h—

HIERARCHICAL TIMING VIEW GENERATION
INCLUDING ACCURATE MODELING
FOR FALSE PATHS.”

P. Das, P. Johannes, L. Claesen, H. De Man t
IMEC, Kapeldreef 75, B-3030 Leuven, Belgium
Phone: +32-16-281220

Abstract

This paper presents a new hierarchical tim-
ing verification method consisting of the elimi-
nation of local logical incompatibilities and giv-
ing accurate and efficient solutions of the false
path problem. Experimental results indicate
that, with this new hierarchical method, the
CPU-times decrease up to 2 orders of magni-
tude for complex examples.

1 Previous approaches for solving
the false path problem

Traditional timing verifiers like Crystal [1] and LEADOUT [2]
use a PERT-like algorithm for searching the longest path in
a circuit. These methods work correct and efficient as long
as there are no false paths in the circuit. But, because they
do not take into account the logical incompatibilities, this can
result in a large overestimation when there are false paths in
the circuit. E.g. for a 24-bit bypass ALU, PERT gives an
overestimation of more than 100%,

A first attempt for solving the false path problem is ex-
plained in [3]. The false paths are eliminated in a post-
processing step. With a modified PERT-algorithm, the n
longest paths are calculated. Those paths, sorted by de-
creasing length, are tested for sensitizability using the D-
algorithm [5] on the logic model of the circuit. Unfortunately,
the number of false paths to be eliminated before the first sen-
sitizable path is found is fairly large and because this number
cannot be predicted, the choice of n is very difficuit.

That problem has been solved in [4] by eliminating the
false paths as a part of the search and only the longest sen-
sitizable path is presented to the user. This method gives
accurate results, but has the drawback that the CPU-times
explode for large circuits with many false paths. This algo-
rithm is explained in section 2.

The new method gives a solution for this problem by using
the hierarchy in the circuit. The method will be explained in
section 3. Experimental results will be given in section 4.

*Work sponsored by the EC under the ESPRIT-1058 project.
! Professor at Kath. Univ. Leuven.

2 The Longest Sensitizable Path
(LSP) algorithm

As in other.timing verifiers, the timing behavior of the circuit
is modeled by a weighted directed graph. The edges in the
graph represent the propagation of a signal from one node to
another. The weight of the edge is equal to the propagation
delay through the circuitry between the two nodes. Associ-
ated with each edge are a number of logical conditions for
the propagation of the signal[4]. During the search for the
longest sensitizable path, before adding a new edge to the
path, it is necessary to check that the propagation conditions
are compatible with the propagation conditions of all the other
edges already in the path. Those conditions must not only
be checked locally, but they must be propagated through the
logical model of the circuit to all the related nodes.

The problem is thus equivalent to searching the longest
path in a conditional graph. A depth first search is used, with
following properties :

The search is guided by a low cost heuristic, namely PERT.
The search' space is reduced by pruning : if the longest pert-
path through a node is shorter than the longest sensitizable
path already found, then the subgraph of that node must not
be searched because the longest sensitizable path through
that node can never be longer than the path already found.

With respect to the CPU-times of this longest sensitizable
path algorithm, the following remarks can be made :

e When the longest PERT-path is not a false path, the

algorithm is almost as fast as PERT.

o For small circuits where the number of paths to check
is small, the CPU-times are of course also manageable.

o But for large, "real life” circuits with many false paths,
the CPU-times explode and it takes too long before the
longest path is found. For a 24-bit ALU with bypass
circuitry, it takes more than one CPU-hour to search
the longest sensitizable path[4).

The presented hierarchical method reduces the CPU-times for
those "real life” circuits with many false paths by making use
of the other two properties. That is described in the following
section.

13.3.1

IEEE 1989 CUSTOM INTEGRATED CIRCUITS CONFERENCE

CH2671-6/89/0000-0073 $1.00 © 1989 IEEE

Figure 1: A fulladder circuit

3 The new hierarchical method

3.1 Motivation for this new method

By looking at the occurrences of false paths in the circuit, it
can be observed that most false paths occur due to one of
the following two reasons ;

o false paths due to local logical incompatibilities.

e circuits where the designer intended to create false paths
by adding bypass circuitry for speeding up the global
circuit.

Examples of local logical incompatibilities can be found in the
fulladder circuit of figure 1. Figure 2 gives the event graph
and the logical conditions of the carry generation part of this
fulladder cell. On this graph can be seen that the logical
conditions of some paths are incompatible and these paths
are false paths.

