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Abstract

This paper describes the environment, DIALOG, providing expert analysis of
MOS digital circuits to ensure electrical performance and good digital operation.
The verification is founded on a formal theory that consists of a set of sufficient
conditions which capture the designer's intuition of electrical correct behaviour.
Ib britlge l,he gap between theory and practice, a programrning environment has
been created that allows for a flexible definition of good design practice by applying
expcrt systcm techniques. Rule based prugranuuilg aud syrnbolic analysis form
the innovative aspects of this verification environment. Rules are usecl to increase
flexibility and to manage cornplexity of the algorithrnic verification steps. Symbolic
analysis allows to examine the context of local bugs and to report only relevant
error messages. The formal statement of circuit correctness prevents the verification
from being ad hoc. The goal of the system is to obtain a good compromise between
efficient use of computer time and the acquisition of reliable results.

1 Introduction

1.1 Motivation
Many tools exist to aid in the design and verification of digital integrated circuits. The goal
of all these tools is to aid the designer by reducing time and efFort required for analysis
during the design process.

Today's designers debug their design using simulation lU t2l. The advantage of simula-
tion is its independence of the design style. As a result simulation programs have a rather
stable life. However, regardless of the level of simulation, they consume much computer
time and , even worse, unexpected problems may go unnoticed. Moreover, when errors
appear at the output , there is no clue about the source of the bug. As designs become
more and more complex, the above makes that simulation becomes less and less reliable.

Electrical rule checkers (ERC) [3] perform a static check to ensure that circuits are not
violating some structural criteria. The checks , though very useful, tend to be shallow.
All those programs share some common characteristics and sufFer from the same problems :
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o Their knowledge tends to be hardcoded in the sense that only very specific patterns
and cases are verified. Due to this hardcoding, detailed knowledge of the program
and its data structure is required to add or change design rules.

o The ERC pinpoints all design errors without taking into account any logic constraints
between signals. This results in finding a tremendous number of spurious and repeated
errors, because there is absolutely no understanding of the circuit's intended behaviour.

o lnterpreting the numerous and cryptic error reports is a tedious job because no context
is provided with a bug and no further explanation is possible.

The use of expert system technology allows to avoid the hardcoding of design rules.
Examples of such systems are the RUBICC system [5] and the CRITER system [61. These
systems perform a rule based verification of MOS circuits and are able to describe composi-
tion rules which constrain the ways that components can be interconnected. However, the
increase of flexibility occurs at the cost of a decrease in efficiency, iwhich means that only
designs of a few hundreds of components can be handled. Besides, the ad hoc approach of
these programs can fail in many expected but also unexpected ways, leading to unreliable
fault coverage.

L.2 Key aspects

Based upon the above experiences, a prototype expert analysis system has been imple-
mented, embcdded in the DIALOG environmcnt [41. The basic software architecture and
information flow of the system is depicted in figure 1.

The main contributions of our work are believed to be the following :

1. Formal approach.
Much effort has been spent on the generalization and formalization of good electrical
behaviour for digital, synchronous MOS circuits. This resulted in the formulation of
sufficient conditions for good digital, level sensitive behaviour in terms of good
steady state behaviour, good memory behaviour and good transient behaviour

[71. While the latter condition is handled by timing verifiers [9],[10],[1U, the two other
topics form the-subject of the tool discussed in the remainder of this paper.

2. Combination of rules and procedures.
Careful observation of many designs has shown that a rule base is too weak as a

complete representation of a designer's knowledge. During the course of building the
knowledge of good circuit design, it was found that particular tasks can be performed
well using procedures (e.g. search for sensitive paths). Hence there is no good reason
for avoiding procedures. Therefore the rule based system is extended to allow for
flexible communication between algorithms and rules.
This results in an environment that combines the application of provable correct rules
with a verification strategy that exploits the information derived by the rule based anal-
ysis and as a consequence keeps computational complexity within reasonable bounds.
Rules increase the flexibility of the system, allow to add additional heuristics and allow
to capture the intended behaviour of the circuit.

