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SUMMARY

In this paper we describe how three simple observations can be used in order to obtain an efficient algorithm for
the computer analysis of ideal switched-capacitor circuits. The resulting algorithm is linear in the number of phases.
The first observation uses the structure of the z-domain MNA-matrix to come up with a new LU-decomposition
scheme which is gradual per timeslot. The second observation allows a great reduction in size of the z-domain
MNA-matrix by a matrix compaction algorithm which also operates gradually per timeslot and which can be
interleaved with the first gradual lU-decomposition process. This leads to a small matrix which can then be used
for a time- and direct frequency-domain analysis. Third, the computations of transfer functions, aliasing functions
and sensitivities can be optimized by applying appropriate excitations and making appropriate combinations of the
terms in the expressions. These algorithms have been implemented in the SC-analysis program DIANA.SC. The
usefulness and efficiency of the program is then illustrated with some examples.

1. INTRODUCTION

Except for some trivial examples, the complete frequency, aliasing and sensitivity analysis of switched
capacitor (SC) networks is not easy and is best done by computer. Even then a complete analysis can
take several minutes. This motivated the direct computation of frequency, aliasing and sensitivity
properties of general periodically switched capacitor networks in the DIANA program by making optimal
use of the z-domain transfer matrix,l the adjoint network2 and many other ideas. This results in a set
of linear equations, with a size which is proportional to the number of phases (N) and to the nize of the
network (s). By making full use of the matrix structure, a very efficient L(J-decomposition and matrix
compaction algorithm is obtained which is linear in the number of phases. With the appropriate choices
of the right-hand side and the use of the adjoint switched capacitor network we further minimize the
number of linear equations to be solved. The general analysis problem is described in Section 2. It is
shown that the full frequency behaviour of switched capacitor networks can in general be obtained by
solving a set of linear equations obtained by the well known modified nodal analysis (MNA) method
used in most CAD programs today. In Section 3 we describe then an efficient LU decomposition which
is tailored to this structure and to the sparsity of the matrices. In fact only one gradual LIJ decomposition
has to be performed in advance and one extra LU decomposition is needed at each frequency point. In
Section 4 it is shown how these equations can be reduced by using an algebraic matrix compaction
algorithm. The frequency, aliasing and sensitivity computations can then be organized in Section 5 such
that a minimal number of linear equations has to be solved. This can be achieved by choosing appropriate
excitations for the linear equations and by using the adjoint SC network. Some examples illustrating this
algorithm are given in Section 6.
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The above described techniques allowed considerable savings compared to the time domain technique3

which was earlier implemented in the DIANA programn and which was then used for frequency analysis

by performing FFTs on impulse respon_ses. At this moment the DIANA program has been enhanced by

the algorithms described in this papert and has been tested and used for industrial application. Other

prográmst't do not make use of the full structure of the problem oÍ are designed for special classes of

SC networks. It should also be mentioned that other approachess'e to set up the equations (based on

graph theoretic arguments instead of modified nodal analysis stamps) can be combined with the techniques

of Sections 4 and 5.

By using matrix compaction, the analysis of switched-capacitor circuits is at least as efficient as the

method which uses predefined macro models of SC-building blockslo while it still has the advantage that

the circuit topology and the number of phases are not restricted.
The computations in this paper are very general in the sense that they apply to SC networks with

many phases, arbitrary duty cycles and with or without continuous coupling between input and output.

The linearity of controlled sources and capacitors, however, is always assumed'

The basic ideas of this paper have been pointed out in Reference 19 by the authors. In what follows,

these ideas and especially the matrix compaction process are carried out more formally'

2. BACKGROUND RESULTS ON SC-CIRCUIT ANALYSIS

2.1. SC-circuíts

We define SC circuits to be arbitrary linear networks containing ideal switches, capacitors, independent

voltage and charge sources and dependent sources VCVS, QCQS, QCVS and VCQS. The switches are

controlled by Boolean clock variables dr(r):0 or L.ó,(t):0 (resp. ó,(t):1) corresponds to an open

(resp. closed) switch at time r if this switch is driven by clock i. The time is partitioned into time slots

Lu J (tu, /r+r] such that the clock signals do not vary in A;., i.e. ó,(t): Sip tor I e Ar. We assume that the

clock signals are ?-periodic, with N time slots (called N phases) in one period of duration 7'
Suppóse, without loss of generality, that the SC-network is connected in each timeslot. This assumption

is, moreover, realistic because on each real chip implementation of an SC-circuit no network parts can

be completely floating without a (parasitic) capacitive connection with the rest of the circuit. Suppose

also that there are no loops of (independent or dependent) voltage sources and closed switches in any

timeslot. Cutsets of (independent or dependent) current sources and open switches are also forbidden

in any phase. This is not a real restriction since for such loops or cutsets a contradiction can only be

avoided if the parameters of certain components have very specific values.

