
Guided Synthesis and Formal Verification Techniques

for Parameterized Hardware Modules'

L.Claesen, P.Johannes, D'Verkest, H'De Man-

Interuniuersity Micro Electronics center IMEC, Kapeldreef 75. 8-3030
Leuven, Belgiurn, Phone +32 1761281203

Abstract

In this paper a new method is presented to be used for ei-

ther guided synthesis or formal cottectness verification ol param'
elerized dtgilal hardware modules. It starts from a high level
paramelerized description of the module, which is used as the
specification. The method is based on the concept of correclnes"c

preserting transformations. These transforma.tions a.re described

in a lbrmal way by means ol' transformahon descrqplions. It ends

at a lower level parameterized structure description of the imple-
mentation. Instead of operating on a derive<l fornalization as

done in other approaches, direct manpulattons ate done on an

existing HDL, that emphasizes a strict separation betwepn Pa-
rameterized structure description and behavior description. The

concepts have been applied to real VLSI design vehicles sttch as a

pipelined and parameterized multiplier accumulator module an<l

a systolic implementation of an FIR fiIter. Tire methods presented

here are amenable for implementation in CAD tools.

1 The Problem of Design Correctness.

Curreni capabilities of VLSI technology allow that larger and

larger systems are being integrated on one chip' Dte to ihis fact

the design ofthese large systems has become vetv complex. This

has given rise to new design methodologies and tesearch to new

CAD design tools.
Formerly used methodologies such as top-down or bottom-up

as such are not afordable anymore, due to the fact that there is

only a limited amount of people in the world that are still able

to manage the complete design trajectory from high level svsteru

specifications down to MOS transistor circtit techniques. The

currently emerging methodology of ctstom VLSI design is more

bke a meet-in-the-middle [4] approach as shown in figure I ' wher"
two ilifferent design groups: (1) system level clesigners anrl (2)

transistor circuit level designers meel each other at the level ol
functional mod,ules such as ALU's, multipliers etc. In order that
these modules, designed by silicon oriented experts, can often be

used by system designers, it is required that these modtles are

fleedble. This is 
""hieved 

by the ability to generate modules in i
parameterized way [5].

During this <Iesign activity, there is the problen of gualantee-

ing or verifying the correctness of the design. The CAD support

for this activity is currently v€ry poor. Only for specific classes of
applications, automat.ic synthesis (silicon compilation) from high

level behavioral specifications to chip layout can be done, result-

ing in corrcctness by construction. For the class of digital filters

Figure 1: The Meet-in-the-Middle design methodology provides

a separation of the design activity at the level of parameterize<l

hardware modules

anrl general multi-processor digiial signal processing systems the

feasibility of this approach has successfully been demonstrated hy

operational systems [2,3].
For several other classes of designs, automatic synthesis is not

(yet) feasible, and "manual" system design is siill tsed for most

of the applications. This is the case for fu-Il custom design as weII

as for idghly optimized circuits stch as for example in the video

and radar appLications. The only tools available for correctness

verification are simtlators. Ii is well known that this approach is

very error-prone in the fiscovery of all design etols drte to the

problem of the choice and interpretation of ihe appropriate input
and output signals. Methods Io formally proue the cortectness

would be very useful here.

The CATHEDRAL-II silicon compiler 13] is organized accord-

ing to the meet in the middle principle. An automatic svnthesis is

done from the high level specification language SILAGE 133] into a

number of controllers and execution units which are predesigned

as parameterized modules such as ALfI's' muJtipl-iers, dividers,

ACU's. The set of required parameterized module generators are

designed by circuit designers, as a set ofLISP procedures [5] au-

tomatically generating the circuit layout fot the module. The

MULTACC (multiplier accumulator) module has the following
parameters and. allowable paramelet domain :

