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COMPUTER AIDED SYNTHESIS OF DIGITAL SIGNAL PROCESSING ASICS
H. De Man, J Rabaey, P.Six, L.Claesen

Interuniversity Microelectronics Center, Heverlee, Belgium

1. The challenge of the future : conceptual CAD.

Most ASICs designed today are either of the gate array or standard cell type. They are designed
in much the same way as the traditional TTL/CHOS MSI boards and mostly they are intended to
be economical substitutes for low performance, low complexity glue logic between LS|
components on PCB's. The actual trend {s more towards the generation of MSI/LSI structured
building blocks by the use of module generators, often (erronepusly) called silicon compilers.
This Is afirst step towards ASICs containing complete systems on achip.

Many services now become available offering "complete” solutions to the system designer i.e.
the CAD tools, the silicon library and the brokerage to a silicon foundry. in all cases the
principie of the meet-in-the-middle [DeM86] design strategy is followed. Hereby the logic
functions and the bounding boxes of the software silicon cells provide the necessary abstraction
mechanism between the specialized silicon design effort and the system designer.

in the past five years we have indeed seen an enormous evolution of CAD tools in the areas of
user interface, data base, open system architecture, simulation, timing verification, testing,
module generation, floorplanning and place and route tools.

However impressive this progress may be, in a recent study [Rap86] the foilowing figures have
been comptied about a typical ASIC design process:

Manual CAD
conceptual part 65% 15%
verification part | 25% 40%
layout part 10% 458

This clearly shows that actual CAD tools have solved the structural and physical part of the
design process but unfortunately leave the conceptual part of the design process untouched.
Thig latter part invpives the behavioral decomposition of a system specification into

structure i.e. the interconnection of the silicon cells. Since this problem is untouched,,

verification of the correctness of the human decomposition steps by simulation takes too many
human and computer resources.

A second observation in the world of ASICs 1is the trend either to higher system complexity or
higher performance. Fig. 1 shows the application areas of programmable logic caompenents and
actual standard cell and gate arrays in aclock frequency vs. complexity plane. As stated above
these techniques will continue to serve the glue logic market. However the challenge of the
caming 10 years is most probably in the area of perceptual electronics, which can roughly be
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defined as real time communication with man or machines of sound (voice, music) and image
information. This will especially be caused by the wideband ISDN *wiring" of homes opening an
enormaus market of sophisticated home electronics. Systems in that area are na longer simple
logic ocntral circuits but involve the realization of sophisticated real time digital signal

processing algorithms in silicon.

Fulure SsysILE{n
Systlem Formal Language 1mulation
2 2 Dasigner = -Emulation
T [ interactive T
] Architectural bty
=1 ol ¥nawledge
= 50 Aclusl i ivadcg P oy
AL 1
System Structure }———= 5imuistion |
=) Designer L. 1
15 Sl Linker e Tast assembly [~FTESN
M Leyout
. s o] 0 g O
0 Tustabie
= Rodulo
100 k devices Bilicon 4 Generolora
Designer
Fig 2

Referring to Fig. 1 such systems on a chip are either highly complex aigorithms in the audio
spectrum or high performance video and image processing systems of lower complexity. Since
they are data processing algorithms, they require structured logic and a lot of on chip
dedicated memory and therefare can only efficiently be realized using parameterized module
generation techniques realizing so called complled cells.

Moreover, for such systems, the time to the market is of prime impartance and, as such,
design iterations can nat be afforded.

In view of the above, future CAD systems adressing such applications should pay attention to the
conceptual part of CAD at the systems specification level.

Very often these statements are immediately associated to the concept of behavioral silicon
compiliation . Hereby the system designer specifies the system in terms of a high level
language which is automatically mapped into the hardware/firmware of a chip tayout image.
Many attempts in this direction are reported [ Sou8i3, B1a85], Bra85,Mar86,Ros85]. In most cases
hawever such systems are strongly oriented towards synthesis of Von Neumann type of computer
architectures rather than the real time DSP algorithms discussed above and lack of
interactivity causes usually very inefficient architectural solutions.