2.2. SC-analysis by using the Z-domain MNA-equations

In this subsection we summarizethe results for SC-analysis which have been presented in previous

publications.l'2
The MNA-framework of SC-circuits in the time domain was introduced in Reference 3. It has been

extended towards the z-domain analysis in Reference 1. The results are:

Fact 1.r Let {v1, yz,y3.. .vl.r, yp+r . . .} (resp. {ur, ur. . .}) be the piecewise-constant voltage responses

at the nodes (resp., voltage sources in some selected branches). In other words vr is the node voltage

vector in Ar. Also, let {q1, {z . . .} (resp., {wr, w2, . . .}) Ue the charges transferred in some selected branches

(resp., injected by charge sources in the nodes). More precisely qs is the charge vector transferred in

these branches between the end fi of the time slot A;-1 and fi*r. Each of these sequences is partitioned

into N different sequences one for each phase and z-transformed e.g.
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Then it is proved in Reference 1 that the input z-transforms W;", IJ;., k:L,...N are related to the
output z -transforms Vr, Qr, k : L, .. . N by:
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where the missing entries aÍe zero and where the matrices Ar, Br, Cr, Dr and E;. characterize the SC
network and are determined by accumulating the stamps of all branches as described in References 1

and 3.
The equations (2) contain N blocks, one for each phase. In each block the first part consists of node

charge equations and the second part are the constitutive equations of voltage sources, dependent sources
and switches. Let M be the inverse of the matrix in (2), call it the z-domain transfer matrix and partition
it accordingly into
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Fact 2.1 The frequency domain transfer function Itti)(r) is the entry (ll) of the frequency domain
transfer matrix H(<o) which relates the branch voltage vector U(c.r) and the node voltage vector V(ar)
and can be computed from

H(o,) : ï, {*to,l s-iatu*, (,ï "t'',*,"u,("t-")) 
.lrF - ru{ry]nuu1-y}, (4)

where

vu@) L2{sinlp 1u*r- t*) /21exp lip$1,*1- t*) l2l]l lTp (5)

and the matrices H*t(z) are given in (3).

Moreover the aliasing matrix is given by:

X(a4 <,t +nal") : I vt"(o) g i-t'*t 2; 
"i 

(-+"-")tr*tHrr (ei(-*"-JT)
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Fact 3.' For any network ,y'f one can construct an adjoint SC network "f. fnis can be used for an

efficient sensitivity and noise analysis. The setup of the adjoint network and several useful expressions
are given in Reference 2.
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3. EFFICIENT LU-DECOMPOSITION OF THE z-DOMAIN MNA MATRIX

For the solution of network equations AX: B, tU-decomposition or the method of Crout and Doolittle
is very often used. This is because the L and U coefficients can be stored at the same memory places

as the original matrix A. By using appropriate matrix reordering techniques sparsity in A often results
in sparsity in the Z and U factors so that sparse matrix techniquis can bsused in the solution process.tt'

ThJ advantage of this approach is that much less core-memoryl2 is required to store the matrix and that
the computation time increases linearly with the circuit complexity compared to a full matrix
implementation.

The z-domain MNA-matrix M-1 can be partitioned as an N xN matrix consisting of submatrices F;;,

where:

F;1 # 0,

Fi*1 ; *0,
Frlv l0

and all other F;,. :0
So the z-domain MNA equations assume the form
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where Fi is a main submatrix of phase i. For the MNA formulation the submatrices Fii, F;j, the unknown
vector X; and the source vector Y; êre

.,,= [àj ï:] ,,: [ï' i] .,: [[,] ",: [lj]
From the assumptions made about the network topology we may deduce that the su.bmatrices F;; aÍê

all non-singular. Therefore one can perform the pivoting for non-zero_diagonal elements duringLU-
decomposiiionl' and the reordering for reducing the number of fillins12 in the sparse matrix storage

scheme gradually one timeslot Í at a time on the main submatrices Fri. Compared to the case where the
matrix (7) is treated as a whole this may result in small expense of some fillins, and in much more efficient

algorithms for pivoting and reordering. This is due to the fact that the complexity of these algorithms is

more than linear with respect to the matrix size.

Suppose that (7) has been gradually reordered for non-zero pivots and near-minimum fillins. After
ZU decomposition of the first N - 1 phases, (7) becomes:

11 lUrrvz-1

IJzrrz-l
(8)

LrvN-r I 0 Frvrv * Pz-1

where all L;; are lower and all Uii are upper triangular submatrices. Remark that up to this point no

value for z-t has been specified. Thus, for a frequency analysis the LLI -decomposition of the submatrices

of the first N - 1 timeslots need only be done once!

g

11

[:l
Lp Lzz Xz

XN

0

0



MATRIX COMPACTION TECHNIQUES 245

Hereafter the decomposition LxirrUrvry : Frvr +Pz-1of the last timeslot submatrix can be done for every
frequency value ar of interest (z-t :e-t"; followed by a forward and backward substitution.

In a computer implementation using sparse matrix storage, the LII factors in (8) can be stored in the
same pointer system as that used for (7). Of course the submatrices of the last phase Fryp, P, Lry1,, LJpp
cannot be treated the same way but can be stored in an extended storage place of the original pointer
system.

4. EFFICIENT MATRIX COMPACTION

4.1, Generalities about matríx compaction

The compaction process described below is very general in the sense that it can be applied to all matrix
equations of the pencil form:

[A+Z-1B]X:Y (9)

where z-1 is a complex parameter or a linear operator. In our case the matrices A and B are directly
obtained by accumulating the contributions of the stamps of the components.