An example of a bypass circuit is given in the 16-bit ALU of
figure 3. The longest PERT-path through the combination of
the 12-bit ALU and 16-bit bypass ALU is the carry ripple path
of the 16-bit bypass ALU. However, the longest sensitizable
path is the carry ripple path of the 12-bit ALU because the
carry ripple path of the 16-bit ALU is false due to the bypass
circuitry.

If all these local logical incompatibilities could be elim-
inated, there would remain less false paths and this would
speedup the LSP-algorithm. This can be done by using the

Figure 2: The event graph of the carry generation part of
the fulladder

hierarchy of the circuit.

The new hierarchical method can be summarized as fol-
lows :
Generate the timing views for all the basic cells and for the
bypass circuitries together with the bypassed cells.
Compose these timing views to become an event graph for
the whole circust,
Run the LSP-algorithm on this cvent graph to find the
longest senasitizable path in the circuit,

3.2 Timing view generation

The timing view generation method consist of 2 new graph
manipulation techniques : the elimination of local logical in-
compatibilities and a graph reduction by event elimination.

Elimination of local logical incompatibilities.
From the circuit description, the logical functions in the circuit
are derived with DIALOG[6]. Also the event graph[2] of the
circuit is set up. An event corresponds either to a falling or a
rising transition on an electrical node in the circuit, Fach edge
in the graph, the causality relationship between two events,
has a corresponding delay, calculated with a Horowitz type
of RC-models(7], and a corresponding set of logical propaga-
tion conditions for signal propagation. The total graph is a
combined logical and event graph.

False paths can occur in the graph and have to be elimi-
nated. Out of the old event graph, a new event graph without
false paths has to be generated. This can be done in several
ways [8][9]:

13.3.2

!

Path enumeration : All the paths are enumerated and the
paths with logical incompatibilities are deleted. This method
is very easy and would work, but is not efficient because the

memory requirements are too large.

Path enumeration with optimal compaction : Take as much
events as possible together so that a minimal graph results.

This method is not usefull because it would take to much

CPU-time to find the optimal solution.

The SLOCOP-method : A method in between the two previ-
ous methods is developed. A depth first search is applied with

checking for logical incompatibilities as in the LSP algorithm.
During the forward search, the path is created and checked
for sensitizability. While backtracking, if a sensitizable path is

found, the following algorithm is used for compaction : Two
events in the graph are taken together if they refer to the
same circuil node, have the same transition, and have the

same subgraph.

Algorithm :

1. Initialize : ev = rootevent;
2. while (3 NOT INVESTIGATED out-edge of ev) {
/* FORWARD */ ’
Take edge and mark it INVESTIGATED;
if (edge compatible with current path) {
Push current state on stack;
Add edge to current path;
ev = out-event of edge;
i
}
3. /* BACKWARD */
if (ev == rootevent) exit;
Try to combine ev with other events;
Pop previous state from stack;
go to 2.

This results in a graph without logical incompatibilities
where some events have been duplicated. The event graph in
figure 2 of the fulladder circuit in figure 1 becomes after elim-
ination of the logical incompatibilities the graph in figure 4.

Graph reduction by event elimination.

As described in the previous section, the number of events has
increased due to the elimination of logical incompatibilities. In
this section, a method is described to compensate this effect
by event elimination in a post processing step.

If an event is eliminated, all the in-edges and all the out-
edges of that event are replaced by edges from all the in-events
of the eliminated event to all the out-events of the eliminated
event. The resulting delay of a created edge is the sum of
the delays of the two replaced edges and the resulting logical
propagation conditions are the conjunction of the two replaced

edges.
Because the events are eliminated in a post processing
step, the CPU-time required by the method must be very low

,_
[2)
T
[]
L

=
o

)

I
i

4

&

il

=
Mo
£5)

; 8

P

Si=int

v,
)

Figure 3: A 12-bit ALU without bypass and a 16-bit bypass
ALU

12 T— e

12) — 26=1
——

—._______N-‘_‘_-‘-h- --F'//_,""
%0 __—
.--"'/ .
19 | =rer— 141 —— 5g |
7o/
/,-" H:,141 —_ . 261
[26=0]
19 c:zag'@'_'_'_"_ﬂ_— /,,"’/12
17= f ?h_:14l‘ —_ 26 !-"/

/ ié=1,19=o
[/ D14l

P26t

Figure §: The event graph with logical incompatibilities
eliminated

13.3.3

and a very simple algorithm has to be used. The following
simple criterion for elimination is used : eliminate an event
if the number of created edges is smaller than the number
of replaced edges. In other words, eliminate an event if the
sum of the in-edges and out-edges of the event is larger than
their product.