3. Symbolic analysis.
Thanks to the facility of symbolic analysis of boolean expressions, which forms an

2



integral part of the rule environment, only relevant error messages are generated and
examining the context of a bug report is made possible.

4. Local veriffcation.
Because of efficiency, the diuid,e and conquer strategy is emphasized to break down
the overall problem into a sequence of loosely coupled, more easily subproblems. The
partitioning is based upon a derivation of the circuit's intended signal flow and avoids
the generation of large connected subnetworks.
When a local potential circuit problem is detected, the program zooms in and allows
for simulation. This introduces intelligent use of small simulators.

5. Practical system.
DIALOG has becn applied to several real life examples , containing a variety of design
styles, such as pass-transistor logic, dynamic CMOS, static CMOS, pseudo-NMOS.
Several design errors have been detected, such as the absence of refreshing logic,
charge-sharing problems etc... This allows for a realistic evaluation of the tool.

The paper is organized along the following lines. ln the next section, we define the basic
terminology and givc a survey of the verification steps. ln section 3 the cmphasis is on the
diaid'e and, conquer strategy to break down the overall problem into a sequence of loosely
coupled, more casily subproblems. Section 4 discusses the identification of the clocking
network, memory nodes and combinational blocks. The verification of good steady state
behaviour of combinational logic is discussed in section 5. ln addition , heuristics to improve
efficiency are presented. Results are given in section 6 and conclusions are summarized in
the last section.

2 Outline of the verification strategy

2.1 Terminology.

To provide the designer with an understanding into the overall circuit behaviour and to
avoid detail, abstraction must be made of the device physics level. However the circuit
model must be accurate enough to model the sources of the most common error situations
such as charge-sharing, ratio-errors and threshold drops.
At any level of abstraction a circuit S(N,E) is described as a set of nodes N and a set
of elements E. Each element is connected via its terminals to a set of nodes. Elements,
nodes and terminals can have attributes such as capacitance, resistance and relations such
as adjacency, output etc,..
The basic elements at the electrical abstraction level are transistors which are modeled as

bidirectional, resistive switches between the drain and source terminals and controlled by
their gate. The main attributes are the wiilth, length, and type.

A circuit node is an equipotential interconnection of terminals and the basic attribute is

its capacitance . Transistors are represented as undirected edges between the circuit nodes
connected to their drain and source terminals, This graph representation of the network
is the switch graph. The boolean expression stating the conditions for which there is a

conducting path between two nodes in the switch graph is the switching function.
Because the operation of synchronous circuits is based on the synchronisation of events

by clock signals, the definition of clocks and gated clocks as well as memory nodes is of
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prime importance.

Deffnition L A clock signal C; is a low imped.ant aignal, characterized by a periodic
waueform Vc,(t) with exactly two transitions during one clock period,. A circuit nod,e n;
that generates a clock signal is a clock i.e. n; e CIocks(S(N, E)).

Deffnition 2 A clock phase $ is a set of closed, time interuals T;, characterized, by a
boolean function F6 such that

( vt € T; : F6(D(V7,UD... D(V"o(r))) : t ) tt
(Vt / T; : F6(D(Vr,(t)) ...D(V",(t))) : 0,)

whereby

W,(t) represents the waaeform of a signal ni.
D(u):.R --+ {0,1,X} maps aoltage a onto one ol three states.

A clock phase is a set of time intervals (determined by transitions of clock signals) during
which it is guarantced by the designer that specific nodes in the network ( memory nodes)
can be interpreted as stable boolcan variables that drive logic subnetworks (combinational
blocks). During this clock phase the logic states of the input memory nodes cause transitions
in the combinational block and the output values must be stable before thcy get latched in
the output memory nodes.

