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Abstract

In this paper a new method is presented to be used for ei-
ther guided synthesis or formal correctness verification of param-
eterized digital hardware modules. It starts from a high level
parameterized description of the module, which is used as the
specification. The method is based on the concept of correctness
preserving transformations. These transformations are described
in a formal way by means of transformation descriptions, It ends
at a lower level parameterized structure description of the imple-
mentation. Instead of operating on a derived formalization as
done in other approaches, direct mampulations are done on an
existing HDL, that emphasizes a strict separation between pa-
rameterized structure description and behavior description. The
concepts have been applied to real VLSI design vehicles such as a
pipelined and parameterized multiplier accumulator module and
a systolic implementation of an FIR filter. The methods presented
here are amenable for implementation in CAD tools.

1 The Problem of Design Correctness.

Current capabilities of VLSI technology allow that larger and
larger systems are being integrated on one chip. Due to this fact
the design of these large systems has become very complex. This
has given rise to new design methodologies and research to new
CAD design tools.

Formerly used methodologies such as top-down or bottom-up
as such are not affordable anymore, due to the fact that there is
only a limited amount of people in the world that are still able
to manage the complete design trajectory from high level systermn
specifications down to MOS transistor circuit techniques. The
currently emerging methodology of custom VLSI design is more
like a meet-in-the-middle [4] approach as shown in figure 1, where
two different design groups: (1) system level designers and (2)
transistor circuit level designers meel each other at the level of
functional modules such as ALU’s, multipliers etc. In order that
these modules, designed by silicon oriented experts, can often be
used by system designers, it is required that these modules are
flezible. This is achieved by the ability to generate modules in a
parameterized way {5].

During this design activity, there is the problem of guarantee-
ing or verifying the correctness of the design. The CAD support
for this activity is currently very poor. Only for specific classes of
applications, automatic synthesis (silicon compilation) from high
level behavioral specifications to chip layout can be done, result-
ing in correctness by construction. For the class of digital filters
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Figure 1: The Meet-in-the-Middle design methodology provides
a separation of the design activity at the level of parameterized
hardware modules

and general multi-processor digital signal processing systems the
feasibility of this approach has successfully been demonstrated by
operational systems [2,3].

For several other classes of designs, automatic synthesis is not
(yet) feasible, and “manual” system design is still nsed for most
of the applications. This is the case for full custom design as well
as for highly optimized circuits such as for example in the video
and radar applications. The only tools available for correctness
verification are simulators. It is well known that this approach is
very error-prone in the discovery of all design errors due to the
problem of the choice and interpretation of the appropriate inpnt
and output signals. Methods to formally prove the correctness
would be very nseful here.

The CATHEDRAL-II silicon compiler [3] is organized accord-
ing to the meet in the middle principle. An automatic synthesis is
done from the high level specification language SILAGE [33] into a
number of controllers and execution units which are predesigned
as parameterized modules such as ALU’s, multipliers, dividers,
ACU’s. The set of required parameterized module generators are
designed by circuit designers, as a set of LISP procedures [5] au-
tomatically generating the circuit layout for the module. The
MULTACC (multiplier accumulator) module has the following

parameters and allowable parameter domain :

pl : number of bits in multiplicand X (6, 8, ... 22, 24)

p2 : number of bits in multiplier Y (6, 8, ... 18, 20)

: number of overflow bits in accummulator (0, 2, ... 6, 8)
p4 : presence ol a pipeline section (T, NIL)

p5 : presence of accumulator. (T, NIL)
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While the high level synthesis is correct by construction, the
correctness of the module generators is still being verified using
classical verification techniques like logic and circuit level simn-
lation. A further complication in the case of modudes is that the
correctness has to be guaranteed not only for one instance hut
for the whole allowable parameter domain of the generator prore-
dures. Due to the multiplicity of possible instances that can be
generated, verification techniques that act on instances are not
appropriate anymore.

The underlying paper addresses new solutions that can be
used for gnaranteeing the correctness of such parameterized hard-
ware modules.