More efficient solutions, adressing alse more restrictive applications such as digital filtering,
have recently been proposed such as FIRST [Den82] starting from flow graphs and CATHEDRALI
[JaiB6) starting directly from filter specifications and including algorithmic optimization
techniques.

In this cantributian, in section 2, we first want to state a few general principles which we
believe will characterize future CAD systems for DSP ASICs .

We wil} then describe in section 3 how we have tried to realize these principles in a prototype
CAD system called CATHEDRAL |l [DeM86] adressing the complex algorithm audio application
field. Some application examples are given.
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2. General principles of future CAD systems for DSP ASICs.
2.1 From standard cells to module generators and black place and route.

Standard cell and gate array techniques use libraries at the gate and flip-flop level. They are
mainly orlented to random logic design styles and, only recently, provision is made to include
more structured logic blocks such as RAM, ROM and PLA. When one cansiders complete systems on
achip this level is too low. System designers are used to design withMSI/LSI building blocks at
the tevel of ALU, MPY-ACC, ROM, RAM and even complete core microcoded processors. Usually
such modules are themselves constructed from functional bullding blocks (FBB) (e.g.
adders, counters, reg, mux...). In view of the enormous variability required from such a module
library as well as due to the fast evolution of technology it is nat realistic to store fixed layout
patterns of all instances of the modules. This then leads to concept of so called module
generators now being offered by the so called “silican compiler® vendors.

Referring to Fig. 2, module generators are software procedures generating views of
instances of parameterizable module types by assigning actual parameters to the formal
parameter list of the module generating procedures. These procedures have been designed by the
silicon specialists of the foundry service.

By views, we mean the complete characterization of an instance of amodule to be used in a
system design. This means that, besides the layout information, we also need a timing view (in
function of parameters and loading conditions) , afunctional view for RTL level simulation and
last but not least a testing view (the latter is usually missing in the actual commercial CAD
systemst),

HMost of the module generators provide some means to be “technology independent” (read
within a given mask sequence and for limited changes in the spacing rules..). Usually this is
achieved by describing layout at the transistor level by procedures. A disadvantage of this
technique is that it is virtually impossible to guarantee correctness under technology
changes. We believe that, in the future, cell correctness under limited technology changes and
pitch matching requirements can only be guaranteed by using symbolic layout and
compaction techniques at the transistor cell level and that procedural layout at the cell
composition level [We81,5ix86).

The CAD system discussed sofar corresponds to the dotted part of Fig. 2 which, today, is
becoming commercially available. Such systems are structural in nature. The system designer
conceptually defines his/her system at a schematics editor as an interconnection of
instanciated module calls (65% of the design timel). This is followed by intensive verification
of behavior by simulation using the instanciated functional view of the modules (RTL
simulation). The appropriate views are generated by the linker which is a message passing
interface between structural/constraint description and the module generator library.

Notice that the bold line in Fig. 2 symholizes the strict separation between the system design
activity and the silicon design activity, which, in view of the specialized nature of it must be
left in a reusable way to the scarce number of silicon specialists. This is the
meet-in-the-middle design methodology.

Once simulation has been campleted, 1ayout can start. Layout of chips with modules generated
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by module generators requires general block place and route systems which only recently have
become commercially available .

Fig. 3 shows an example of an automated place and route of modules as generated from the
module generator in CATHEDRAL It [Six86).

| Only after layout is completed we know the correct
impact of wiring and fanout delay and a full chip
timing analysis will be necessary patentially leading
to a redesign of buffers, use of other FBB's in modules
or even a complete redesign of the chip. There is a
growing trend towards the use of timing analyzers
rather than reliance on simulation. [Szy86,VdMa6)
However recent work indicates that extreme care must
be taken againat logicelly impassible (false) paths
which can introduce overly pessimistic results. In
[Ben87] a solution to the false path problem is given.
Last but not least, and here is the weak spot of nearly
all commercial systems, one needs the generation of
the test patterns for the complete chip based on the
testing views of the canstituting modules. Very little
work has been published on systematic ways to
assemble complete test patterms for ASICs
based on a parameterized cell library.