Deflnltlon 3 ,zl nod,e n; generatee a $ii gated clock signal ff
1, n; is an output node of a DC-connected, network [2]
2, andYt:Driaen(n;):7.(ThepredicateDriaen(n;) is 1i,f thereexistsaconducting

transistor path to an external signal.)
3. and,Yt : IF Fo,U) AFoi(t) :0 + D(V",(t))) :0
4. Vt : IF F6,Q) AFoi(t) : t + D(V.,(t))) # 0

5. and,W,(t) has zero or two transitions during each clock period.

Deflnition 4 A nod,e n; generates a Q;i -bar gated clock signal i/
1, ni is an output nod,e of a DC-connected networlc.
2. and,Yt : Driaen(n;) : 1.

9. anil Yt : IF Fo,U) A Fo,U) : 0 =+ D(V",(t))) : I
4. Vt : IF F6,Q) AF4,U): 1 + D(U",(t))) *L
5. andv",(t) has zero or two transitions during each clock period,.

Gated clocks are applied to hold signals in latches for more than one clock period, During
the analysis of the circuit, under the constraints of a specific clock phase Ph.asei, all Phasei
gated clock nodes are considered to be driven to 1 and all Phase; - bar gated clock nodes
are considered to be driven to 0.

It is not always obvious to make the distinction between subnetworks that perform com-
binational logic and subnetworks that perform a latch operation. An example are C2MOS
subnetworks [15] that perform a combinatorial function of the inputs as well as a storage
function. Therefore instead of recognizing subnetworks that perform logic or latch opera-
tions, we identify circuit nodes that are guaranteed to hold information during a specific
time interval corresponding with a specific state of clock nodes. These nodes are called

memory nodes.
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Deffnition 6 A nod,e n; is a $; memory node i/

o n; is the output of a DC-connectecl network.
o and there exists a clock phase 6;+r that does not overlap with $i such that

IF F6,*r: 1 + There exists no possible condu,cting path to a logic node or
an external node

or
There only exists a possible condu,cting path that restores the actual
ualue D(W,(t))). (i.e. Possible-memory conditionJ

o and Vl e [0...oo] : IF F6,Q):1* There enists a possible conducting path to a
logic nod,e or an external node, that is no refreshing path.

lntuitively one can state that a /; memory node can recetve new information during phase

S; and has to hold this information at least during /;*1.
The latter allows to partition the network into combinational blocks that communicate via
gated clocks and memory nodes.

Deflnition B A cornbinational block (CB) is a minimal subnetwork such that

o all terrninals of the CB are external inputs or ou,tptttt of the circu,it, rnenxory nod,es

or gated, clocks.
o and all external inputs, outputs, gated, clocles and memory nod,es of the CB are

terminals of the CB.
o and all the compound subnetworks of the CB form a connected graph.

Combinational blocks are intended to perform combinational logic during a specific clock
phase, the Evaluation Phase.

2.2 Verification steps

ln the following sections we will highlight some of the implementation aspects of the overall
verification scenario whictr is depicted below :

o Partition transistor circuit into unilateral subnetworks and generate directed graph
representation (i.e. data dependency graph) of the network.

o Generate pull-up and pull-down switching functions of nodes in the data dependency
graph.

r Detect and analyse asynchronous feedback loops.

o ldentify gated clocks and dynamic gates.

o ldentify and characterize good memory nodes.

o Divide network into combinational blocks.

o For every combinational block verify its steady state behaviour by checking the well-
behaving of its compound subnetworks.
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S Intelligent Partitioning
Partitioning the network into smaller subnetworks and analyzing each subnetwork separately
is a well known technique to reduce complexity. Several verification programs divide a

circuit into DC-connected components (DCN) 121, lL2l. ln this way, the interaction
between subnetworks is less ambiguous and one can take full advantage of their unilaterality.
Complicated effects due to the bidirectionality of transistors are handled in the context of
these smaller subnetworks.