In this section an efficient algebraic matrix compaction algorithrn is described which usually yields a
matrix for SC circuits which is smaller than the sum of the number of applied excitations and observed
output variables in the different phases plus the order of the prototype filter. This matrix compaction
technique results in matrices which are most often smaller than these obtained by topological methods
for matrix compaction of SC-circuitse and considerably smaller than these obtained in other approaches
which do not take any advantage of matrix compaction.6-8

Observe that our topological assumptions guarantee that equation (7) can be solved and the matrix A
will be non-singular

In the compaction process which is described below, certain internal variables and equations in (9) are
removed by Gauss elimination. This removal can only be done for these variables and equations that
are of no further interest for the ensuing calculations. After compaction, certain rows and columns in
(9) are eliminated by Gauss elimination and (9) is reduced to

[A'+ z -18'16' = g' (10)

The method presented in this paper makes full use of the structure of the z-domain matrix (2). After
compaction the compacted matrix (10) will still be in a similar form to (2).

The variables in the solution which are of further interest are the desired output variables and certain
variables necessary for the sensitivity analysis. The variables in the right-hand side which are of further
interest are the non-zero components. Corresponding to these two sets of variables the matrix has certain
'columns and rows of interest'.

Notice the duality between rows and columns in the elimination process because of the use of the
adjoint switched capacitor network.

The analysis below can even be adapted to the time-domain analysis of ideal SC circuits, (which do
not have transient eftects due to opamp poles or switch resistances) by a back transformation of the
z-domain equations (9) to the time domain where the z-1-operator corresponds to a delay in time:

!t'$'(nT) = -B',9',((n - 1)?) +(',(nT) (11)

Variables in different phases of the solution vector f' must of course be positioned into the right time
sequence.

4.2. Algebraic obseruations about Gauss elimination and LU-decomposition of a set of equations (9)

In this section some observations are made concerning LU decomposition and Gauss elimination
which can be used in the compaction process.
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In order to facilitate the use in a computer program both CPU time and memory requirements have

to be taken into account. To avoid large memory storage, sparse matrix techniques have to be used, but
also redundant storage has to be avoided. Therefore we use LU decomposition where Íhe LU,factors
are gradually stored in the space of the original matrix A as A* : L +U -I. The next theorem provides

conditions which allow an interleavingof an L(J -decomposition of a part of a matrix and Gauss eliminating
certain parts.

Theorem 7

Consider any set of equations AX: Y(A non-singular) which is partitioned as:

tiltïl Fl
(12)

If All and Lzz are invertible and Yz:0 and Arz:0 or A21 :0, then it does not matter whether one

first does a partial L(J decomposition with Arr and then a Gauss elimination of Xz with the second set

of equations or the other way round.

Proof. See Appendix I.
The requirements of this theorem are satisfied if one proceeds from the first timeslot to the (N - 1)th

and performs LU-decompositions and Gauss eliminations within each timeslot in the z-domain MNA
matrix (2).

The second block row and the second block column correspond to the elementary rows and columns
in one timeslot i in (2) that may be eliminated. Only the equations without input source term in timeslot
i are eliminated and therefore the requirement of Y2:0 is satisfied in that timeslot.

As already indicated in Section 3, wL keep postponing calculations with specific values of. z-t .Therefore
matrix reductions will also be done as long ai poisible without specific values oï z-1.

It is our intention to compact the equations of phase N so that the resulting equation is still of the

form (9). More generally it is possible, but not advisable, to compact further until transfer functions are

obtained if one works with formula manipulation in the field of rational functions of z.

In Appendix II some definitions are given about À -row and À -column independence. Theorems 2 and

3 state how z-1 independent rows and columns can be treated so that Gauss-elimination will only generate

matrix elements with terms in zÍwhere i:0 or -1. Theorems 4 and 5 state under which conditions on

the rows and columns these properties are preserved.

Observe that the columns contained in the N - 1 first block columns of matrix (2) do not depend on

,-t.Thisallowstheperformanceof Gausseliminationswhicharevalidfor allz-l.AlsoLU-decomposition
may be performed when taking pivot elements in parts which do not depend on ,-t because ZU-
decomposition is essentially the same as Gauss elimination.

In the last block column the columns corresponding to the charge variables are also z-1-independent.
The rows in the last block column cor."rponding to the branch constitutive relations are also z-1-
independent.

With the above observations in mind the compaction process for the z-domain MNA matrix (7) is
derived in the next section.

4.3. The compaction process

Depending upon the available computer memory the compaction of the equations of the first N - 1

phases can be done one at a time (gradual) or all at once. If compaction is performed gradually less

memory is necessary but more sparse matrix fillins are generated in the reordering process. If compaction
of all first N - 1 timeslots is done at once fewer fillins occur but the ordering and pivoting algorithms

will take more time. The time necessary for matrix reordering and pivoting increases with the third power

latt Arz

lA, A.zz

L^" Asz
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of the submatrix dimension to be ordered. Therefore for circuits with many timeslots it is better to use
the gradual compaction process. In the DIANA program both kinds of analyses can be specified (default:
gradual, can be overridden by the '-GRADUAL' option).

When it is said in what follows that processing (such as reorderin g, LIJ -decomposition and Gauss
elimination) is done on a certain part of a submatrix Fry in (7), all the submatrices which are in the same
row or column must also be processed according to the selected operation. E.g. in the LU -decomposition
of matrix Frt also the elements of the matrix F;; and F;11; êr€ processed at the same time. This must be
done of course because they are part of the same matrix (7).

Step 1. Preparation.
1. Set up and enter the submatrix Fr1y in the sparse matrix system.

