reference signal in the SFG.
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nals will have to be identiffed in order to be able to
perform the SFG Thacing verification. The informa-
tion that has to be supplied by a designer is in any
case still much less than what is required in theorem
prover based methods 124,261.

C. SFG-Tbacing strategy: fuom SFG fo lower design ab-
sfuaction levels.

A straigStforward way to compare the SFG specifica-
tion to an implementation would be the expansion of the
specification and implementation into predicate logic for-
mulas at the lowest level of representation of design ab-

straction, which would then have to be verified by tau-
tology checking. Except for very trivial design examples,
such an approach will sufer major complexity problems

and will be unfeasible.
In the ^9FG- hacing strategy, the goal is to fully exploit

the structure of the SFG level specification in order to
guide the lower level verification process. In SFG-Tracing
the specifying signal flow graph (SFG) is traversed over
all of its vertices and all of its nodes.

Depending on the design abstraction level of the im-
plementation (switch, sRT or bnf), more detailed infor-
mation with respect to reference signals is required when
compa,ring to lower level implementations. In the most
general case, with the comparison to the switch level, it
is assumed that at least one signal reference edge in the
SFG is provided per loop in the SFG. This will correspond
normally to the algorithmic registers at the SFG level.

Algorithms to determine the strongly connected compo-
nents in a directed graph, and consequently determining
the directed loops have been published in [28]. For the ap-

plication of the modem filter [29], this would mean that
the signals in the z-l delay blocks have to be provided
as reference signals and that the mapping relations would
indicate how these reference signals are implemented at
the lower (switch) level in terms of the specific bits at
specific cycles and clock phases.

'When breaking the directed loops in the z-r blocks
iÍr [29] we end up with 12 reference signals consisting of
the 2 input signals and 10 signals corresponding to DSP
registers. Due to the fact that ca.nonical signed digit rep-
resentations are used for the representation of the coef-

ficients in the filter, no full multiplications a,re needed.

They a,re implemented by a few add/subtract functions.
In this case, the verification can probably often be done

with tautology checking on the output reference signals
for each SFG subgraph. For the application in [29] further
reference signals (such as in between biquadratic sections
and after multipliers) would ease the verification process.

Novel representations such as binary moment diagrams

[8] can be used here.
Due to the choice of reference signal edges, such that

they can break all directed loops in the specifying SFG,
the SFG ca,n be reformulated as a directed acyclic graph,
when the edges corresponding to the loop edges are

not taken into account. The operations correspond-
ing to the vertices o that have reference signal edges

ei e Ref Signals as inputs, it holds that: Inputs(u) c
Refaignals. This means that the operator correspond-
ing to the vertex in the SFG ca,n be evaluated symbol-
ically and matched against the result in the implemen-

tation. This matching allows to proceed in the further
SFG-Tbacing algorithm, by matching edges furtheron in
the SFG.

D. Signal Flow Gtaph pafiitioning.

The choice of appropriate reference signals and map-
ping tunctions allows that SFG gtaph 9(V,E) is parti
tioned into a signal flow graph PSFG (Partitioned Signal
Flow Graph) consisting of a set of disjoint and acyclic
subgraphs gp(Vp,E). Each subgraph gp(Up,Ep) consists
of a cut set of vertices of Q(V,E) where the edges between
vertices in the cut set and vertices out of the cutset corre-

spond to the reference signals, related to that subgraph.

E. Description of the SFG-l)acing method.

The reference signals allow a subdivision of the global
SFG in a number of subgraphs in the PSFG. For each

subgraph in the PSFG a verification of the implication
of the specification by the implementation is verified by
performing a symbolic simulation of the implementation'

SFG-Tracingo

{
read-ref -signals -and-mappingJunct ( ) ;

init -synbol"ic-s inulat ion ( ) ;
PSFG = PartitionJFGo;
for each subgraph in the PSFG

{
for inpl-tin€ = start-tine to end-tine;

{
synb-initialize jnpl-signaL (inPl-t ine) ;

synboJ.ic-siuulate-st ep ( inPl-t ine ) ;

)
synb-coupare-signal s ( ) ;

)
)

In read-ref-signals-and-mapping-funct() ; the ref-

erence signals and the mapping functions are read. Mak-
ing use of this information the partitioning of the signal

flow graph is performed in Partition-SFG. Hereafter for
each subgraph the verification is done by a symbolic simu-
lation . Since reference signals in the implementation can
occur in different cycles and clock phases, (within a global
SFG clock period of the system) the values of implementa-
tion signals have to be initialized in the symbolic simula-
tion at the appropriate implementation times. Therefore
the symbolic simulation has to be done from start-tine

-110-



to end-tine, such that all the signals that a.re input to the
PSFG subgraph can be initialized and that after that, all
signals at the output of the PSFG subgraph can be eval-
uated in the appropriate cycle time and clock phases.