Although many connected components are small, the use of pass transistor logic can
lead to very large subcircuits of a few thousand transistors and as a consequence makes this
approach less adequate. Furthermore, working on the directed interaction graph [8] resulting
from the partitioning into connected components, will introduce wrong interpretations of
the circuit's behaviour. For example, figure 2 depicts the directed interaction graph of a

small multiplexer circuit. The vertices represent the DCN's and directed edges are drawn
from a DCN to its fanout DCN's. The graph shows non-intended feedback loops between
the DCN's 3, 4 and 5 which should not exist in the logical sense because of the intended
signal flow direction through the pass transistors. Flagging this invalid feedback loop can
mask the reporting of other relevant error messages.

To deal with the above problems, the concept of Intended Unilateral Blocks (lUB)
is introduced. This results in further partitioning of the DC-connected components into
intended unilateral blocks, making use of signal flow information, and will generate a

more realistic capture of the designer's intentions.

S.L Signal flow direction
The application of derived signal directions in timing verifiers and electrical rule checkers
is extensively discussed in [131. Unlikc [13] that attempts to derive the real direction of
signal flow through MOS circuits, under the assumptions that the circuit is electrically and
logically correct, our goal is to determine the intended direction of signal flow under the
assumption that the circuit is only logically correct. The assumption of electrical correctness
obviously can not hold in the context of an electrical verification program.

A transistor is directed if an assignment of the opposite direction would create a design
that violates the following logical principles :

o Every node in the network contributes to the functionality. This implies that all nodes
(except for primary inputs and outputs) should be source and sink of information.
This principle leads to a set of rules that operate locally on the circuit.

o A primary input is only a source of information.

e Every node gating a transistor should be able to switch the transistor on and off i.e.
every gate node in the circuit (except for primary inputs) can be driven to 1 and 0.

This principle results also in local rules,

o Every node in the circuit should have a path to a primary input, in a direction opposite
to the assumed signal flow and every node should have a path to a primary output
in the signal flow direction. This statement introduces rules operating on the global
circuit.
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Assuming the obedience of a circuit towards these principles will result in the obedience
of the circuit to a set of signal flow rules which operate on a partially-directed graph. To
construct this graph, we introduce some definitions :

DeffnitionT A nod,e n; fs a source (sink) of information for another node ni if the

flnw of information goes from nod,e n, (ni) to ni (n;) ofo source-drain connections, i.e.
if the logic ualue of node ni may determine the aalue of node ni.

Deffnition 8 .4 node n; is o l(O).source for another node n.i if n; may actiaate a

drain-source path to VDD (GND).

Figure 3 gives an outline of the applied strategy to create the partially-directed graph :

1. ldentify pull-up, pull-down and transmission networks.

2. Pass transistors in the transmission networks are reduced to super-transistors by

merging chains of serial and parallel transistors and super-transistors as illustrated in
figure 3a.

3. Pull-up, pull-down networks and remaining super'transistors are modeled as shown in
fig 3b.

4. A partially-directed graph is created. The vertices are the circuit nodes that form
the connections between pull-up, pull-down and super-transistor subnetworks (except
VDD and GND). There is a directed edge from vertex o; to ui il u;is a source or a

1(0)-source o{ ai. There is an undirected edge between vertices o; and u; if they are

connected to the d,rain or Eource terminals of a super-transistor.

5. Direction finding rules (see fig 3c) are fired on this graph, until the graph is maximally
directed.

6. The direction assignment to an edge in the graph is expanded to the transistors,
represented by the edge.

Examples of signal flow rules, operating on the partially-directed graph are illustrated by

figure 3c :

1. lf all vertices r:; that have an edge-connection with o; or€ source or 1(0)-source of a;,

except one vertex r.r, which is unknown with respect to u; then tr; is a sou,rce of un

2. lf all vertices tr; that have an edge-connection with u; dte sotlrce, 1(0)-source , sink
cir I(0)-sink o{ a; except for one vertex t', which is unknown with respect to o; and

none of the sink or 1(0)-sin& vertices has a path in the signal flow direction to an

output terminal the vertex u; is a source of a*.