Section 2 gives an overview of the current approaches for for-
mal correctness verification. In section 3 an outline is given for
the method proposed in this paper. The concepts of the HDL
used is described in section 4 followed by the description of the
equivalence preserving transformations in section 5. Thereafter in
section 6 a practical design example of a multiplier accummnlator
module is considered.

2 Approaches for Formal Correctness Ver-
ification.

In software engineering much research has been addressed to the
problem of correctness verification {8,9]. Due to the inherent se-
quential character of software programs, these techniques are hwilt
on the concepts of pre- and post conditions and the termination
properties of software modules. Due to the inherent parallellism
in hardware design these software verification techniques can not
be used as such.

Correctness verification of VLSI designs [22| involves several
aspects such as: behavioral, timing, electrical and layout-rule ver-
ification. Rule based approaches can be used for electrical correct-
ness verification (18]. For the verification of the correct timing
characteristics of MOSVLSI systems, accurate timing verification
CAD tools exist (23,24,25]. The layout-rule correctness is gnar-
anteed by using symbolic layout [5] for the construction of the
leaf cells. In this paper we only address the problem of behav-
ioral correctness verification of modules as they are used in the
CATHEDRAL-II system.

A good overview of the current approaches for behavioral cor-
rectness verification of VLSI hardware can be found in [1].

Most of the existing approaches either work out new models
for the hardware according to a functional description skeleton
[16] or instead of the usual HDL descriptions use logical formulas
[15] in order to resort on the well-known formal system of the
predicate calculus. Besides the use of first order logic, also higher
order logic has been investigated [14].

The Boyer-Moore mechanical theorem prover [31] has been
successfully applied for the correctness proof of a microprocessor
design [30).

For the logic comparison of the functionality of hardware blocks
methods have been proposed in references [10,11,12,13,19,20]. These
methods are mostly based on heuristics to compare two boolean
These

approaches have been demonstrated and are very useful on small

functions, which is a well known np-complete problem.

combinatorial blocks with a few levels of logic. For complicated
combinatorial hardware modules such as multipliers, these ap-
proaches become impractical.

The methods described above concentrate on hardware that
is not parameterized. For the correctness verification of param-

eterized hardware modules very little has been done yet. In the
prolog-based VERIFY system (29| by Barrow, limited parameter-
izability is possible in the hardware descriptions. Before the start
of the proof procedures, the parameters are instanciated with the
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Figure 2: Method of correctness preserving transformations dur-
ing synthesis and/or verification.

actual parameter values. This means that for parameterized mod-
ules, the proof has to be done for all instances of the allowable
parameter domain, which can become very large if not impos-
sible to do. A first approach for the correctness verification of
parameterized designs has been reported in [32], relying on the
Boyer-Moore theorem prover. However no actual design ezample
has been considered yet.

3 Outline of the Synthesis and Formal Ver-
ification Method.

In this section an outline is given of the approach presented in this
paper. Asindicated in fig.2, the method is a step-by-step method
based on the concept of correctness preserving transformations.
The transformations are formalized by means of transformation
descriptions as described in section 5. The method can as well
be used during the synthesis phase as for verification afterwards.
Our experience is that it is easier to maintain correctness during
the synthesis phase. This is what we will focus further on.

The method is mainly based on correctness preserving ma-
nipulations on pure parameterized structure descriptions in the
HILARICS language as described in section 4.

The method starts from a high level specification in terms of
an interconnection of predefined cells, together with the don’t care
behavior. The primitives are defined by a naive implementation
in terms of well known lower level primitives. An example of such
a higher level primitive is a multiplication that can be defined in



terms of a lower level naive implementation based on the shift add
algorithm as learned in primary school. The don't care behavior
conld specify that only positive numbers have to be multiplied.
The definition of the naive implementation of a higher level cell
is easy to comprehend, but due to hardware and implementation
considerations not used as such. Instead a more suited imple-
mentation is used, taking into account the allowable hardware,
the modularity, the speed considerations, the implementability in
terms of the circuit primitives etc..