r p1 : number ofbits in multiplicand X (6' 8' ... 22' 24)
. p2 : number ofbits in multiplier Y (6' 8' ... 18, 20)
. p3 : nmber of overflow bits in accumulatol (0' 2'... 6' 8)
. p4 : pres"nce of a pipeline seciion (T, NIL)
o p5 : presence ofaccumtlator. (T' NIt)
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While the high level synthesis is correct 6y conslrucliorr' the

correctness of ihe module generators is still being verifiecl rrsing

classical verification techniques like logic and circuit lev"l simt-

lation. A further complication in the case of modtdes is that the

corlectness has to be gnaranteed not only fot one instanc" btrt

for the uhole allowable parameter tlomqin q{ the generator pro'"-

dures. Due to the multiplicitv of possible instances that can be

generated, verification techniques that act on instances are not

appropriate anymore.
The untlerlying paper addresses new solutions that can be

usecl for guaranteeing the correctness of such parameterized hard-

ware modules.
Section 2 gives an overview of the current approaches for for-

mal cotrectness verification. In section 3 an outline is given for
the method proposed in this paper. The concepts of the HDL
used is described in section 4 followed by the description of the
equivalence preserving transformations in section 5. Thereafter in
section 6 a practical design example of a multip[er accrrmrr.lator
module is considered.

2 Approaches for Formal Correctness Ver-
iffcation.

In software engineering much research has been addressed to the
problem of correctness verification fS,Ol. D"e to the inherent se-

quential character of software programs, these techniques are brrilt
on the concepts ofpre- and post conditions and the termination
properties of software modules. Due to the ilherent parallellism
in hardware design these software verification techniqtes can not
be used as such.

Correctness verification of VLSI designs {22] involves several

aspects such as: behavioral, timing, electrical and layott-rtle ver-

ification. Rule based approaches can be used for electrica.l correct-
ness verification [18]. For the verification of the correct timing
characteristics of MOSVLSI systems, acctttate timing verification
CAD tools exist [23,24,25]. The layout-mle correctness is grrar-

anteed by using symbolic layont [51 for the constrrrction of the
leaf cells. In this paper we only address the prohlem of behav'
ioral correctness verification of modules as they are rrsed in the

CATHEDRAI-II system.

A good overview of the current approaches for behavioral cor-

rectness verification of VLSI hardware can be found in [1].
Most of the existing approaches either work ott new motlels

for the hardware accorfing lo a functional description skeleton

[16] or instead of the usual HDL descriptions tse logical lormtilas

[15] in order to resort on the well-known formal system o{ the
preficate calculus. Besides the use of first order logic, also higher
order logic has been investigated [14].

The Boyer-Moore nechanical theorem prover [31] has been

successfully applied for the correctness proof of a nicroprocessor
design [30].

For the logic comparison ofthe functionality ofhardwate blocks

nethods have been proposed in references J10,11,12,13,19,201. These

methods are mostly based on heuristics to compare two boolean

functions, which is a well known np-complete problen. Thes"

approaches have been dernonstrated and are very usefirl on small

combinatorial blocks with a few levels of logic. For complicated
combinatorial hardware modules such as multipliers, these ap-

proaches become irnpracti cal.

Tire methods described above conceuttate on hartlu'are that

is not pararneterized. For the correctness verifica.tion of pararn'

eterized hardware modules very little has been clone yet. ht the

prolog-based VERIFY system [29] by Barrow,ljmited parameter-

izability is possible in the hardware descriptions. Before the start

ofthe proofprocedures, the patameters are instanciated with the

Figure 2: Method of correctness preserving transformations dur-

ing synthesis and/or verification.

actual parameter values. This means that for pa.rameterized rnod-

ules, the proof has to be done for all instances of the allowable

parameter domain, wldch can become very large if not irnpos-

sible to do. A first approach for the colrectness verification ,rf
parameterized designs has been reported in [321, relying on the

Boyer-Moore theorem provel. Howevet no actual design etornple

has been considered yet.

3 Outline of the Synthesis and Forrnal Ver-
ification Method.

In this section an orrtline is given ofthe approach presenteil in this

paper. As indicated in fig.2, ihe method is a step-by-step method

based on the concept ol correctness preseruing transformations.