Fig. 3 : Block place and route of
parameterized modules in CATHEDRAL |1

2.2 Towards architecture specific synthesis systems

Referring again toFig. 2 let us now concentrate on the conceptual part of the design process.

In order to further shorten the design effort we will have to help the system designer in the
translation of the system specification into structure. Most DSP systems adressing the audia
and image processing fields are of an algorithmic nature handling synchrenously generated
blocks of data (e.g. speech samples, image pixels, spectral amplitude-phase pairs etc..).
Therefare such algorithms, as well as their real time constraints, can be described by very
high level formal behavioral languages rather than by an ambigious inexecutable natural
language. An example will be given in section 3. The advantage of such a description is that it
can be simulated (or even better : emulated) to check the correctness. Once this is done,
theoretically no further simulation at lower level is required when using an automated
Synthesis system. The key CAD too) therefore is the architectural synthesis program.

A carefull study of the DSP application field has made us to believe that “the silicon compller”
will probably never exist | This is due to the fact that the trade-off between area-time-power
in silicon as well as the real-time requirements are much more complex than the trade-offs in
software compller construction. This is clearly indicated in Fig. 4 which shows that, even for
DSP applications, many alternative architecures have to be considered dependent on the
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complexity and data throughput of the algorithms considered. Therefare we believe that, in the
future, a variety of vertically sliced synthesis systems will exist which potentially will
support different design styles to be combined in asingle system on a chip. Example : array type
processors for front-end image processing and multiprocessor system to do the back-end
processing of the compressed image data. In the ESPRIT 97 program we have developed synthesis
systems for bit-serial filters (CATHEDRAL !) [Jal86] as well as a system for multiprocessor
systems (CATHEDRAL I1) [DeM86] and we are working on a system for high speed bit-paralle}
concurrent datapaths (CATHEDRALIII). Ultimately this will be extended to array type concurrent
processors and then an integration of this system in an open architecture type CAD system

{Bro87] is envisioned.
As will be discussed in section 3

and illustrated in Fig. 2, the strong
link of a aynthesis system to the
target architecture, requires
that the synthesis system is
driven from a set of system
designer defined rules describing

Software

the architectural knowledge
ie. the possible structural
hardware  compositions, the

microcode of the modules and the

rules for optimal mapping of the

Ewstoliq[biupamllel] fitfse

typical application algorithms on

100 10 1 - 1| the harware.
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simpie compion Moreover, it is our experience that
natural intelligence is still
Eléﬂ"’““ Yr::da?; Hobie fadio ?:Se?m:umo . Bromedical beating by far artificial
Frocess Radar PCM Instruments
wessing A o | 1ntelligence and therefore the key
to succes in this field is that

succesful synthesis systems must

Fig.4 : different architectures for DSP
depend on throughput and application.

allaw for user interactivity toexplore and evaluate the design space for a fixed specification
in afast way whereby all detailed optimization work of the alternatives is taken care off by the
CAD system.

Hence the term : computer-alded-synthesis  rather than silicon compilation.

In order to make these points clear, we describe in section 3 the example of CATHEDRAL I} as a
representative example of the principles stated above.
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3. An example of a conceptual CAD system : CATHEDRAL i
3.1 A dedicated multiprocessor architecture