Step 2. Compaction of the first N- 1 phases,
Perform for i : 1 . . .À/-1 steps 2.7 to 2.8
l. Matrix set upi Set up and enter the main submatrix F;; and the coupling submatrix F,+1í of the

timeslot i in the sparse matrix system.
If í is equal to À/ - 1 then also set up and enter the main submatrix of the last timeslot Fiyly in

the sparse matrix system. This will allow to determine a better 'pseudo' minimum number of fillins
during the reordering process.

2. Marking of rows and columns; 'Mark' the rows in F;; corresponding to input sources in the direct
network and desired outputs of the adjoint network in timeslot i, so that they cannot be eliminated.
In the following all rows and columns which may not be removed by Gauss elimination will be
'marked'. The remaining rows and columns are 'unmarked' and can become candidates for the
Gauss elimination in the compaction process.

Mark the columns in l';; corresponding to desired outputs in the direct network and input sources
of the adjoint network in timeslot i, so that they will not be eliminated.

3. Singleton algorithm:11 Reorder singletons (rows and columns with only one non-zero element) which
are one in F;; in the first part of the matrix F;;. These singletons can be assigned as initial pivots for
either 'unmarked'rows and columns or marked rows or columns. The singletons originate either
from grounded voltage sources and grounded closed switches or from current sources and open
switches. Delete rows and columns corresponding to singletons of unmarked rows and unmarked
columns.

4. Preliminary piuot selection: Perform a pivoting algorithm on Fii il order to obtain u rnutrix tliugonul
which is different from zero during the LU -decomposition process. For this purpose the algorithml3
can be applied to the SC-circuit in each timeslot i,

5. Constructíon of a submatrix with free piuots: At the beginning of the step no pivots are free. Make
pivots free which correspond to rows and columns which are unmarked and order them in the
upper left corner of the matrix F;;.

6. Reordering step of the freed piuots: Reorder the pivots of the freed part in order to cause a 'pseudo'
minimum number of fillins in the sparse matrix systeml2 during Gauss elimination or L(J -decomposi-
tion.

7. Gauss elimination: Perform a partial Gauss elimination of the whole matrix (7) with pivots that
have just been freed. Hereafter entries of the sparse matrix system corresponding to eliminated
rows and columns can be deleted in a garbage collection in order to obtain an efficient memory
use and fast execution time.

At this point the original pivots of the remaining matrix either have a marked row or column.
However by performing a column andf or row interchange a new submatrix with free pivots can be
constructed in the upper left corner. For numerical reasons the new pivots are chosen so that their
absolute value is greater than a certain threshold value 7a. If there is at leasi one pivot freed in
this search then repeat steps 2.6 and 2.7 .

8. LU decomposition of the remaining submatrix: Reorder the remaining non-feed part of F;; for a
minimum number of fillins, and perform a partial L(J decomposition in this part.
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At this point in the compaction process the matrix equation (2) is now reduced to

-l
to. . .0 1l (13)

/L BN.c DN,

0

where only non-zero elements occur in the shaded areas of Q and P

Step 3. Compaction of the last phase.

1. Marking of rows and colutnns i Mark rows in FNrv corresponding to input sources and desired outputs

of the adjoint network in the last phase. Mark columns in Frv1y corresponding to input sources of
the adjoint network and desired outputs of the direct network in the last phase.

2, Singleton algorithm: Detect singletons and order them in the first part of Fivrv. Delete rows and

columns corresponding to singletons of unmarked rows and unmarked columns.

3. Preliminary piuot selection: Select pivots in the last part of Q in order to obtain a non-zero diagonal.

4. Row algorithm:
7. Constriction of a submatrix with free piuots. Make pivots free which correspond to unmarked

rows which are r-t-independent and to unmarked columns. See in Appendix II for the definition
of z-1-independent row and column. Notice that rows of Civ and DÀr are t-t-independent during
the first pass of the row algorithm.

2. Reordering and Gauss elimination of the free pirsots. Reorder the last free pivots for a minimum
number of fillins. Perform a Gauss elimination on the free part. Delete the matrix entries

corresponding to the eliminated rows and columns. This can be done all at once because Theorem

4 in appendii II guarantees that z-t-independent rows remain z-t-independent during Gauss

elimination.
3. Construction of a submatrix with free piuots. Examine for unmarked rows if they are z-t-

independent and see if a column interchange of the pivot column with an unmarked column can

result in a new free pivot. Search all new pivots in this way. The new pivots are chosen in Q (13)

so that a strong diagonal can be maintained. If there is at least one pivot free in this search then

repeat from the reordering step in this row algorithm.
5. Column algorithm: dual to the row algorithm step 3.4. Repeat row- and column algorithms until

no additional pivots can be freed and eliminated anymore.

6. At this stage still a row and column algorithm could be performed but now also with marked rows

and marked columns and by using LU decomposition instead of Gauss elimination and without

deleting matrix entries. This would result in the fact that for each frequency value an LU decomposi-

tion has to be done on a minimal dimension matrix. This step is not implemented in the current
DIANA version because only little computational gain is expected here.

7. Reordering and LU decompositíon of the remaining part: Reorder the remaining rows and columns

of phase N so that a minimum number of 'fillins' is created by LU decomposition of this part.