The knowledge base contains rules that will derive the only logically meaningful signal

flow directions through a transistor network without any manual intervention or additional
input from the user and without any restriction on the circuit structure.
The main characteristics of the set of signal flow rules are :

o The rules are not dependent of the design style because we only assume logical cor-

rectness.

o The ordering of the rules will not influence the final result. However, it can influence
the execution efficiency.
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o The knowledge base guarantees that a transistor will never be labeled in the wrong
direction.

r The further verification does not require a complete setting of all transistors. However,

the efficiency of the verification will improve when the results of flow analysis are

available.

o Local rules are complemented with global rules, to be able to handle feedbacks as

depicted in figure 4.

When, because of electrical reasons, a posteriori, a violation of the derived signal flow is

detected (e.g. during ratio check), a design error is reported because electrical and logical
behaviour do not coincide.

3.2 Partitioning
Relying on the principle of signal flow direction, partitioning connected components into
lntcnded Unilateral Blocks becomes possible as shown in figure 5a.

Deffnition I Two nodes, n; and, ni, in the same DCN, are in a ilifferent Intended
Unilateral Block (IUB) if there exists a DCN-ou,tpu,t node np such that there exists

o source-drain path (in the directed transistor graph) from n; to nk that d,oes not uiolate
the d,eriued siqnal flou throuqh the transistors and there exist no such path from ni to
T11".

To take full advantage of the knowledge of information flow, a directed Data Dependency
Graph is created. As illustrated in figurc 5, it reflects the intended signal flow of the network
and depicts as such a more realistic capture of the designer's intentions.
The vertices of the graph are the outputs of the IUB's or external inputs and the directed
edges indicate a relation has-infl,uence-on between circuit nodes.

4 Clocking network and memory nodes.

4.\ Gated clocks

Because of the wide variety of clocking methodologies and the vital role of clocks for
the correct functioning of synchronous circuits, special attention is paid to the flexibility to
analyse the clock network and to identify and characterize gated clocks. ln our analysis, we

start from the following information to be given by the designer :

o The primary clock signals e.g. $1 and $2.

o The between-clocfts constraints : e.g. lf 6t : I then /2 : I
o The boolean expressions, stating the definition of the clock phases

e.g. phaset: dr.Q2 and phase2: 6r.6t

Given the definition of gated clock in section 2, one can reformulate the obedience of a

network node n; towards some of the requirements in terms of a tautology checking problem.

Node n; is a phase; gated clock if :

1. n; is the output of a subnetwork
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(Defrule Gated-Clock 0
(*rf
((property (or clock gated-clock) nodel)
(relation has-influence-on node2 nodel)
(attribute pull-up xfpu node2)
(attribute pull-down xfpd node2)
(true-tautology
(or (and (not xfpu) xfpd) (and (not xfpd) xfpu)))

(attach xalways-zero (or xfpd xphasel (not xclockconstr)))
(attach xsometimes-one (or (not xphasel) (not xclockconstr) xfpd)))
(true-tautology xa lways-zero)
(*not ((true-tautology xsometimes-one)))
*Then
((assign-attribute gated-clock xphasel node2))))

Rule deftnition of gated clock

2. I'oun-do*.(n;) = Fo.y-ur(ni)

3. (Fpn^".,:0=* Fpurr-doun(rrr):1) =1 # Fph.oou;{Fpuu*do-,(n;) =1
4. ( Fpno""r : 1 + Fouu-ao*n("or) : r) # r e F;;"; * Fpuu-dou.@) # I

Fputt-up(n;) and Fpuu-d,o*n(n;) are switching functions, stating the conditions for which
there is a conducting path respectively from an external l-source or O-source to n;, which
does not violate the direction of signal flow. Due to the information of signal flow, spurious
paths are eliminated and expression sizes are kept manageable.

ln case of a two phase, non-overlapping clocking strategy, Gated-Clock depicts the
production rule that will detect all phasel gated clocks.
ln the example , nphasel and xclocleconstr are defined as constants :

' xPhasel : 6t.dz

rclockconstr:dt*dz
The constant ncloclcconstr expresses the between-clocks constraint which states that

dr and 6z do not overlap in logic 1.