CATHEDRAL 1} is a synthesis system adressing complex DSP algorithms in the audia spectrum.
Typical applications are : modems, echo-cancellers, digital audio, spectrum analysis, speech
processing, servo-systems, robatics (matrix calculations), data-compression etc... At sample
rates of 100kHz and clock rates of 10MHz a programmable module can spend 100 cycles on the
algorithm for wordiengths varying between 8 and 32 bits. Since most algorithms require many
more than 100 cycles, one has to consider concurrently operating processors , which in
order to keep silicon area reasonable have to be dedicated to the particular algorithmic
requirements.
A careful study in the ESPRIT9? project has shown that signal processing algorithms can be
described as structured programs whereby a set of independent functions execute subtasks of
the algorithm. These functions exchange global variables through a synchronous protocol
requiring some data buffering. This leads to an architecture as proposed in Fig. 5(Cal86).
Fig. 5a gives the outline of the chip architecture. Each subtask is taken care of by aprocessor
consisting of a dedicated datpath and its associated local microcoded controller . Global
variables are  transferred over buffer elements executing the interprocessor
communication protocol. Finally the complete processor is controlled by a master
controller firing start and stop conditions to the processors and their communication netwark.
Fig. Sb illustrates how each datapath is composed of a cluster of strongly connected execution
units (EXU's) such that it optimally executes its part of the algorithm. Each EXU is a four
terminal block with two parameterizable input registerfiles with up to & registers and one or
two tri-state output buffers to be connected to the customizable bus structure (max 5
busses can run over the EXU bit slice).
In view of the reduction of the variability we have found that, for DSP datapaths, the following
EXU's in all cases have lead to efficient realizations :

1) General purpose EXU's : ALU-SHIFT , Adress Calculation Unit (ACU)

2) Accelerator functions : MPY-ACCumulate, DIVider, COMParator, NORMalizer.
The ACU unit is extremely important for DSP in view of cyclic memory traversals (filtering,
correlation, convolution) as well as decimation and interpolation. The COMP function is
impartant in decision making algerithms. The NORMalizer is a fixed-point to floating point (and
vice-versa) transformer. This becomes more and more impartant in many advanced DSP
algorithms involving matrix computation.
All these EXU's are parameterizable in wordlength, register-file size, 1-5busses, 1-2 buffers of
different strengths, type of adders, max. shift, pipeline in MPY a. 0.
Accelerator functions are used in critical performance parts when general purpose parts (less
silicon) are insufficient for the job.
Fig.5c shows the general architecture of the multibranch controller used. It has the flexibility
to support decision making as well as regular repetitive algorithms in an efficient way.
Finally buffer structures are necessary to provide interprocessar communication. in CATHEDRAL
11 first the microcode of the processors s scheduled independently. When the schedules of the
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processors are known one also knows the cycle numbers in a program frame at which the global
variables of a processor a are produced and when these variables are consumed by processor
b and whether the communication is uni- or bidirectional.
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Fig.5b : single processor datapath example
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Fig.Sc : general multibranch controller Fig.5d : interprocessar communication example

Bidirectional communication is possible using a switched RAM. However, this seldom occurs
and is very expensive in terms of decoding and ACU necessary to control it. In most cases either
aFIFO with wired pointer read and write adressing is much more efficient (Fig. 5d). In most
cases processors are interconnected as a linear array and automated procedures have been
developed to compute the optimal skew between processors sa as to minimize the storage
capacity of the buffers.

it Is important to notice that a very concize definition of an architecture is of
outmost importance to be able to create a conceptual CAD system. As an example
we will describe in the sequel the architectural synthesis parts of CATHEDRAL II.

3.2 A pragma based interactive synthesis system
3-2-1:Outline of the CAD system.

The architectural synthesis problem can be defined as follows:
" Given the behavioral description of & synchronous DSP algorithm, generste within
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the timing constraints an area optimal structure of the datapaths, their local
conltrollers with their microcode and the interprocessor bulfers using
only instances of the modvies belonging lo the architectural definition”
Fig. 6 shows an outline of the synthesis CAD system of CATHEDRAL 11,
In this system one can roughly distinguish the following (not entirely independent) parts :
-specification and verification by simulation (emuiation)
-partitioning in independent subprograms
-mapping subprograms on datapath structure and generation of associated microcode,
-aptimization loop
-interprocessor buffer optimization and generation
-supervising controller generation.
These different parts arc strongly rclated to the architectural definition and therefore the
system described below is a rule based system calling procedural optimization controllable
by the designer by the pragma concept. We will describe these parts in more detail below.