P



(14)

where L is a lower triangular matrix and U is an upper triangular matrix. Only the real matrices L, LJ,

Q, R, H and P need to be stored.
By using this matrix compaction algorithm, the z-domain MNA-matrix can usually be compacted to

a matrix whose size is equal to or smaller than the sum of the number of desired inputs and outputs in
the different timeslots and the number of independent capacitors in the last timeslot. For two phase
SC-circuits this number is usually equal to the order of the reference filter.

Because the interleaved Gauss elimination and LU -decomposition is performed in one phase at a time
the above algorithm is linear in the number of phases.

The matrix compaction requires a minimal effort because one only needs to select the equations to be
compacted and eliminate them by Gauss elimination. The operations in the Gauss elimination are the
same as in lU-decomposition in this interleaved process, only they have a bigger scope. In the last phase
part an additional search for z-r independent rows and columns needs to be done.

4,4, Solution process for a certain a^-ualue

Step 1. For any ar-, set z : ei-^r and perform the LU decomposition of the last phase, which is useful
for all excitations Y', Yir. Since the matrix M is non-singular for almost all values of a^, this ZU
decomposition can be performed:

H+e-j--Tp: LrvUrv

Step 2. For any excitation Y', Yir the response X', Xl can now be computed as follows:

Z:L-ty'

I'N : Yi,- QZ

xi,: UilLrlr',

M:Z-e-j--tnxi,

X': U-lM

(1s)

MATRIX COMPACTION TECHNIQUES

The result of this compaction process can be written as:

ti ï[ ï]tà "ï"-i.lH ïltil:lJ;

The reader can verify for himself by simple substitutions in (14) that this is indeed a correct solution.
If one is interested in a solution of the adjoint equations, step 1 does not have to be repeated. If the

contributions of the difierent phases to the vectors X and Y are organized in decreasing order of switching
phases, we have to solve M-tk: Y. Using the matrices of (14) this equation can be decomposed as:

t", ïlk": , 
^,.*l-,*,lt; ïtï ïltï;l:tï;l

249

This allows description of the different computations for the adjoint network.

(16)
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Step 3. Compute

i,:gr-rit
Ft:Íi-e-i'^rgrL
xi : r,s-'us-'Ë, (t7)

rvt: Z-O'xi
Í(' - L"-lNï

Careful inspection shows that the number of computations required by this algorithm increases linearly

with the number N of phases. This is certainly important for circuits with many phases, but also for

circuits with two phases the algorithm is very fast.

Observe that the matrix P characterizes the essential signal circulation phenomena of a SC network'

4.5. Graphícal interpretation of this matrix compaction algorithm

The matrix reduction method used in this paper has a purely algebraic nature. It has the advantage

with respect to purely topological matrix reduction methods such as those used ine that matrix reduction

can be carried out much further because the reduction is not restricted to nodes with their corresponding
node equations.

For nodal matrices elimination of equations and variables with pivots on the diagonal can be interpreted

as a star-mesh transform.to'tt When using off-diagonal pivots and with the MNA-matrix such a representa-

tion is not adequate any more. Then u Aig."ph reprèsentation must be used.t6 Beyond this argument

which is valid for time-invariant as well as time varying networks there is another argument which is

related to the periodicity of the network and the way the z-domain MNA equations are set up. To each

node correspond N equations and variables, one for each phase. Because the compaction is algebraic,

one has the flexibility to eliminate some of the N and keep the others, which is not the case for topological

reductions.

5. EFFICIENT ORGANIZATION OF FREQUENCY, ALIASING AND
SENSITIVITY COMPUTATIONS

We show that only two sets of linear equations of the form (14) have to be solved at each ar- of interest

in order to obtain the frequency, aliasing and sensitivity characteristics at ar-. Our algorithm makes full
advantage of the following observations. The frequency and aliasing characteristics require linear combina-

tions of certain entries of the matrix M. These entries and those needed for the sensitivities can often

be computed more efficiently from the matrix Mr of the adjoint switched capacitor network. By choosing

the excitation Y appropriately certain linear combinations are automatically obtained in (14). The

contribution from the continuous coupling can be obtained by setting z : a in (I4).
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Step 1

Apply an excitation Y where component 7 of U;, is 1 and all other components of Y are zero' Solve

(14) with z :@. The solution X is then partitioned into N vectors.

t):]: tï$3], rork: !,2, N

where S('i) stands for the_7th column of the matrix S.

ApplyanexcitationÍwherecomponentÍof Wa E:\-k+L islandallothercomponentsof Y

aÍe zeÍo and solve these equations for z = @. The solution X is then partitioned into N vectors.

[]:l = tifiï:ll, k:7,2, N



Step 2

Solve (24) at each ar- for the original circuit under the following voltage excitation in branch l (not
to be confused with the i : Jt-tll.