The transformations are forma[zed by means of lransformalion
tlescriptions as described in section 5. The method can as well

be used during the synthesis phase as for verification aftelwards.

Our experience is that it is easier to maintain correctness during
the synthesis phase. This is what we will focus ftrther on.

The method is mainly based on cottectness preserving ma-

nipnlations on pure parameterized slruclure descriplions in the

HILARICS language as described in section 4.

The method starts from a high level specification in terrns of
an interconnection ofpretlefined cells, togeiirer with the don't care

behaaior. The primitives arc defned by a naiae implementation
in terms of well known lower level primitives. An example of stch
a higlrer level primitive is a m.ultiplication that cal be delined in
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terms ofa lower level ncireinplementation based on the shift add
algorithm as learned in prirnary school. The don't care behavior
corrld specify that only positive numbers have to be muJtiplied.
The definition of the naive implenentation of a higher level cell
is easy to comprehend, but due to hardware and implementation
considerations lot used as such. Instead a more suiteil imple-
mentation is used, taking into account the allowable hardware,
the modularity, the speed considerations, the implementability in
terms of the circuit primitives etc..

Starting from that initial specification the designer mardpu-
lates the hardware description step by stcp by means offorma.lized
transformation descriptions, until he ends up with the desired im-
plementation in terms of primitives that ca.n clirectly be realized
as circuits in hardware. These are usually sma.ll blocks witir rrp
to 20 transistors, strch as gates or frill adders. The correctn"ss
of these basic prirniiives with respect to their lavorrt realization
can be verified by using circrrit extractiorr lrom the {svnrboli.)
layout. From these transistor netlists, the logic equations ca.n
be extracted [18,21] and compared 120,191 to the logic eqrrations
that come frorn the behavioral specification of the primitive cell.
Starting from the paramelerized, struclure descri.ption of the im-
plernontation, the actual modulc gcncrntor can be creotetl Ly tlLe

High Level Specilication

Design Afternatives Synthesis Path
Chosen

Design Ahernatives

designer can maintain a history ofthe evohrtion ofhis design. This
has the advantage that a design can be altered from intermeclia.te
descriptions as is indicated in figure 3.

4 The hardware description language.

4.1 Considerations on HDLts with respect to formal
veriffcation.

Several approaches in formal verification stress the ftnctional
modeling aspect, because ofthe problem that a number of existing
HDf,'s have been derived firectly from imperatiue and. procetlural
languages. The inappropriate unique modeiing of hardware ne-

cessitates the tse of the funtional mode1. However, severa.l of
the usefrl HDL's [33,34,351 are appli.catiue and are therefore rnore
suitable for firect formal reasoning. This is also the case for
pure structure description languages [35] iike HIIARICjS I34] and
RTS-la [36] like register transfer languages and a systern 1"vel
desciption Ianguage like SIIAGE {331.

Several of the more sophisticated RTL's provide constructs
for accurately modeling the timing behavior for the simtla.tion of
thc dccign. This is cspcciolly dcsircd for a:ynchronous circuits.
As reported in [15], lhese RTL's can not be used for reas,'tilg.
In synchronous VLSI designs, the inclusion of these timing con-
structs arc however not required il LelLaviur.rl tleseript.iurts. \l'e
advocate a good separation between the behavior and the tim-
ing, such that these aspects can be designcd a.nd verifiecl q,rasi
independent from one another. For the t.inring verificntiorr of svn-
chronous designs, timing verifica.tion tools are available l?3.:4,:5i.
For formal verifi.cation only RTL's like RTS1.a 136.371 no1. clui-
iered with too much low level timing constructs are appropriate.

The semantic models of the exisiing HDL's a.re very fanilia.r
to designers, they are a formal way to speci{y the svstem rrnder
design. In the current design practice they are most often rrsed

for simulation purposes.