Starting from that initial specification the designer manipu-
lates the hardware description step hy step by means of formalized
transformation descriptions, until he ends up with the desired im-
plementation in terms of primitives that can directly be realized
as circuits in hardware. These are usually small blocks with np
to 20 transistors, such as gates or full adders. The correctness
of these basic primitives with respect to their lavout realization
can be verified by using circuit extraction from the (symbolir)
layout. From these tramsistor netlists, the logic equations can
be extracted [18,21] and compared {20,19] ta the logic equations
that come from the behavioral specification of the primitive cell.
Starting from the parameterized structure description of the im-
plementation, the actual module gencrator can be created by tle
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Figure 3: Design history and equivalent design alternatives.

module designer [5]. The formal method presented in this paper
ranges from the high level specification until the level of primitive
cells.

The method is a step by step correctness preserving method,
under the full guidance of the designer who takes all of the de-
sign decistons. This is in contrast to for example the approach by
Barrow in the VERIFY system, where the equivalence between
consecutive levels of behavioral specification and implementation
is automatically verified, without making use of any other in-
formation by the designer. It is our belief that by letting the
designer formally express his elementary design transformations,
that the verification problem becomes more manageable, espe-
cially for more complex design applications. Automatical systems
suffer from the drawback that they have to figure out all of the
design transformations on their own. This is especially difficult
(possibly unsolvable?) for the general case of parameterized hard-
ware designs.

By keeping track of the elementary design transformations, a

designer can maintain a history of the evolution of his design. This
has the advantage that a design can be altered from intermediate
descriptions as is indicated in figure 3.

4 The hardware description language.

4.1 Considerations on HDL’s with respect to formal
verification.

Several approaches in formal verification stress the functional
modeling aspect, because of the problem that a numher of existing
HDL’s have been derived directly from imperative and procedural
langnages. The inappropriate unique modeling of hardware ne-
cessitates the use of the funtional model. However, several of
the useful HDL’s [33,34,35] are applicative and are therefore more
suitable for direct formal reasoning. This is also the case for
pure structure description languages [35] like HILARICS [34] and
RTS-1a [36] like register transfer languages and a system level
description language like SILAGE [33].

Several of the more sophisticated RTL’s provide constructs
for accurately modeling the timing behavior for the simulation of
the design. This is cspecially desired for asynchronous circuits.,
As reported in [15], these RTL’s can not be used for reasoning.
In synchronous VLSI designs, the inclusion of these timing con-
structs are however not required in behavivral desciplivus, We
advocate a good separation between the behavior and the tim-
ing, such that these aspects can he designed and verified quasi
independent from one another. For the timing verification of svn-
chronous designs, timing verification tools ate available [28,24,25
For formal verification only RTL’s like RTS1.a [36.37| nol clut-
tered with too much low level timing constructs are appropriate.

The semantic models of the existing HDL's are very familiar
to designers, they are a formal way to specify the system nnder
design. In the current design practice they are most often nsed
for simulation purposes.

In contrast to the above mentioned methods, that try to model
the hardware based on functional models or by first order logic, we
have chosen to directly use the existing HILARICS [34] parame-
terized structure description language for performing the manipu-
lations. This choice is motivated by the fact that such a Jangnage
is much closer to a hardware designer than formalisms used by
the currently existing proof techniques.

4.2 Semantic model of HILARICS.

We start from the concept that the network structure (composi-
tion) should be described completely independent from the other
aspects (or views) of a design. It is formalized in a structure
description language [35,34). HILARICS [34] is a parameterized
structure description language. This means that parameterized
modules such as ar n x m multiplier structure can be described
with as parameters n and m.

Parameterizable structure descriptions could be generated from
any computer language, but then there would be no concise se-
mantic model to rely on for formal verification.