U(i)_ero_t*, for/ :I,2,... N

and all other components of Y zero. The solution X is then partitioned into N vectors with

ti:]:,ï "''-"-'[ïii],.;':;], ror k =t,z, N

Solve the adjoint equations at ar- for

*Í': ur"(a^) 
"-ia^tu*' 

for k : 1, . . .N
where

, u @) : 2{sin lp (t r * r - t à I 2l exp I i p Q u * r - t à / 2ll / T

and all other components of * zero. The solution is then partitioned into N vectors with

[$J = 
uË, 

,u,,-, 
"-ia^,u 1;[ili$:f], ror t : t,z, . . . N

Step 3

The desired information at ar- is then obtained by making the following combinations

H"''(.^): 
,Ë 

e'b-"*' iÍt'* Ë, l"F - ,u1rs]to11) (18)

X"''(r^, a^*na")= | 
",t'**n@")Í'*1 

Éu)+ f, \ru1-nr")- vt @^)f ein@Jk+1tk(i)
I:1 k:1

where x(t) is the 7th component of the vector Í.
As an example of the computation of sensitivities we give the sensitivity oÍ HGi) (<o-) with respect to

the variation of the amplification A of. a voltage controlled voltage source, where the voltage in branch
q is A times the voltage of node m with respect to node n

, f "" (,-) = fl+ à[,Ë i l"'r,t :- I -,tÍ")) - F:,e# -, o {. à) tf'(lf"' - l Í: )

Another useful sensitivity is that with respect to a parameter À which affects all capacitors

sí,,,, (."^) : *h[ _,à ilf ,rl

*'y'ÀI*, $r1n, +e-i-^r LT#n'

- rr:,('#-,,. t.-r) (ií # ^-)
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where AAk/A^ is known from the design. Observe that also this sensitivity is obtained with the solutions
of two sets of linear equations at ar- (step 2).
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6. APPLICATION AND COMPUTER IMPLEMENTATION

6.1. Example 1: a first order lowpass filter

This first example is used to illustrate the compaction process which is described in 4.3.

A first order two timeslot SC lowpass filter is shown in Figure 1. Suppose that one \ilants to know the
transfer function from a voltage source in node 1 in timeslot 2 to node 3 in both timeslots.

9-?

t
qrl ct @

VIN a2

íàS2

LI
C2

61

ó2

0-nrr

-Ctz-r

1

0
t

Figure 1. First order 2-phase SC lowpass filter

In the following we refer to elements in the matrix by their original row and column numbers as

indicated in (19), even if the rows and columns are reordered in the matrix or if some other rows and

columns have been deleted.
After steps 7 and2.l the z-domain MNA-matrix has been set up as shown in (19). The input is only

applied.during the second timeslot. Therefore we set Vt:0 and only equation 4'needs to be marked
(step 3.2). The output node 3 is observed during both timeslots, therefore column 3 and 3' (afterwards

in step 3.2) are marked. The marked rows and columns are indicated by a # -sign.
After the application of the singleton algorithm (step 2.3) in the first timeslot submatrix, the singletons

(4,1), (1,4) and (5,5) are reordered first in the first timeslot submatrix. All of the rows and columns of
the singletons are unmarked, so they can be deleted from F11.

Now the pivoting algorithm is done on the remaining part of F11 (step 2.4).Here Frr is reordered so

that the next pivot elements: (2,6), (3,3) and (6,2) appear on the diagonal.
In step 2.5 pivots (2,6 and 6,2) are made free. Pivot (3,3) is not free because column 3 is niarked.

After the reordering of the freed part in step 2.6 the matrix looks like:

Ct z-1

3',

0

cÉr
(-Cy-C2)z 1

J

0

-C1
C1+ C2

45 6 r'
10 olo
o o 1lo
0 0 -1 t0

0

0

0

5',

0

0

0

2'

0

00
00
00

4',

0

0

0

n
0

0

Vrt
Vzt

Vy

0

0

0

ït'

1

2

J

4

5

6

I'
z',

3',

#4',
5',

6',

t2
00
oCr
o -Cr
100
000
0_ _1____-l
000

--ió-n-- o ï
lo 1 o 

It0 0 0 t

ï--- o---------o
000
000

-----1-

--1

I

I

I

I

I
I

I

I

I

Qt
Qzr

Qzr

0

q
0

0

0

0 -cr cr
o cr -ct-cz

1

1

0

ï-
I

I

I

I

t
I

I

I

I

0

0

0

00 0

00 0

00 0

00
00

0

0

0

00
00
00

0

C1

-Cy

0

-C1
c1+ c2

t1
0-1
00

0

0

0

Vn
Vzz

Vzz
ró--o--ï -1

0

0

0

-1
0

0

0

0

0

0

0

00
00
01

Qtz
Qzz

Qzz

Viz

0

0

(1e)



MATRIX COMPACTION TECHNIQUES

T1

253

(20)

(2r)

(22)

62
lCt
.1

-1 -Cr

#
3

-Cr
-1

cl+c2

1 2',

-cÉ-7

cÉ-r

#
3'.

cÈ-r

-(Cr + Cr)z-t

4', 5', 6',

2

6

3

\',

2',

3',

#4',

5'
6',

)

-Cr
Cr

Cr

Ct-Cz

#
3',l' 2t 4'. s', 6',

-1

#
3t

7

Cr -Ct
-Cr CtrCz-z-tC,

-7

Ct

-Ct
-Ct

cr+c2
1

1 -1
I

Now a partial Gauss elimination is done (step 2.7) on the whole matrix with as (freed) pivots (2,6) and
(6, 2). Then the rows and columns corresponding to these pivots are deleted.