3.3 The hierarchical composition

The timing views can be hierarchically composed and an event
graph for the higher level cell is generated. This event graph
has less (or none) false paths because all the local logical
incompatibilities are eliminated during the timing view genei-
ation.

The LSP-algorithm can run on this event graph and the
required CPU-times will be much lower than running it di-
rectly on the whole flat circuit because all the local logical
incompatibilities are eliminated. In many circuits there will

be no false paths any more in the hierarchically composed

event graph.

4 Experimental results

In table 1 the results of this new method are given for Mead
and Conway type ALU’s with a different number of bit slices.
Alul2 has no false paths and there is of course no improve-
ment with the new method. For the alu's with 14 bit slices
or more, each 4 bit slices in the carry ripple chain, a bypass
circuitry is included. The bypass circuitry creates false paths
and as can be seen in table 1, the CPU-times required by the
longest sensitizable path algorithm (LSP).increase rapidly.

circuit | LSP | Hierarchical | longest |

: i prep. analysis I path

| CPU-sec | CPU-sec | CPU-sec | nsec
alul2 | 0.6 [6.54¢-08
aluld [760 | 6.0 0.5 | 5.59¢-08
alul6 1 1070 f 6.0 0.6 ! 5.83e-08
alul8 | 2264 6.0 0.7 | 5.83e-08
alu20 | 2275 | 6.0 0.8 | 6.12¢-08
alu22 | 3280 | 6.0 0.9 | 6.12e-08
alu24 4020 | 6.0 0.9 | 6.37¢-08

Table 1: CPU-times (on an Apollo 9500) of the new hierar-
chical method (preprocessing + analysis) compared with the
flat Longest Senasitizable Path method.

The new hierarchical method consist of 2 steps. First, a
timing view has to be generated for 4 carry ripple cells to-
gether with the bypass circuitry. The logical incompatibilities
in the bypass block are then eliminated. The CPU-times to
generate this timing view is indicated as the preprocessing
part of the new hierarchical method in table 1.

Second, these timing views are composed and results in
an event graph for the whole ALU. The LSP-algorithm can

run on this graph and the CPU-times are decreased signifi-
cantly as can be seen in table 1. E.g. for the 24-bit bypass
ALU the CPU-time is reduced from more than one CPU-hour
to 16 CPU-seconds, which is a reduction of two orders of
magnitude.

5 Conclusions

A new hierarchical method for efficient solving the false path
problem, is presented. In a preprocessing step, all the local
and the user intended logical incompatibilities are eliminated
by generating timing views for these basic cells. These tim-
ing views are hierarchically composed and there remain less
(or none) logical incompatibilities. Therefore, the CPU-times
required by the longest sensitizable path algorithm are much
lower and for complex examples, that can be a reduction of
two orders of magnitude.

6 References

[1] John K. Ousterhout, Crystal: a Timing Analyser for
nMOS VLSI circuits, Proc. Third Caltech VLS| Conf.,
1983, pp. 58-69.

{2] Thomas G. Szymanski, LEADOUT: A Static Timing
Analyser of MOS Circuits, Proc. IEEE ICCAD '86, Nov.
1986, pp. 130-133.

[3] E. Vanden Meersch, L. Claesen, H. De Man, SLOCOP:
a Timing Verification Tool for Synchronous CMOS
logic, ESSCIRC '86, pp. 205-207.

[4]). Benkoski, E. Vanden Meersch, L. Claesen, H. De Man,
Efficient Algorithms for Solving the False Path Prob-
lem in Timing Verifiers, Proc. IEEE ICCAD ’87, Nov.
1986.

[6] J. P. Roth, Diagnosis of automata failures: A celculus
and a new method, IBM J. Res. Develop., Oct 1966, pp
278-281.

[6] 1. Bolsens, W. De Rammelaere, L. Claesen, H. De Man,
Electrical Verification Using Rule Based Programming
and Symbolic Analysis, IFIP-workshop: Knowledge
based systems for test and diagnosis, Grenoble, Septem-
ber 1988.

[7] M. A. Horowitz, Timing Models for MOS circuits, De-
partment of Electrical Engeneering, Stanford University,
Stanford CA94305, Tech. report No. SEL83-003, Dec.
1983.

[8] J.P. Schupp, STIVITS: a high performance timing ver-
ification system for VLSI-chips based on compiled code
generation, Engineering thesis Kath. Univ. Leuven Bel-
gium, July 1988 (in Dutch).

{9] L. Claesen, J.P. Schupp, H. De Man, Accelerated Sensi-
tizable Path Algorithms for Timing Verification based
on Code Generation, Proc. IEEE ISCAS-89, May 9-11,
1989, Portland Oregon.

13.3.4

T e L e e T e e e e T S e T