In contrast to the above mentioned methods, that trf io model
the hardware based on ftnctional models or by first order logic, we

have chosen to directly use the existing HILARICS 134] parame-
terized structure description language for performing the tna.niprr-
lations. This choice is motivated by the fact that such a language
is much closer to a hardware designer than fornalisms used by
the currently existing proof techniques.

4.2 Semantic model of HILARICS.

We start from the concept that the network structure (composi-
tion) should be described completely independenl from the other
aspects (or views) of a design. It is formalized in a strtcture
description language [35,34]. HILARICS [34] is a parameterized
structure description language. This means that parameterized
modules such as an n x m multiplier structure can be describerl
with as parameters n and m.

Parameterizable structure descriptions could be generated from
any computer language, but then there would be no conuse se-
mantic model to rely on for formal verification.

The semantic model of HILARICS is purely a.pplicative. III-
LARICS describes the following concepts;

r cells : these are the generic building blocks in the clesign.
o terminals: this is the interface of the internal nets of the

cell with the higher level cells to which it is connected.
o components: these are instances ofcells.
o nels : these are the sets of interconnected terminals of the
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Figrre 3: Design history and equivalent design alternatives.

module designer i5]. The formal method presented in this paper
ranges from the high level speciffcation unt.il ihe level ofprimitive
cells.

The method is a step by step correctness preserving met.hod,

under the full guidance of the designer who ta.kes all of the de-

sign decisions. This is in contrast to for example the approach by
Barrow in the VERIFY system, where the equivalence between

consecutive levels of behavioral specification and implementa.tion
is automatically verified, without making use of any other in-

formation by the designer. It is our belief ihai by letting the
designer formally express his elementary design transforma.tions,
that the verification problem becomes more manageable, espe-

cially for more complex design applications. Automatical systems

suffer from the drawback that they have to figtre out ail of the
design transformations on their own. This is especially tliflicrdt
(possibly unsolvable?) for the general case olparameterized hard-
ware designs.

By keeping track of the elementary design tra.nsforma.tions, a



defining cell and the terminals of the components used in
the cell.

. pdtameters: The formal patameters are used to define the
paranteterized, sttuctute description of the cells. Actnal val-

ues for components of cells define the specific instances of
the components.

o internal ceII rariables : These are manifest variables that
are calculated at compile time of the structute description
for a specific component. They are completely determined

by the values of the actual parameters.

HILARICS allows as well for net-oriented as conponent-oriented

descriptions. These are dual descriptions and only one is neces-

sary. They can be described in an applicative way. Besides the

generating constructs, the order of the statements is irrelevant.
Around most of the statement groups, FOR- and IF . ' THEN

constructs can be used. F0R-loops define new indet tariables thal
are known within the F0R consttuct The termination conditions

for these constructs are defined by the inlernol cell pariables and'

by the index uariables ofouter constructs. Besides the inlernol
cell uariables and the jndec tariables of the FOR-loops no other

assignment to variables is possible in HIIARICS as it is the case

in a normal programming language like for example PASCAL or

c.
Notice that HILARICS does not describe any form of behav-

ior. View specific information (not immediately related to the

lnlr ln2 2 In12 ln21 lnl l
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Figure 4 depicts an example of a parameterized cell with a

palameter n. The cell contains components ol two cells a and b.

The parameterized structure description looks as lollows;

CELL Exmple(n : Integer);
TERI.IINALS

ci, in1 [1 . .n] , in2 [1 . .n] EID : IIIPUT;
co, uit[1..n] END : 0UTPUT;

END;

c0ltP0r{ENTs
a[1. .n] : a;
b[1. .n] : a;

c0ltNEcTr0!ls
FORj=1T0nD0

IF j = 1 THEN NET aljl.aci ci END;

ELSE NET a[j] .aci alj-11 'acu EllD;

IF j = n THEN NET aljl.acu co END;

END;

F(lRj-1T0rtD0
NET a[j] .ai1 inl [j] run;
NET a[jJ.ai2 bljl.bi2 j.n2[j] ElrD;

NET a[jl 'au bli].Lil ElrD;