There are no unmarked columns any more in the non-free part. The compaction process is finished
for timeslot 1 and an LU-decornposition can be done on the non-free part (pivot (3,3)) of F11. The
matrix is now reduced to:

#
3

1

#
J

9z

t' 6',5',4'.2t

J

t'
2t

3',

#4',
5',

6',

I 1

I -1
-1 1

1 1

1I
L 1

Step 3 of the algorithm can start the compaction of the last phase. The singletons (6',6'), (I',4') and'.4',I') are ordered first (step 3.2).The rows and columns corresponding to the singletons (6',6') and'L',4') can be deleted from F22 because thqy are unmarked. In order to obtain a non-zero diagonal the
rivots (2', 5'), (5', 2') and (3' ,3') and singleton (4', l') are placed on the diagonal (step 3.3).

In the application of the row algorithm it is found that rows 2',5' are z-t-independent and unmarked
step 3.4.1). These rows are reordered, Gauss eliminated and deleted by using (2',5') and (5', 2') as pivots
step 3.4.2). Now the original matrix has been reduced to:

3

3',

#4',

4

J

l-1
t__
It
L'

#
3', t'

#
3

fC,t;
L.'

1,

#
3',

-Crz-1
Cr*Cz-Czz-r -Cr

1

t____
I

-l
I

I

I

I
1 1

.n the application of the column algorithm (3.5) it is found that column f is z-1-independent. This
)olumn and row 3'can be eliminated by Gauss elimination by using element (3',l') as pivot. At this
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stage the compaction process is completed and the compacted equations are given by:

##
3

t__1___

l-,,",

#
3',

t
3

#
3t

J l_c:_t_ _ _ _-_Q{l _ _l [Y,:_] [_0__l

I'i"*ï=)1",1 L",l
#4',

(23)

Notice that by interleaving matrix compaction and L(J -decomposition, the reduced matrix is already in
L(J-decomposed form for the first N-1 timeslots. For this simple example, the matrix (19) of t2xt2
could be reduced to a 2x2 matrix (23).

6.2. Exampte 2. Thírd order lowpass filterL8

Figure 2 shows a third order reference filter.18 This filter is converted into the SC-filter in Figure 3

according to the principles described in Reference 18. From the clopking scheme in Figure 3 it is seen

that there are 12 phases. The opamp has been modelled with a finite amplification of 1000. This circuit
results in 348 z-domain equations.

Rl R2 R3

R1

Figure 2. Analogue reference filter of a third order elliptic lowpass filter

For the analysis of the transfer function from the input node in timeslots 7 and 7 to the output node

in timeslots 6 and 12, the z-domain MNA-matrix is LU-decomposed and compacted with the above

algorithm as implemented in DIANA.SC from a dimension of 348 x 348 to 9 x 9. This dimension
corresponds to the number of input sources in the different timeslots (:2) plus the number of output
nodes in the different timeslots (:2) plus the number of independent capacitors in the last timeslot (:5).
This last number is equal to 5 because capacitors CI, C0, C3 and C4 form a loop in the last timeslot
and therefore one capacitor voltage will be dependent upon the others. The resulting number of matrix
entries is 57. This compaction took 26'1 s VAX 11/780-cpu time. An analysis with this matrix over 100

frequency points took 12.2 cpu s.

Figure 4 shows some analysis results of this filter which were obtained by the DIANA.SC program.
Plot (a) shows the amplitude and phase characteristics of the transfer function from all the timeslots at

the input to all the timeslots at the output node as defined by equation (4). Plot (b) shows the sensitivity
of the transfer function to a parasitic capacitance in node 12 defined as:

^H d,FI (1pF)
)crr: dC_ H

Plots (c) and (d) show the sensitivity of the transfer function to the element values of capacitor C3 and

the opamp. Finally in (e) the group delay and the amplitude slope is given. The matrix for this whole

analysis could be compacted to a dimension of 63x63. This compaction took 25'7 s cpu time. The

complete analysis in Figure 4 took 20'6 s cpu time over 100 frequency points.
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Figure 3. Third order SC elliptic lowpass filter with 12 phases and associated clocking scheme

7. CONCLUSIONS

In this paper we have presented several techniques which are combined in a very efficient algorithm for
switched capacitor circuits. This is accomplished by using the z-domain MNA-matrix formalism. The
gradual compaction of the z-domain MNA-matrix, by the use of the adjoint network and the appropriate
organization of the calculations results in a very efficient and handsome tool for the computation of
sensitivities, frequency- and aliasing characteristics. No constraints on the number of phases, duty cycles
and continuous I/O-coupling were imposed. The algorithms have all been implemented and tested in
the user oriented switched capacitor analysis program DIANA,SC.
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Figure 4. Analysis results of the third order filter in Figure 3: (a) transfer function
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Figure 4(c). Sensitivity of the transfer function to the value of capacitor C3
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The above algorithms form the basis for the direct time- and frequency domain analysis in DIANA.SC.
This allows the efficient computations of transfer functions, aliasing functions, sensitivities of the transfer
functions to capacitor values, to parasitic capacitances and to values of the four kinds of dependent
sources, group delay analysis and amplitude slope analysis. Different analysis operation modes and options
are possible as pointed out in Reference 5.