The semantic model of HILARICS is purely applicative. HI-
LARICS describes the following concepts:

e cells: these are the generic building blocks in the design.

o terminals : this is the interface of the internal nets of the
cell with the higher level cells to which it is connected.
components : these are instances of cells.

nels : these are the sets of interconnected terminals of the



defining cell and the terminals of the components used in

the cell.
parameters : The formal parameters are used to define the

parameterized structure description of the cells. Actual val-
ues for components of cells define the specific instances of

the components.
internal cell variables : These are manifest variables that

are calculated at compile time of the structure description

for a specific component. They are completely determined
by the values of the actual parameters.

HILARICS allows as well for net-oriented as component-oriented
descriptions. These are dual descriptions and only one is neces-
sary. They can be described in an applicative way. Besides the
generating constructs, the order of the statements is irrelevant.
Around most of the statement groups, FOR- and IF ... THEN
constructs can be used. FOR-loops define new indez variables that
are known within the FOR construct. The termination conditions
for these constructs are defined by the internal cell variables and
by the indez variables of outer constructs. Besides the internal
cell variables and the inder variables of the FOR-loops no other
assignment to variables is possible in HILARICS as it is the case
in a normal programming language like for example PASCAL or
C.

Notice that HILARICS does not describe any form of behav-
ior. View specific information (not immediately related to the
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FOR j =1 TO n DO
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Figure 4: Example of a parameterized cell.

structure) is described separately for the appropriate cells. As
such the language is currently in use for the description of the
structure part for register transfer descriptions [37] for circuit
level simulation, for timing verification, for switch- and logic level
simulation and as a definition input for the module generation
environment [5]. HILARICS has been used for the description
of several hierarchical and parameterized VLSI designs and parts
thereof.

Figure 4 depicts an example of a parameterized cell with a
parameter n. The cell contains components of two cells a and b.
The parameterized structure description looks as follows:

CELL Example(n : Integer);
TERMINALS
c¢i, ini(1..n], in2[1..n] END : INPUT;

co, uit[1..n] END : OUTPUT;
END;
COMPONENTS
af1..n] : a;
bl1..n] : a;
CONNECTIONS
FOR j = 1 TO n DO
IF j = 1 THEN NET a[j].aci ci END;
ELSE NET al[jl.aci alj-1].acu END;
IF j = n THEN NET al[jl.acu co END;
END;
FOR j - 1 TO u DO
NET al[j].ail in1[j] EWD;
NET a[j].ai2 b[j].bi2 in2[j] END;
NET al[j].au L[j].VLi1 END,
NET b[j1.bu uit[j] END;
END;
END;

These kinds of structure descriptions are used to describe the
intermediate structures in the transformation steps. For a number
of usual primitives, naive implementations in terms of HILARTCS
descriptions should be available. For the specific application of
signal processing applications (also includes arithmetic applica-
tions), the following additional view information is required per
net:

o arithmetic weight factor : This information contains the
scale factor to be used for certain scalar signal lines. This
information is required in order to be able to perform cer-
tain equivalence transformations. Two consecutive bits in a
binary number have a different scale factor (by a factor of

2 ratio). They may not be interchanged.

o delay potential : The delay potential, indicates for syn-
chronous systems, that signals can be represented either in
space or in time. This concept allows to perform retiming
transformations [26].

In figure 4 a more concise description with the same meaning
as the above one is included. It is on this kind of structure descrip-
tion that equivalence preserving transformations are performed.
In section 5 a description of a number of these transformations
are given while in section 6 some examples of transformations on
a multiplier design will be given.

5 Egquivalence Preserving Transformations.

This section describes the basics of the elementary steps for the
equivalence preserving transformations. Several aspects are de-
scribed using parts of the properties and transformations as used
for the formal proof of the multiplier module as described in sec-



tion 6. All of the aspects discussed in this section are described
in more detail in [28].

In a first subsection the formalization of the transformation
descriptions and the basic meaning in an example parameterized
hardware module is outlined. Hereafter an overview is given of the
major classes of equivalence transformations. The last subsection
deals with the manipulation rules that act on the parameterized
structure descriptions as discussed in section 4.