NEr b[j].bu uitljl EnD;

END;

END;

These kinds of structure descriptions are used to describe the

intermed.iate sttuctures in the transformation steps. For a mrmber

ol usual primitives, naive implementations in terms of HILARICS
descriptions should be available For the specific application of
signal processing applications (also includes arithmetic applica-

tions), the following adilitional view information is reqrrirecl per

net:

t arithmetic weight factor : This information contains the

scale factor to be used for certain scalar signal Lnes. This

information is requited in order to be able to perform cer-

tain equivalence transformations. Two consecutive bits in a

binary number have a different scale factor (by a factor of
2 ratio). They may not be interchanged.

c ilelay potenticl : The delay potential' inficates for syn-

chronous systems, that signals can be represented either in
tpdce ot in tirne. This concept allows to perforn reiinring
transformations [26].

In figure 4 a mote concise description with the same meaning

as the above one is incltdeil. It is on this kind of structure <lescrip-

tion that equivalence preserving transformations are perlorrrred.

In section 5 a description of a number of these transformations

are given while in section 6 some examples of transformations on

a multiplier design will be given.

5 Equivalence Preserving Tbansformations

This section describes the basics of the elementary steps for the

equivalence preserving transformations. Several aspects are de-

scribed using parts of the properties and transformations as used

for the formal proof of the multiplier module as de.cribed in sec-

at2

Co

bu

F(lRj=1T0nD0
TF i -- I THEN aci; - c;

ELSE acii = acui-r
lF j=nTHENacul-c6

END

FORj-1T0nD0
aili -;n7'
aizi - inz'
alli - bil '

bi.2i - in21

bu; = uitl
END

Figure 4: Exanple of a parameterized cell.

strncttre) is described separately for ihe appropriate cells' As

such the language is currently in use for the description of the

structtrre part for tegister transfer descriptions [37] for circuit

level simrdation, for timing verification, for switch- and logic level

simulation and as a definition inptt for the nodule generation

environment [5]. HILARICS has been used for the description

of several hierarchical and pararneterized VLSI designs and parts

thereof.
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tion 6. Ali of the aspects discussed in this section are described
in more detail in [281.

In a first snbsection |he formalization of the transforma.tion
descriptions and the basic meaning in an example pa.ra.meterized

hardware module is ottlined. Hereaft"r an overview is given ofthe
major classes ofequivalence transformations. The last snbsection
deals with the manipulation rules that act on the paranreterized
structrre descriptions as discussed in section 4.

5.1 Tlansformation descriptions

For automation purposes, the parameterized structure description
described in section 4 should be ptt in a standard form according
to the principles as described in [281. For clarity purposes, we do

not further elaborate this topic in this paper.
Suppose that figure 5 represents a two-dimensional represen-

tation for a module with as parameters m and n. The strtcture
description than has the '(standard" form given in the figure.

A transformation description describes:

r which properiy is to be applied.

o to what part of the hardware module the properiv is io be

applied.

FORi-1T0mD0
FORj-1T0zD0

tF i - j TTIEN proPerlY(i,i,k,t, -..\

ELSE nil
END

END

END

Figure 6 : Example of the form of a formal transformation descrip-

tion on a two-dimensional parameterized structtre The shati-

owed rectangles indicate the components that are influenced bv

the transformation descriPtion.

Tlre form ofan example formal transformation description and
the structure on which it acts is given in figure 6.

This transformation description maniptlates the diagonal blocks
with property property. Translormalion descriptions can have the
same FOR- and IF- constructs as the struclure descriplions in sec-

tion 4. The basic items ete aow properlies instead of nels.