( SILAGE algorithmic description
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Fig. 6 : Outline of the synthesis CAD system of CATHEDRAL i1.
3-2-2: The specification 1anguage and the pragma cancept : SILAGE.

The specification of a DSP algorithm for CATHEDRAL 11 consists of two parts :

- The first part describes the behavior by means of the applicative language
SILAGE [Hi185). The main idea of SILAGE is to capture the signal flow graph of the algorithm. It
does not contain any structural information and does not enforce any degree of concurrency. it
does not contain information about the implementation of the control flow. In SILAGE signals
can be reals or fixed point, finite wordlength types which are infinite arrays in time. Relations
between variables are expressed by explicit, time discrete simultaneous equations of which
therefore the ordering is irrelevant. Provision is made for the delay operator z”! - @ and
operators exist for decimation and interpolation. Loops can be used as a compact notational
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format but they do not imply any cantrol flow.

The SILAGE description of the algorithm can be considered as a system specification and should
therefore be debugged and verified in a rigourous way. Far the system designer, SILAGE also
serves as the algorithm development medium. Hance, efficient simulation or even emulation
tools are of prime importance. Therefore a SILAGE simulator providing simulation both at
floating point and fixed paint precision is provided in CATHEDRAL I1.

part 1 *define W num<20,0>
*define a110.625

func main(in:w) Out: num=
begin
Section2 = biquad(Sectiont,a21 ,822,b21,b22);
Section] = biquad(in,al 1,a12,b| 1,012,
Out = FirstOrder(Section2,a31 b31);
end;
func biquad(input,a?,a2,bt,b2: num) - num =
begin
State = Input + W(b1*Statem | )-W(h2%Staten?);
return = State + W(a1%Stated1) + W(a2*Statee2);
end:

part2 % assign (biquad(in,.,_,_,),(_),alu,2);
R assign {biquad[Sectiom,_,_,_,_),L),alu,S);
% assign (F irstOrder(),(_),alu,4);

Fig. 7 : Silage description of a Sth order PCM filter

Fig. 7 shows an example of a SILAGE description of a Sth order PCM filter, This example
illustrates that SILAGE only contains behavior and does not impase any structure. The structural
realization depends entirely on the compilation of SILAGE code, In the interactive concept of
CATHEDRAL 11 however, the designer is able to enforce structural decisions at the highest level.
- The second part of a description indeed contains optional directives for the
compilation, These directives are called pragmas, through which the designer is able to give
(incomplete) structural hints. As is also indicated in F i9. 5 three types of pragmas are provided :
*Pragmas for partitioning the SILAGE functions over processors : " diguad,
processor, 2 forces the function * diguad” tobe implemented on processor 2.
*Allocation pragmas: “a//ecialu, 3)* allocates 3 ALU's in the datapath.
*Assignment of an expression to an EXU instance :

" K assign (biquadiinput, smrr= A1 * ) 80, 2)"  forces all multiplications involving
variable b1 local to any function call of “biguad” withfirst argumant “mput* to be executed
on ALU instance 2.

The splitting of the description in two parts is of prime importance , because it gives the
system designer the possibility to explore different implementations of the same behavioral
description. The verification of the correctness of the behavior can be done once by the high
level simulator while the exploration of the design space is carried out by means of the pragmas
whereby the behavior is guaranteed to be correct by construction.
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3-2-3 : The mapping problem : allocation and assignment : JACK_THE_MAPPER

Once the system designer has indicated by partitioning pragmas how the SILAGE functiona are to
be partitioned into processers, the mapping problem consists in the allocation of the EXUs of
the datapath of each processor and the assignment of the SILAGE operations to primitive
operations on these EXUs. The latter results in a transiation of the SILAGE code inta a set of
unordered register transfer instructions to be run on the datapath hardware,

In CATHEDRAL 11 this is achieved by a rule based program called JACK_THE_MAPPER. It uses a
mixture of automated tools and user interaction based on the pragmas in order to salve this
extremely complex optimization problem.