The inference mechanism will force the rule to propagate through the whole network.

4,2 Memory nodes

Given the definition of good memorisation behaviour in the previous section, one can for-
mulate rules to identify memory nodes in terms of tautology checking in a similar way as

for the detection of gated clocks. The example of a production rule that identifies phase2

memory nodes is shown below.

The knowledge that some nodes have ffxed values during a specific clock phase must
be taken into account during the analysis of memory nodes. This is done by the xinput-
constr variable in the production rule , which is constructed by deriving the information of
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(Defrule phase2-memory-nodes 0
(*rf

((relation DCN-output edcn nodel)
(attribute pull-up xfpu nodel)
(attribute pull-down xfpd nodel)
( attribute input-constraints xinput-constr edcn )
(attach xpossible-mem

(or (not phasel)
(and (not xfpu) (not xfpd))
(and nodel (not xfpd))
(and (not nodel) (not xfpu)))

(true-tautology (or (not xinput-constr) xpossible-mem))
( *not (false-tautology

(and xinput-constr phase2 (or xfpu xfpd)))))
*Then
((assign-attribute memory-node phase2 nodel))))

Rule describing a good memory node.

precharged, and pre-discharged, nodes in the network. The importance of making use of
such logic dependencies, implied by the circuit context, is illustrated by figure 6. lt shows a

bit-serial adder , using a single clock, two-phase clocking discipline [141.
The phase definitions are :

Fpho"u, : 6

Frhor", : 6

For the SUM-output node, the possible-mern expression results in

d +SOMT

This expression is only a tautology in the given circuit context, which makes that node
StIMI is pre-discharged to 0 during phasel i.e

Fphor"l:1=> SUMI:0

6+suMI:t
Therefore, one can state that :

rinput - constr :1 4. rpossible - m.em, : I

whereby ninput - constr : 6 + S0 Ut
The latter confirms that S(I M obeys the condition of possible memory node. A similar

reasoning yields for the second tautology in the above rule.

or
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5 Veriftcation of steady state

5.1 Relevant errors
A combinational block has a good steady state behaviour during its evaluation phase, if

the behaviour of its output signals can be characterized by a boolean function, whose value
only depends on thc present states of the input signals and is independent of their values
in previous clock periods (i.e. during the evaluation phase no internal memory states are
allowed).

The verification of a CB is reduced to local verification of the uell-behat,eness of its
compound IUB's i.e. whether every IUB-output can be considered as a one-way boolean
operator. The algorithm is depictcd below.

The program reports only relevant errors. An error is relevant if it influences the func-
tional behaviour of the circuit.

A combinational circuit that realizes the function f(r;, ...,rn) is influenced by an error
at node n; if there exists an input combination a:(ot, ...ran) such that an error at n, is
activated 1.e. Error"o.a,,(a):1 and there exists a sensitive path of this error to the output
of the circuit i.e. /,,=1(a) # f,,=o(") [1Sl

This implies two tasks to be performed as illustrated by theVerify algorithrrr :

r When a local error occurs, i.e. when there is a local input combination such that
Error"on4,o"or:1, then the consistency of this input combination with the environment
must be verified.

o lf there exists an input combination a; for which a fault is activated at the internal
node n; under investigation i.e. Emor"on4n,(o.i) : 1 then the program searches a
sensitive path to a CB output i.e. F6,p(o;)1,",=o * Fca(o;)l.i=r where Fc,p represents
the behaviour of the CB.