5.2 Classes of equivalence preserwinq tran,.forrrra-
tions.

Depenfing on the hardware functionalitv of tlre component s. prop-

erties can be applied in equioalence transfornrotiotts. For each of
the properties, there are a mrmber o{ ,:onditions that nrtst h"
ftlfilled by the structure description and its c,lnponents beferc

t3 l4

u1

15 u3

f-,
I l-,

irl ,+m

I

m-1 0
0

trtrxnn
TTNN

nnn
NT 2

u! IN (m + 1)div2

i

FoR i - 1 T0 (m +7)diu2 Do

FORj=0T0n'm lD0
IF r' - 1 THEN Ci,i .- 0

ELSE IE j '2(i 1) rHEN c;,i - K; t.i-t
ELSE nil

EIID

END

IF i- 1 THEN M;,5 - EtternalNets
ELSE rr j _ 2(i 1) rHEN M;J .- P;,t,j

ELSE nil
EIID

END

END

END

Figure 5: Two dinensional structure and standard description.

The properties ate eqttiualence transformati,trts. If they are

applied to a specific structure, a new structrue is obtained that is
functionally equivalent with the original one.

Only one property may be specified per transforrnatiorr r1e-

scription. Such property may act on norc conponents of the

structure description. The above restriction stems from the fact

tlrat each elementary transformation description is opplicotine.

This allows us to do the code manipulaiion in an easv wav. ln-

troducing more properties in the same transfornation rlescripiion

would make the transformation description procedural and wou-ld

result in much more conplicated proof techniques.

Figure 7: Two Boolean equivalent cells that can be checked bv a

tautology checker.
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Figure 8: Retiming eqrdvalence transformation



a property may be applieal. For the prlrposes of formal verifica-

tion, cells require properties, that allow to rletermine that partic-
ular equivalence transformations may be applied to components

of that cell. In the DSP-like applications considered up to now

the followilg classes of properties can be considered: arithmetic
properties, boolean properties and flow graph properties. They

are introduced in the next paragraphs.

5,2,1 Arithmetic properties.

These can be applied for arithmeiic brrililing blocks like e.g. full
adders.- An example is commutatirity. The conditions lor this
property are that the components must allow commttativitv, the

signals must have,the same arithmetic weight factor and the same

time potential. This property is trsed severa.l times in the forma.l

verification of the mtltiplier modrrle: for example in the step from
carry proPagate to carry save strtctute.

5.2,2 Boolean properties.

These properties act on Boolean operalors, as are most of the

hasic components in VLSI hardware. Here the classical rules of
Boolean algebra can be used. In an automated CAD environrnent

several of the Boolean properties can be autornatically verified by

rrsing a tautology checker [10,20]. This will most often be required

for the equivalence proof of lower level hardware modriles.

Figtre 7 shows a good example ior the use of a tautology

checker that occurs in the case ofthe multiplier motlule described

in section 6. Here the erluivalence transform from two firll adders

into one derlicated two-bit a.dder cell is proven bv a tautology
checker. The implementation of two-bit adder cells has been mo-

tived by hardware efrciency considerations il the multiplier mocl-

ule. The condition here is that the logic firnctionality of the rrew

comBonents and their interconnection mtst be equivalent to that
of the original components and their interconnection. Notice that
for the equivalence proof of these smaller bttilfing blocks no pa-

rameterized descriptions are reqrrired.

5.2.3 Flowgraph properties.

Examples of these properties are delay management l27l anri re-

timing operations [26] shown in figure 8. These properties ar"

used in the organization of the internal pipeline of the nlriltipljer
discussed in section 6.

A trivial operation is the remoue operation, that is schemat-

ically depicted in fi.gure 0. Here a component b of cell f is re'

Figtre 9: Remove equivalence transformation property.

moved, because it occtrs twice. The conditions for this operation

are that there have to be two components of the same cell, and

that the inputs for the two components have to be i<lentical' Tltis

is a property that is used in the mnltiplier design in the trans-

formation from the naiae implementation to a more optimized

implementation. The dual Qperation is the cdd property

I Fon t""" 
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, i ieigtil otEruott I
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Figure 10: Schematical representation of the merging of a strrrc-
ture description together with a transformation description.

Other general properties are reindering operolions that do not
change the functionaliiy, bui only ihe way in which components

and intercornections are indexed (6y i and j for ezample) in the

parameterized structure description.