It is our experience that a system designer has often a good insight in the computational
bottlenecks of an algorithm. Therefore, he/she is well capabie to estimate the required amount
of parallelism and the acceleralion unils needed. The most time consuming and error prone job
is not located in the allocation task but in the optimum operator assigment, the contrailer
generation, the optimization of register usage and bus count.

First, as in any general compiler system, in a preprocessing step , JACK parses the SILAGE
description, determines the datatypes of al1 signals, performs a number of local transfarmations
{e,g. elimination of cornmon subexpressions, optimal ordering of commutative operations ,
function expansion etc...) and sets up the data precedence graph centaining only primitive
SILAGE operations which can be executed by the EXUs. If present, also the user defined pragmas
are read in.

The proper transiation step is performed by an architecture independent expert system shell
written in PROLOG which contains architecture dependent rules. If no pragmas are present then
JACK will always first try the cheapest silicon area allocation first. (Usually an ALU-ACU
solution). If after scheduling (see 3-2-4) it is found that too many cycles are needed, (see also
Fig. 6) the designer can state pragmas e.g. to add accelerator EXUs to the datapath, to add
parallel EXUs or to repartition the algorithm.

Basically the task then consists of assignment of the primitive SILAGE operations to the EXUs,
to define the bus structure and to assign intermediate variables to register files and background
memory. This task can be divided into a translation and a number of optimization subtasks.

The translation step transforms behavioral primitives into architectural primitives. This step is
of extreme importance since it will determine haw efficient the architectura) properties are
exploited, In order to cope with architectural changes and expansions, this tool has to be flexible
and expandable by system architects. This is the reason of the choise for a declarative rule
based system.

These rules may be straightforward for a simple addition on an ALU but others are far more
complicated e.g. rules for muitiplication (parallel, parallel-serial, constant*variable, CSD
add-shift..), divisionon DIV or ALU, algorithmic delays, array- or loop operations, floating paint
operations, decimation and interpolation etc...

A second set of rules implements the interconnection strategy. It generates the necessary
busses, input multiplexers and tri-state output buffers.

The current rule base cantains some 120 rules but it 1s in continuous expansion and modification
as our experience grows. The implementation of the inference mechanism is done in a
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demand driven way. |.e. the mapping starts from the output of the precedence graph and works
1ts way backwards, driven by the variables needed to compute the currently mapped operation.
This leads to a fast execution time which is of prime importance in an interactive CAD system.
Thia flexibility has led us to the development of a user-friendly knowledge acquisition system
to ease the introduction of new rules.

3-2-4: Scheduling and optimization : ATOMICS

As aresult of the above described translation step, the SILAGE description has been transformed
into a datapath structure and a register transfer (RT) description of the algorithm.

in CATHEDRAL } the RT-language produced by JACK has a form which relates directly to the
architecture, As seen in the example statement below, in a first part (before the | separator)
the (conditional) Liansfer of variables between registers is given while the second part
describes the EXU type on which the operation is executed, the mode (symbolic microcode ) of
the EXU, and the bus-mux on which the transfer takes piace :

if cthen s:regl <-a:reg2, b:reg3 |alu = add, bus2=s, mux1 - bus2;

in the RT description, no timing is assigned to the operations and a number of the hardware
assignments (e.g. the binding of an operation to a particular ALU instance ) are also left open. As
aresult still a number of procedural optimization taskshave to be performed which can be
summarized as follows :

-find the optimal ordering of RT-operations on the time axis such that the execution
of the algorithm takes aminimum number of cycles (scheduling ).

-bind the undefined assignments so that the allocated hardware is used in an optimal
way (best load balancing leading to minimum number of cycles).

-register binding and bus merging : during mapping each intermediate variable
has been assigned to aregister in the EXU register files and each transfer is originally executed
over its own bus. Obviously not every variable needs to be stored in aregister Tocation during a
complete program execution (frame ). In alifetime analysis the minimum number of register
is searched to store all variables during the minimum time they are needed duringa frame.