5.1 Transformation descriptions

For automation purposes, the parameterized structure description
described in section 4 should be put in a standard form according
to the principles as described in [28|. For clarity purposes, we do
not further elaborate this topic in this paper.

Suppose that figure 5 represents a two-dimensional represen-
tation for a module with as parameters m and n. The structure
description than has the “standard” form given in the figure.

A transformation description describes:

e which property is to be applied.
o to what part of the hardware module the property is to he
applied.

b= iR 0 .,
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FOR i =1 T0 (m + 1)div2 DD
FOR j=0TO n+m -1 DO

IF i =1 THEN C;; = 0

ELSE IF j - 2(i--1) THEN Cij; = Ki_1j1
ELSE nil

END

END

IF i = 1 THEN M;; = EwternalNets

ELSE IF j - 2(i — 1) THEN M;; = P;.y;
ELSE nil
END
END
END

END

Figure 5: Two dimensional structure and standard description.

The properties are equivalence transformations. If they are
applied to a specific structure, a new structure is obtained that is
functionally equivalent with the original one.

Only one property may be specified per transformation de-
scription. Such property may act on more components of the
structure description. The above restriction stems from the fact
that each elementary transformation description is applicative.
This allows us to do the code manipulation in an easy way. In-
troducing more properties in the same transformation description
would make the transformation description procedural and would
result in much more complicated proof techniques.

FOR i =1 TO m DO
FOR j =1 T0 n DO
IF i = j THEN property(i, j k,t,...)
ELSE nil
END
END
END

Figure 6: Example of the form of a formal transformation descrip-
tion on a two-dimensional parameterized structure. The shad-
owed rectangles indicate the components that are influenced by

the transformation description.

The form of an example formal transformation description and
the structure on which it acts is given in figure 6.

This transformation description manipulates the diagonal blocks
with property property. Transformation descriptions can have the
same FOR- and IF- constructs as the structure descriptionsin sec-
tion 4. The basic items are now properties instead of nefs.

5.2 Classes of equivalence preserving transforma-
tions.

Depending on the hardware functionality of the compenents, prop-
erties can be applied in equivalence transformations, For each of
the properties, there are a number of conditions that must he
fulfilled by the structure description and its components hefore
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a property may be applied. For the purposes of formal verifica-
tion, cells require properties, that allow to determine that partic-
ular equivalence transformations may be applied to components
of that cell. In the DSP-like applications considered up to now
the following classes of properties can be considered: arithmetic
properties, boolean properties and flow graph properties. They
are introduced in the next paragraphs.

5.2.1 Arithmetic properties.

These can be applied for arithmetic building blocks like e.g. full
adders.” An example is commutetivity. The conditions for this
property are that the components must allow commutativity, the
signals must have the same arithmetic weight factor and the same
time potential. This property is nused several times in the formal
verification of the multiplier module: for example in the step from
carry propagate to carry save structure.

5.2.2 Boolean properties.

These properties act on Boolean operalors, as are most of the
hasic components in VLST hardware. Here the classical rules of
Boolean algebra can be used. In an automated CAD environment
several of the Boolean properties can be automatically verified by
using a tautology checker [19,20]. This will most often be required
for the equivalence proof of lower level hardware modules.

Figure 7 shows a good example for the use of a tautology
checker that occurs in the case of the multiplier module described
in section 6. Here the equivalence transform from two full adders
into one dedicated two-bit adder cell is proven by a tautology
checker. The implementation of two-bit adder cells has heen mo-
tived by hardware efficiency considerations in the multiplier mod-
ule. The condition here is that the logic functionality of the new
components and their interconnection must be equivalent to that
of the original components and tleir interconnection. Notice that
for the equivalence proof of these smaller building blocks no pa-
rameterized descriptions are required.

5.2.3 Flowgraph properties.

Examples of these properties are delay management [27] and re-
timing operations [26] shown in figure 8 These properties are
used in the organization of the internal pipeline of the multiplier
discussed in section 6.