5.3 Manipulation rules.

The indices of components and nets in pararneterized stmctrrre
and transformation descriptions indicate particular stmctural items

The stmcture description indicates the static composition of a

cell. The transformation description indicates how a cell is recom-

posed in an equivalent way. From this follows that a new stmctttre
description of a functionally equivalent cell can be calculated bv

merging both the strtcture description and the transformation
description in a new clescription. Lr the method we propose. this
merging is done by applying the transformation <lescriptions to

each infividual net description in the structure description. This

is schematically indicated in figure 10'

Hereafter a nanipuJation of the new structure description is

needed in order to obtain a nuch nore concise structure descrip-

tion. In order to make the transformation description applyable

to specific net definitions in the structtre description, olten a re-

calctlation of the in<lices is necessary.

In order to be more suited for CIAD attomation, the structure
and transformation descriptions have to be reorganized accord-

ing to standard descriptions as r{escribed in [28]' Some of the

code manipulation ntles are given belowl as an example. A more

extensive description is given in [28]'

rThc polygons in the description indicate tltc dceP€r n€sted FOR ard IF

constiucts. Thc rcctanglcs indicatc thc prinitivc nct descriptions

Leend:

,FOFtil
iiF rHEN I

i ELSE

THEN



5.S.1 Joining of FOR looPs

FC)R r :1TO 11 DC)

6 Application Example: Correctness of a
Module Generator for a Pararnetel:ized
Multiplier Module.

A" parameterized multiplier modute [7] is a basic builrling bl"ck

used in the CATHEDRAL-II system I3l. The concepts desctih"d

in this paper have been applied for the forrnal correctness proof
ol the parameterized. slrrcture descri.pl.ion of the multiplier 1281.

The high leuel behauioral speci.fcation for the multiplier is given

schematically in figure 11, together with its RTL descripiion f371.

This high level specification consists of a basic rmrltiplica'tion
of an n-bit multiplicand X and an m-bit nu-ltiplier Y to fonn
an n+m bit result that is contlitionally (depentling on CACC)
accumtlated.

Notice that this high level specification makes Iots of abstrac-

tions of the final implementation. The implementation contains

much more detail ofinformation for the generation ofthe paratne-

terized structure, which is motivated by hardware and implemen-

tation considerations. The operations MPY and ADD in the RTL

[37] description arc defneil in terms of naive irnplementations,
that do not nccessnrily corretpond to tha octual implomentation.,

Fot reasons of hardware efficiency, it has been decitled that
Booth multiplicolion is tsed for the MOS implementation of the

MPY operatlon ln flgure 11, This restll.s irt llte strutl.ure r'rf figrrre

END
FOR 

' 
= IlI TO II' DO
2

i=-- ' -_]

z

END

FOR i = urir( 1. 1.I.I ) TO ruax( 11. Il ' ) D()
IF'>/THENIF'<11 THEN
IF i > III THEN IF 

' 
< 1I-THEN

END

5,3,2 Splitting of FOR loops,

FOR i:1 TO 11 DO
2

trI'.ID

FORi=ITOl'DO
2

END
FORt=1'+1TO/IDO

2

?T
XY

m

END

The requirement here is that 1 '. I' II

5.3.3 Mixed FOR and IF construct splitting

cacc

EN

BUS

CELL I'IULT-ACC

TERIITNALS X[0..]{-1], Y[0..M-1], EN' CACC'

BUS [0 . . N+!1- 1]
END

2

c

c
cH

Bt3

FORt=/TOIIDO
IF 

' 
<.T- THEN

ELSE
END

END

3

CELL MULT-ACC

IN=x[0..N-1],Y[0..u
REG=ACCREG [N+I,I-1, . O

SIcNAL=ACC0UT IN+U- 1

ll,Etr,cAcc

.ol MULT Acc0UT[N+il-1. .0]

FORi=ITOI'-1DO

END
FOR t: /'* TO 11 DO

END

TRI 0UT=BUS[}l+]rl-1. . 0l
BEGTI{

IF CACC TIIEN ACC0UT=ACCREG

ELSE ACC()UT=#O-D[N+M] END

ACCREG -.- I'IULT-ACCOUT

MULT ACCoUT=ADD (I{PY(X, Y), AccoUT)

IF EN TIIEN BUS=ACCREG EIIID

E}ID

2

l/li Aoc

a

FE(t

n+n

n+h

n+fr

frI

I

I 1

Figure 11: High level behavior of multiplier modtle'
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Fignre 1 2: B.efineil implementation for the nuiltiplier accrurrla t'rr

module.