In the symbolic simulation, the reference signals a.nd
the signals dependent on them a,re evaluated symbolically,
External signals that are always recurring during each
global SFG time period will have specific values. This
is the case for external clock signals, that are used for
the specific values in the respective phases. Other signals
like reset signals and signals to put the circuit in specific
constant values. Doing such a symbolic simulation will
result in specific (Boolean 1,0) signals for the control cir-
cuits, and symbolic signals for the other circuitry. Most
of the time 'x'signals are used in the symbolic simulation.
Only for those signals implementing the operations of the
subgraph of the PSFG at hand, symbolic values will be
computed.

The symbolic simulation as described here does an un-
folding of the specific hardware implementation at hand,
to end up with a (rnaximally parallel) representation that
corresponds to the specifying subgraph in the SFG. In
several implementations such as in micro-program con-
trolled data paths as in CATHEDRAL-tr, several of the
operations in the SFG specification a,re mapped onto the
same hardwa,re operators, such as for exaÍnple the same
ALU. The controller ta^kes ca,re of the sequencing in time
of the hardware operations that have to be performed on
the sarre hardwa,re operator (e.g. the same ALU). By do-
ing symbolic simulation, the effect of the sequencing by
the controller is removed, and the ha,rdware operators can
be seen as unfolded for the specific operations that they
have to perform.

By this symbolic simulation, the micro-code controller
will normally operate *ith instantiated signal values ('1',
'0', 'x') instead of symbolic values in the execution of cy-
cles and clock phases. Theue inul,arrtiated sigrral values
can directly be used (and reduced) in the symbolic sim-
ulations. By this fact of unfolding (or unrolling) the al-
gorithm again to its maximal parallel representation the
effect of the controller, and its specific encodings can be
tsimulated away'.

After the symbolic simulation, symbolic expressions are
obtained for the output signals corresponding to the sub-
graph under consideration. Notice that these symbolic
output signals have to be taken at the appropriate cycle
and clock phase times as defined by the reference signals.
As already explained these output signals correspond to
the maximally pa,rallel representation as in the SFG spec-
ification, and the correctness has to be verified by com-
parison.

lFbom the semantic definitions of the primitive oper-
ations in the specifying SFG, the mapping functions for
the reference signals (that form the interface for the sub-
graph at hand), a.nd the results of the symbolic simulation
a compa,rison is done in synb-conpare-signals.
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lFlom the semantics of the primitive operators in the
subgraph ofthe PSFG under consideration, the input out-
put behavior at the SFG level for the subgraph can be
derived. This is characterized by the function:

E"1o : B* ---+ B* (6)

This function provides the behavioral relationship as
extracted from the SFG semantics between reference sig-
nals at the input €,r.' and at the output en".r' of the
subgraph under consideration:

ênouta = E"fc("rr-") (7)

In the same way the input-output behavior function as
derived by the symbolic sirnulation of the implementation
can be defined:

E;^pr t B* '-- B' (8)

This function provides the relationship as obtained by
the symbolic simulation between reference signals at the
input e"r"i and at the output er".ri ofthe subgraph under
consideration:

enouri : E;*il(err-i) (9)

The mapping functions for the reference signals at the
inputs and outputs of the subgraph under consideration
provide the following relationships:

enour" = fr"rr("r"."i) (10)

and:

erio : frr-("rr^t) (11)

ltrtom the above relationships, the subgraph behavioral
functions and the mapping functions, the following condi-
tion for the correct behavioral verification ofthe subgraph
under consideration can be derived:

E"yo(F,,^(e,,"n)) = fn".,(Snil(e,r^i)) (12)

The verification will normally be done by tautology
checking, based on efficient methods such as OBBD's

l4r 27l. In this comparison, one can however also make use

of the information available from the signal flow graph,
such as the fact that at the SFG level signals a,re repre-
senting bit-words. Optimized verification algorithms and
vector-based reduction rules such as presented by Eveking

[2] can be used to improve the cpu-time efficiency of the
verification.