A trivial operation is the remove operation, that is schemat-
ically depicted in figure 9. Here a component b of cell £ is re-
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Figure 9: Remove equivalence transformation property.

moved, because it occurs twice. The conditions for this operation
are that there have to be two components of the same cell, and
that the inputs for the two components have to be identical. This
is a property that is used in the multiplier design in the trans-
formation from the naive implementation to a more optimized
implementation. The dual operation is the add property.
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Figure 10: Schematical representation of the merging of a struc-
ture description together with a transformation description.

Other general properties are reindezing operations that do not
change the functionality, but only the way in which components
and interconnections are indexed (by i and j for ezample) in the
parameterized structure description.

5.3 Manipulation rules.

The indices of components and nets in parameterized structure
and transformation descriptions indicate particular structural items
The structure description indicates the static composition of a
cell. The transformation description indicates how a cell is recom-
posed in an equivalent way. From this follows that a new structure
description of a functionally equivalent cell can be calculafed by
merging both the structure description and the transformation
description in a new description. In the method we propose, this
merging is done by applying the transformation descriptions to
each individual net description in the structure description. This
is schematically indicated in figure 10.

Hereafter a manipulation of the new structure description is
needed in order to obtain a much more concise structure descrip-
tion. In order to make the transformation description applyable
to specific net definitions in the structure description, often a re-
calculation of the indices is necessary.

Tn order to be more suited for CAD automation, the structure
and transformation descriptions have to be reorganized accord-
ing to standard descriptions as described in [28]. Some of the
code manipulation rules are given below! as an example. A more
extensive description is given in [28].

IThe polygons in the description indicate the deeper nested FOR and IF
constructs. The rectangles indicate the primitive net descriptions



5.3.1 Joining of FOR loops.

FOR i =1TO II DO
e i —

END

FOR i =III TO I1" DO

F R N —

4_

FOR i = win( L. IIT} TO wmax([I.I1) DO
IF/>ITHENIF/<II THEN (v 3 | 1 ]
[F;>I[TTHENIF/;<IVTHEN (_ 2 > 2 |

END

END

5.3.2  Splitting of FOR. loops.

FOR i=1TO II DO
e =

END

FOR/=1TO I" DO
= pa || (N I
END
FORi=1I"+1TO II DO
2z 3| 2]
END

The requirement here is that I - I* I[l.

5.3.3 Mixed FOR and IF construct splitting

FOR i = I TO II DO
IFi<I*THEN (v o[ 1 1]
ELSE (3 [ 3 ]

JF

FOR/i=ITO I"-1DO
oo ]

END

FOR:=I"TO II DO
3 ol 3 ]

END

6 Application Example: Correctness of a
Module Generator for a Parameterized
Multiplier Module.

A parameterized multiplier module {7] is a basic building block
used in the CATHEDRAL-II system [3]. The concepts descrihed
in this paper have been applied for the formal correctness proof
of the parameterized siructure description of the multiplier |28].
The high level behavioral specification for the multiplier is given
schematically in figure 11, together with its RTL description [37].

This high level specification consists of a basic multiplication
of an n-bit multiplicand X and an m-bit multiplier Y to form
an n+m bit result that is conditionally (depending on CACC)
accumulated.

Notice that this high level specification makes lots of abstrac-
tions of the final implementation, The implementation contains
much more detail of information for the generation of the parame-
terized structure, which is motivated by hardware and implemen-
tation considerations. The operations MPY and ADD in the RTL
[37] description are defined in terms of naive implementations,
that do not necessarily correspond to the actual implamentation.