13. Tho cotrcctnoee of tho Booth rntltiplication algoriihm with

respect to the straight forward definition of MPY is provetr itr

reference [6]. In th" firrther discrrssion we will concentrate rnainl!
on the Booth multiplier array and the accurmilator structtre. The

naiue implementation of the Booth algorithm [6] is schematicallv

indicated in figure 13 for an 8 x 8 multiplier, together with the leaf

cells used therein. The signals A and PP correspond to the signals

from the Booth decoder in figure 12. To ihis initial strrtctur"

corresponds a parameterizetl str[cture description given in detail

in [28].

By using 15 elementary transformation descriptions the initial
param.eterizeil structure <lescription is transformed into the final
parameterized structure that corresponds to the final implemen-

n+2M-1

Figure 14: Final implementation strltctrre for multiplier

FORf-=TTgMDO
FoRj=2(t-1)T0n!2M 1D0

IF i+r THEN COMM(C;,i;C; t,i)
IF j..2; rttr,Y COMM(C1;iC;,i)
E!ID

END

rF j .'2M rttF,rl. COMIUI(C!1.1;(u.i\
EI'ID

END

END

CatrySaw

Figure 15: Equivalence transform from carry ripple to carry saYe

C

c

14 13 12 11

-Ai -PPi

765132100

1

2

a

4=M

5=M+1

t
c
c

C
c

Figure 13: Initial structure naive implementation of a Booth mul
tiplier

addition.



tation. An 8 x 8 instance of the final irnplemenation is shown tn

figure 14.

These transformaiion descriptions consist a'o. of remote, rein'
dez, conmutalitity, erchange operations. In figure 15 the trans-

fornation tront carry-ripple to carry-save adtlition is illustrated.
The upper part of the figute intlicates the structure before the

operation. The components with shadows are effected by the

transformation description in the nddtlle of the figtre. The lower

part of the figue shows the structure after the eqrdvalence trans-

formation.
Due to the parameterizednature of the strrtcture ancl lronsfor'

mation desciplions at certain equivalence transforms a proof by

induction on the parameters is required This is for example the

case in the transformation from the original carry save structure
to the partially eliminated calry save structrtre.

A. parameterized layout module generator for the mrdtiplier
accumrJator, conesponding to the final parameterized sttttctrrre

description in figure 14 has been designed in the MGE environ-

ment [5]. Figure 16 shows the layott of a mrdtiPlier instance of
g, g bits.

Figure 16: Automatically generated module layout o{ a 8 x 8

multiplier.

7 Conclusions and Future Research

In this paper we have ptesented a synthesis and./or verification

method that is built on the concept of correctness preserving

transformations. Transformations are perfotmed on paratncler-

ized structure descriptions in order to come from a specification

ilp to an actual implementation. In the method the correctness

preserving transformations are formalized as transformdtion de'

scriptions. The transformations are applied directly on an ex-

isling parameterized struchte description language' The rrrethod

has been applied [28] for the formal cortectness verification of a

parameterized booth-muliiplier modrrle and a systolic implemen-

tation of an FIR filter.
Future research will concentrate on applving the same princi-

ples as ottlineil above to include maniptlations on RTL constmcts

ifO,SZl toa on high level system specifications in the SII'AGE lan-

gurge'[33]. In the latter case it will be verv tsefirl for the quided

iyoit "ri, 
of t igh speed video type signal processing circuits
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