Bus merging similarly consists in a reduction of the number of busses by reusing them for
different transfers during a frame. Alternatively one can also exchange a number of cycles to
obtain a maximum merger of busses, which of course will reguire arescheduling of the RTs.

A very powerful heuristic optimizer-scheduler program ATOMICS [Goo87) has been developed
capable of scheduling repetitive programs with nested loops taking 1/0 constraints into account.
Every RT statement can be considered as a node in a graph. The statement is executedon a
potentially to be assigned EXU under a required mode of operation. If the statement is
conditional then the condition is computed from status bits in the datapath which have to pass
through the contraller pipeline before the condition bit is camputed.

Scheduling can then be stated as finding alevel labeling of the nodes in the graph such that :
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-the number of 1abels (potentials) is minimal and :

~the precedence ralations are respected and

-there are no resource allocation conflicts: i.e. no two different modes of an EXU are
scheduled in the same potential (have the same 1abel) and

~-the controller pipeline- and the 1/0-timing constraints are satisfied.

should be noted that scheduling is an N-P complete hard probiem due to the occurrence of
resource allocation conflicts. tn ATOMICS, techniques similar to the ones used in operations
research have been adapted to the problem of nested repetitive programs. Due to the heuristic
nature of the problem only near optimal solutions are obtained. However extensive
investigations have shown that in nearly all cases either optimal or very near optimal solutions
have been obtained. For more details see [Goo87).

3-2-5 : controller generation and interprocessor communication

Once scheduling, register optimization and bus merging have been done, we know the sequence of
synbolic microcode. It is then a simple task to translate the symbolic microcode into a
symbolic state diagram which is basically a large symbolic case statement.

Then, after state assignment and using the boolean microcode of each EXU we can transiate
the state diagram into the PLA planes and the microcode ROM content of the processor
controliers. The layout of these elements is obtained using the PLASCO {Bar85] environment.
Finally, it is then passible to synthesize the interprocessor communication hardware and to
derive the structure and contents of the central controller.

The tasks of this tool, which is currently under development, are to select the cheapest
communication protocol(FIFO, RAM with single or double buffering), to dimension the buffer
arrays and to determine the exact timing of the needed contral signals. It must be mentioned
that the selection of a certain protocol can result in a number of extra constraints on the
processor timing or hardware, so that areiteration on the processor synthesis process may be
necessary.

3.4 Application examples
1. The PCH filter.

As an illustration of CATHEDRAL || we synthesize the PCM filter described in the SILAGE code in
Fig. 7.In a first attempt, a single ALU implementation is automatically generated by JACK. It is
shown in Fig. Ba. It consists of aRAM for 170 , one ALU to perform all arithmetic operations and
one ROM (rom_ctr1) forming the link to the controller over which immediate adresses can be
fetched. (Note that the multiplications with constants have been expanded automatically in a
minimal number of add-shifts on the ALU). In this first solution, the number of machine cycles
found by ATOMICS is 36. This is the fastest passible execution time using the minimum number
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of EXUs. However, when using the bus merging

133

algorithm we get after ca 1 minute of CPU

(Apollo DN3000) anew solution as in Fig. 8b where all busses have been merged into a single one

at the expense of three additional cycles (39).
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Fig. Bc. ALU-MPY solution pragma(18 cycles) Fig. 8d. Repartitioning over 3 ALUs (20 cycles)
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Fig. 9a. Generated layout of Fig. 8b

Fig. 9b. Layout of Fig. 8d.