Finding a sensitive path for circuits described in terms of logic gate networks, is concep-
tually straightforward, since the function realized by a CB is given by the composition of the
functions computed by its logic gates. However our interest is in analysing MOS circuits,
represented at switch, level,

An outline of the applied technique to examine local error consistency and to detect
a sensitive path in a switch network which is not complctely composed of complementary
CMOS gates is described in in the above algorithm. A more detailed description can be
found in [171.
The algorithm is extensively making use of symbolic simulation which is provided by the tau-
tology checking program TC [161. This allows to proceed much more quickly than exhaustive
simulation, due to the heuristically efficient symbolic manipulation and simplification rules
which are part of the program.

5.2 Heuristics to increase efficiency
A variety of techniques is applied to increase the performance. The main problem of ef-
ficiency is the expression sizes of the derived path expressions. We have little hope of
improving the worst case, however for many cases of interest , there are methods to poten-
tially reduce expression sizes.
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VERTFY (rU Bt)
If i > total number of unilateral blocks in CB

DO return CB-output expressions
ELSE DO

Vk" e outputs(/[/B;)
DO

Let Errorcondlo"ol : Fphor. * Fou, 
o., "r' 

Fod, 
a o" ot * Fpu 

t o 
" 
ot'4r, *,

If Error"ondto"or Z 7

DO
leo € Fpuororo,

ELSE DO
push fr, on list error - nodes

If error - nodes: A

DO return verify(ILr B;11)
ELSE DO

L"U:!or:g*t, o, : Fphor" * Fou 
n,:, ",r"r, 

Fpd 
or otor * Fpu 

o,oo or. Fro *r^,
If Error"n..Ir,ou,, = 1

DO
lco # Fouorouo,

remove k" from ltst ercor - nodes
If error - nodes: A

DO return verify(.ttlB;11 ))
ELSE DO

V input-combinations A; ol error - nodes
DO
Let Fss(A;): verify( ILt B;+r)

V input-combinations A;,; of error-nodes
DO
Tf Error"on4gtobot + FcB(Aj) f Error"ondo,"ro, * Fcn(A;)
DO
There is a sensitive path to output
V local input combinations for which E"ond1o"o1 : I

DO investigate IU B;
Else No sensitive path

return behaviour of fanout network of IU B;
i.e. (and,(A; + Fca(Ai))...(A^ + FcB(A"))

Algorithm to identify local errors, verify their consistency and ffnd a
sensitive path to the CB-outputs in a switch network.
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Perhaps the most obvious one is exploiting knowledge of reconvergent paths to avoid global
expansion of the resulting symbolic expressions.

Deffnition LO Tuo paths in the data tlependency graph are reconvergent if they start
at a common node (i.e. the fanout node) and, terminate at another conTmon node (i.e,
ffie reconvergent nod,e).

Several rules are applied that reduce the need ?or global expansion of logic expressions :

o lf the data dependency graph does not contain any reconvergent paths , then a local
error condition is always consistent with the environment and a local fault will always
propagate to the output, because there are no logic interdependencies between the
inputs of a lUB.

o The consistency of a local error with the environment $hould only be verified if the
IUB-output is a reconvergent node because, for any non-reconvergent node, there is
no logic relation between its input nodes, and as a consequence any local input pattern
is consistent with the environment.

o During verification of the consistency of local error condition at a reconvergent node,
the backward propagation of boolean expressions can stop at the input nodes of the
minimal subgraph, feeding the node, whose inputs are logically independent. The
latter suhgraph is defined in [19] as a 6upergate.

o The existence of a sensitive path of a local error to an output has to be investigated
only for those nodes that are on a path between a fanout node and his reconvergent
node.

5.3 Error reports
It is important to state that errors which occur due to transient effects, delays in signal
transitions will not be detected by the above verification procedure.

Next we give an overview of the possible error configurations that are detected and re-
ported during the execution of the above algorithm.
A node n; is part of ihe list high-impedant if there exists an input combination such that
Frarup(n;) : 0 and Fpuu-ao*.(n;) - 0.