For reasons of hardware efficiency, it has been decided that
Booth multiplication is used for the MOS implementation of the
MPY operatlon in flgtre 11, This results in (he structuse vl figiae

M Ace | !
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BUS

CELL MULT_ACC

TERMINALS X{o..N-11, Y[0..M-1], EN, CACC,
BUS[0..N+M-1]
END

CELL MULT.ACC
IN=Xx[0..N-1],Y[0..M-1],EN,CACC
REG=ACCREG[N+M-1..0]
SIGNAL=ACCOUT[N+M-1..0] MULT ACCOUT[N+M-1..0]
TRI_OUT=BUS[N+M-1..0]

BEGIN
IF CACC THEN ACCOUT=ACGREG

ELSE ACCOUT=#0_D[N+M] END
ACCREG - = MULT_ACCOUT
MULT_ACCOUT=ADD (MPY(X,Y),ACCOUT)
IF EN THEN BUS=ACCREG END

END

Figure 11: High level behavior of multiplier module.



Y1 CODING CELLS 2 ciae |
' t =

|
1
[ J—
T X ‘
i I(:‘n-!-‘l.)(ﬂﬂ :ET:UGIV'Z PP
xt mux |~ ADDER
2 | MATRIX
cc
PA o

. n+2(m+1)div2

1_n+’¢‘(m+1 dive

Anz BUFFERS

=~
r‘-\_l—"'

| PR |
oa>»0

Figure 12: Refined implementation for the nultiplier accnmmnlator
module.

13. The correctnoss of the Booth multiplication algarithm with
respect to the straight forward definition of MPY is proven in
reference [6). In the further discussion we will concentrate mainly
on the Booth multiplier array and the accumulator structure. The
naive tmplementation of the Booth algorithm [6] is schematically
indicated in figure 13 for an 8 x 8 multiplier, together with the leafl
cells used therein. The signals A and PP cotrespond to the signals
from the Booth decoder in figure 12. To this initial structure
corresponds a parameterized structure description given in detail
in [28].

By using 15 elementary transformation descriptions the initial
parameterized structure description is transformed into the final
parameterized structure that corresponds to the final implemen-

n+2M-1
Il
1514 13 12 11 10 8 &8 7 6 5 4 3 2 1 0

afyn

Figure 13: Initial structure naive implementation of a Booth mul-
tiplier
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FOR i =1 TO M DO
FOR j=2(i—1) TO n4 2M —1 DO
IF i+ 1 THEK COMM(C; ;; C;. 1)
IF j < 2i THEN COMM(Cy ;i Ci;)

END
END
IF j - 2M THEN COMM(CyjiCari)
END
END
END

anin

Figure 15: Equivalence transform from carry ripple to carry save
addition.



tation. An 8 x 8 instance of the final implemenation is shown in
figure 14.

These transformation descriptions consist a.o. of remove, rein-
dex, commutativity, ezchange operations. In figure 15 the trans-
formation from carry-ripple to carry-save addition is illustrated.
The upper part of the figure indicates the structure before the
operation. The components with shadows are effected by the
transformation description in the middle of the figure. The lower
part of the figure shows the structure after the equivalence trans-
formation.

Due to the parameterized nature of the structure and fransfor-
mation descriptions at certain equivalence transforms a proof by
induction on the parameters is required. This is for example the
case in the transformation from the original carry save structure
to the partially eliminated carry save structure.

A parameterized layout module generator for the multiplier
accumnlator, corresponding to the final parameterized structure
description in figure 14 has been designed in the MGE environ-
ment [5]. Figure 16 shows the layout of a multiplier instance of
8 x 8 bits.

Figure 16: Automatically generated module layout ofa 8x8
multiplier.

% Conclusions and Future Research

In this paper we have presented a synthesis and/or verification
method that is built on the concept of correciness preserving
transformations. Transformations are performed on parameter-
ized structure descriptions in order to come from a specification
up to an actual implementation. In the method the correctness
preserving transformations are formalized as transformation de-
scriptions. The transformations are applied directly on an ex-
isting parameterized structure description language. The method
has been applied [28] for the formal correctness verification of a
parameterized booth-multiplier module and a systolic implemen-
tation of an FIR filter.

Future research will concentrate on applying the same princi-
ples as outlined above toinclude manipulations on RTL constructs
|36,37] and on high level system specifications in the SILAGE lan-
guage [33]. In the latter case it will be very useful for the quided
synthesis of high speed video type signal processing circuils.
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