APPENDIX I. PROOF OF THEOREM 1 FOR THE CASE Azr :0
If a partial LU decomposition is performed first, one obtains

8,, o ol [u,, rJn u,J fx,-l l-vJlo r ol.l o È,,, l,,llx,l:lol e4)
1",, o 1l I o n:; "; L;l t"J

with

All : L11LJ11, Lgr = A:rUii , lJp:LrÏI^rz, Urr: LirtA* eS)
IJY= Lzz-A"AirtArz

IJ:r = Aes -A31A111A13

This set of equations is equívalent to:

[u,, rrn u,J [xJ I rlJ o ol [v,l
lo Azz.r,,llx,l=l o rollol eut
I o rrn .r,J L*J l-r,,r.li o rJ Lv,l

In order to perform a Gauss elimination of X2 with the second set of equations, we use the invertibility
oÍ" A22 and obtain:

[";' i::-ï,::ïi;i;]tïll:[-,l,i,,r ï]tï:l e7)

Conversely the Gauss elimination of X2 using the second set of equations of (19) provides:

til ï::-ï::ï:iï:ltï:l:tï:l (28,

lhe LU decomposition of the first set of equations in (28) produces:

H:l ïl[";' ïl]tï:l:[ï]l (2s,

vith (25) and

Uï1 : Lii(A rc- Atzlill.zz)
uïs:A,s -1^,21l;;1^23-L31LI11(A 13-A*1l;;1^2) 

(30)

lhis set of equations is then equivalent with:

[";' ïi]tï:l: [-"i,i,_; ï]tï;l (31)

Jsing (25) and (30) one can easily verify that (27) and (31) are exactly the same equations as claimed
n the Theorem. n
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APPENDIX II. À -INDEPENDENCE IN THE COMPACTION PROCESS

Consider a matrix equation:

(A +,r n;x : Y (32)

where Y is the excitation vector, X is the unknown vector and A is a non-singular (n x n) matrix and B
is an (n x n) matrix that may be singular. À is a complex parameter or a linear operator.

Definition 1

A row i of A, B, Y in (32) is said to be L-independent if the excitation Ï; = g and if there is a constant

7; of such that

bii:yiaii forT:I..'n

Hence (1 +,ty;) is a common factor in equation Í and can be eliminated by a division'

Definition 2

A column i of A and B in (32) is said to be L-independent iÍ. the variable x; is of no interest and if for
all elements aii (i:t...n) of A and all elements btj (i:1...n) of B the following condition is satisfied'

bii :yiaii for í : I' n

This implies that (1 + À7;) is a common factor of the variable x;. Therefore xi crn be scaled by (1 + l7;).
Observe that the factors y; (and 1) in Definitions 1 and 2 are finite because the converse would imply

that all a,i of row i (resp. column 7) are 0. This is not allowed because the matrix A is assumed to be

non-singular.

Theorem 2

If a row i is À -independent and if B' is the matrix which one obtains by setting all elements á;;

U:t ... n) of B equal tozeÍo, then the equation:

(A+ÀB',)X:Y (33)

is equivalent to (32).

Proof. Frow i in matrix equation (32) is given by:

n

L aiixi+À I bijxj:li

But because row í is À -independent y; : 0 and ó;; : liaii equation (34) can be replaced by

(1+À7;) | a;ix1:O

(34)

(3s)

Dividing (35) bv (1+,r7') produces:

I aiixi:0

Hence (32) and (33) are equivalent n
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Theorem 3

If a column 7 is À -independent, and if B' is the matrix which one obtains by setting all elements á;; ,

(i : 7 . . . n) oÍ B equal to zero, then the equation with

xj:xi(*Ày), xL:x*, k:I,...n,kli
(A+ÀB')X':Y

is equivalent to (32).

Proof . Denote by

,t,' 
o,:(,t,")-',

the summation over all a1 except a1.The kth equation of (32) can now be written as:

ít @u, * )tb1"1)x1r (a1"1i )tbp1)xi : !* (36)

By substituting the À-independe* ;;, of column 7

bu:^fia*i, (k:I...n) (37)

into (36) and replacinE xi by xj/(1+ Iy') we obtain

it @o,*Àbp)x1*auixl :y*, (k:t...n)
l:7

In this equivalent matrix representation we notice that all á;;-terms are equal to zero. tr

Theorem 4

All À -independent rows of (32) remain À -independent if Gauss elimination is applied on one of these
À -independent rows.

Proof. Let row i and ft be À -independent. Then according to Theorem 2 they can be written as:

(38)

i alaxi =O (39)

If a variable Ír by use of equation (38) (q l0) is Gauss eliminated in the remaining equations, the
À-independent row (39) is replaced by:

0aiixj
4I

(40)

According to Definition 1, this row ft is À-independent with %:0. tr

Theorem 5

All À-independent columns of (32) remain À-independent if an unknown variable corresponding to a
À -independent column is Gauss-eliminated.

Proof. Let columns j and I be À -independent. According to Theorem 3 the equations can then be
writtenas: 

i,,(oo^t^br^)x**ap1xj*ap1x!:y1,, (k:l..,n)

nIj:7 t(aui-ff")-,:o
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Suppose that unknown variable x; will be eliminated by use of equation i (ai1* 0), The remaining equations

are now replaced by:

(k:l...n,andk*j)
(41)

From Definition 2 the À-independent column / is still À-independent with T*=0.

Remark. Notice that the Gauss elimination of À-independent rows does not guarantee that À-indepen-

dent columns preserve this property and vice versa.

Theorem 6

A Gauss elimination of a À-independent row or a À-independent column in equation (32) results in
an equation of the form: 

(A'+ À B')X' : Y'

Proof. Theproof of this theorem is analogous to the proof of Theorems 4 and 5.
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