A step by step example of the SfG- hocing methodol-
ogy is given in [12].
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III. VourtcATIoN oF EIcE LEVEL SYNTITESIS

The methodology of SFG-Tiacing has been included
in the CATHEDRAL synthesis environment [15] a.s in-
dicated in [tt, 18, 19, 20].

Sta^rting from a SILAGE description the basic SFG is
derived. This is partitioned into the PSFG in such a way
that it results in manageable pieces for further verifica-
tion. The interface signals (reference signals) for the sub-

graphs in the PSFG a"re provided to the synthesis envi-
ronment, to ma,ke sure that the corresponding signals in
the layout for the switch level a,nd the mopping lunctions
can be generated. The synthesis environment provides

the cycles in the microcode that correspond to the global
SFG time period, because this is needed to perform the
appropriate symbolic simulation sequences.

Starting from the PSFG, the reference signals and the
correspondence functions, the SFG-Tbacing is performed
by the "Symbolic Simulation Manager" called SfgTracer,
that prepares the simulation commands for the symbolic
simulator at hand. After individual symbolic simulations
on subgraphs, the results are verified for correctness. For
the symbolic simulation the COSMOS program [7] is used.

This works on the tra^nsistor as it is obtained from the
layout circuit extraction. Also gate netlists can be pro-
vided via the lgc format [7]. I" case of inconsistencies for
specific subgraphs of the PSFG, the Symbolic Simulation
Manager generates the appropriate error messages, to in-
dicate where the error occurs. Ït could also occur that
the subgraph under consideration is too large to be able
to perform the verification. In this case the subgraph
has to be pa,rtitioned further. This can be achieved by
the user $ving hints on SFG nodes, where the SFG has

to be further partitioned in order to give rise to smaller
subgraphs.

The specific treatment of loop constructs in the specifi-
cations and the use of induction in the formal verification
is presented in [19], while the posibilities for pa,rallel exe-

cution a,re discussed in [201.

IV. PucrIcAL REsuLTs

The SFG-Trocing verification methodology has been
applied successfully [18, L9, 20] to the verification from
the layout extracted transistor netlist in comparison with
the high level specifications for a number of designs as

synthesized by CATHEDRAL-II as summarized in table
I.

230,000
L2,067
6,526

38
114,686

1,400

8,000 m
680,000

2,200
1460

45,000
3,246
1,394

33
1,3L0

79
2,L42 s

48,375
256
30

31,6L4
1,859
852

36

19

29

567 s
4,792

68
92

7,L08
580

230

32

.503
20

22s
640
L4

15

f MOS tr.
S st.cells

ff flipflops

f uniq.subn.

f mach.cyc.

f sim. cyc.

f cpu time
f scr.line

f partit.
S speclines

vocoechorec3countdesign

Toble I. Besults of aerification of transistor implemen-
tation with reipect to high letel specif'cation for & nurn-
ber of ilesigns sgnthesizeil bg CATEEDilAL-fi on o DEC
3100.

count-g is an application that has shile-loops and
conditional statements in its specification. rec3-s is the
modem chip [29] implemented with 3 ALU's in the data-
paths. echo is an echo canceler application and voco is
an 800 bit/sec vocoder application. The cpu times (DEC
3L00) include symbolic simulation and the checking by
means of OBDD's [3] of the proof obligations per rnem-

ber of the pa,rtition.

V. Concr,usloNs.

S?G-lTacing is a general formal verification method-
ology that allows the symbolic verification between be-

havioral specifications a,nd lower levels of implementation
(gate and SPICE transistor level). This allows to implic-
itly partition behaviors (but not structure!) at the low
level. The methodology partitions the data,flow graph and

systematically traces its behavior symbotcally. To cope

with complexities on realistic design applications a three
value logic symbolic evaluation is used [7]. The control
flow in the specification is dealt with by an enumeration
of its state transitions. As such SFG-Tracing expoits the

duality of control flow and data flow as it occurs in many
systems in the sarne way as this is done in behavioral
synthesis.

In this paper we presented the application of the S-EG-

Tracing methodology for the verification of high level syn-
thesis results as it has been implemented arround the
Cathedral synthesis program. The practicality has been

demonstrated by la,rge design examples (230,000 transis-
tors).

SFG-lhacing has however much larger potential for ap-

plicability to be used also for manual designs. Novel sym-

bolic representation and manipulation methods such as

binary moment diagrams (BMD's) will extend the prac-
tical usefulness of the method.

-rtz-
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