When the designer is satisfied with this result he/she can call the module generatars through
the linker environment to generate the necessary instances of the modules, which then can be
interactively or automatically placed and routed on the floorplanning tool. Far the single bus
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salution, the floorplan is shown in Fig. 9a. The area of the filter is 6.7 mm2ina 25 pm CHMOS
double metal process.
On the other hand if the speed is not sufficient the designer can quickly generate new solutions
by adding pragmas to the original SILAGE description. The pragma:

pragma “assign (_*_mult,1)"
states that all multiplications should take place on a single multiplier. The solution is shown in
Fig. 8c shows the new datapath (S min CPU). ATOMICS shows that it executes in 18 cycles which
1s about twice as fast as the original solution.
Finally Fig. B0 shows the result of a repartitioning pragma as given with Fig. 7. Hereby the
designer assigns one ALU per filter section which leads to a 20 cycle solution. Fig. Sb gives the
layout after module generation and place and route.
Notice from thiz example how such a synthesis system allows for a very rapid scan through the
design space since, in manual design, each debugged micracode redesign costs about one week of
effort instead of ca. S min. CPU in CATHDEDRAL 1.

2. Adaptive interpolator for compact disc error correction

To demonstrate a somewhat more representative example for the complexity of algorithms that
can be handled in CATHEDRAL |1, the example of an adaptive interpolator for the correction of
burst errors in compact discs [Ve183] will be discussed. The algorithm inciudes the computation
of a 512%512 carrelation matrix, the inversion of a 51*51 Toeplitz matrix using the
Levinson-Durbin algorithm, the computation of the interpolation coefficients and the inversion
of afull 16%16 matrix. Initially, a four processors solution was tried. A study of the complexity
of the processors and the amount of interprocessor memory requirements showed however
quickly that asingle processor with a complex datapath as shown in F ig. 10 was preferrable.
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Fig. 10. Single processor solution for adaptive interpolator. All EXUs except COMP are used.
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The ATOMICS scheduling of the RT description reveals that the complete algorithm can be
executed in 77000 cycles on this datapath. This easily fits into the allotted time frame of 11.6
msec. This example shows clearly the power of conceptual CAD at the architectural level.
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4. Conclusions

We believe that, due to the the evolution towards micron technology and the abundance of
system level designers, future ASIC design will move to complete perceptual electronics
systems on a chip. However, due to the scarcity of silicon level designers silicon in ASICS must
be reusable and must provide modules at the EXU level. This will inevitably lead to the
‘meet-in-the-middle” design concept. Since already today good solutions for structural design
at the block place-and-route level do exist, the bottleneck is at the conceptual design
level.

In this paper we have introduced the principles of such system and we have illustrated it on the
hand of the prototype CAD system CATHEDRAL !l for the design of complex DSP systems in the
audio spectrum. We have demonstrated the necessity of the existence of a number of such systes
each adressing its vwn application field by an appropriate flexible but concize
architectural definition supported by powerful, technolagy updatable module generators.

It is our believe that for the wide class of synchronous machines it must be possible to design
an architecture independent expert system shell whereby the particular architectural features
are added as declarative knowledge. This leads to the fact that future ASIC CAD will consist
of a software shell whereby the competition between system houses will be back where it
always belonged in electronics : system and architectural knowledge as the key to the
future 1.

It is also our experience that the way to optimally exploit it can not be programmed very well
inte CAD systems but we have seen that system designers prefer the pragma based
interactive idea far above automated synthesis systems on which they have no impact if they
dan't like the salution. The time savings really comes from the possibility to quickly evaluate
the quality of design alternatives whereby the difficult bookkeeping and optimization tasks are
taken care of by the CAD system.

We must realize that we are only in the beginning of this era. Indeed a iot of work will be
necessary to adress the problem of high performance video- and image processing systems, the
analog interfaces, auvtomated synthesis of asynchronous communication and insuring testability
of compiled silicon.

Last but nat least we have to mention the problem of providing real time emulation capability
to system designers using a high leve! specification 1anguage.

It is our experience that in the DSP area system designers want to experiment, if possible, in
real time with their algorithms. Simulation on a traditional workstation is very awkward since
reasonable test cases involve millions of samples. How this problem must be solved is stili an
open guestion which will depend strongly on the availability of powerful audio and video
processors which can be assembled into "general® purpose programmable multiprocessor
systems onto which a specification 1anguage such as SILAGE can be scheduled, perhaps in much
the same way as it 1s now scheduled onto a dedicated architecture,
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