A node n; is part of the list short-circuit if there exists an input combination such that
Fpuu-u.p(n,i) : 1 and Fouu-ao*n(n;) : 7.

For any local input combination that causes a relevant error, the following analysis of the
IUB-outputs takes place :

IF node € list high-impedant DO
IF number of logic nodes in conducting part > 1 DO
ERROt - MESSAG.O : More than one logic node
writes info to a high impedant output.
ELSE IF number of logic nodes in conducting part : 0

DO
ERROR - MESSAG"E : No information is given to node,
internal memory state detected,

13



ELSE IF capacitance(logic-node) >
3 x D capacitance(conducting-part - logicnode)

DO
IF logic-node I node DO
WARNING - MESSAGE: info passed

via charge-sharing from logic-node to output
ELSE DO
ERROR- MESSAGE:invalid value given to output
via charge-sharing.

The nodes that are flagged because there exists a short circuit between VDD and GND are
furthcr analysed :

IF nr-logicnodes in conducting part ):1 DO
Simulate conducting part with given input pattern
IFD(V(node)):XDo

ERROR- MESSAGE:bad W/L ratios.
IF D(V(node)) : 1Do

WARNING - MESSAGE: possible pseudo nmos
or restoring logic.

IFD(V(node)):0Do
WARNING - MESSAGE: possible restoring logic.

ELSE DO
ERROR - MESSAGE : probably pmos transistor in
nmos path or vice versa.

Results

The ideas presented in this paper are currently being tested on a variety of circuits to
demonstratc thcir soundncss and feasibility. Several examples of 100...500 transistors [201
designed in a static or dynamic CMOS design style could be verified within a few minutes
on a Symbolics 3670 as illustrated in table 1. The largest example up to now is a 24 bit
comparator execution unit of 3900 transistors [211. The design style is 3u Cmos, the circuit
consists of a mixture of pass transistor logic and static gates. lt includes pass transistor
XOR's , pseudo-nmos decoders, multiplexers and 'pass-gate' register files with static refresh.
A two-phase non-overlapping clocking strategy is used. The complete verification takes
about 400 min elapsed time (Symbolics 3670 machine).
These benchmarks resulted in the detection of several errors which were not reported during
other verification steps : wrong connection of clocks (in the ALU), wrong connection of
VDD and GND in the shifter which led to a bad functionality (for some input patterns),
detected by the tautology checker [161.

These results prove the feasibility of the above approach, however it is not a good
measure for the final system performance. A variety of drastic improvements can be made
in its performance by adding known heuristics. Therefore we firmly believe that the presented
approach is practical.
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time

4-bit ALU 292 260 sec

4-bit Divider 220 90 sec

8-bit Logarithmic Shifter
(up-down)

240 600 sec

8-bit Comparator
with scan-path

1560 36 min

8-bit ALU Execution Unit 2414 90 min
24-bit Comparator 3880 400 min

Table 1: Run time results

Conclusions

ln this paper an outline has been given of a new approach to electrical verification. An
environment has been discussed that examines well defined aspects of correct electrical
behaviour i.e good steady state and good memorisation behaviour.
The well-considered use of rule based programming is a key aspect of the proposed strategy.
It allows to get insight into the behaviour of a flattened circuit description and to exploit
this knowledge to manage complexity. Besides, the system does not place any restrictions
on the network structure. The combination of rules and algorithms, based upon a set of
sufficient conditions for good digital behaviour, guarantees a flexible, reliable and practical
verification tool.
To cope with the problem of large subnetworks the concept of lntended Unilateral Blocks is
introduced. To report only relevant errors, the use of symbolic analysis in switch networks
is discussed.

Further work will be directed towards increasing efficiency, generating the digital be-
haviour of an approved circuit and integrate this with functional verification. All basic
capabilities to compile switch level circuits are available in the program, as a consequence,
a compiled code simulator is one of the obvious extensions. The creation of a rule base for
high level timing veriiication will also be the subject of future research.
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