
CATHEDRAL.II I
a computer-aided synthesis
system for digital signal
processing VLSI systems

by Prof. H. De Man,
Katholieke Universiteit Leuven

Prof. f. Rabaey
University of California, Berkeley

and f , Vanhoof, G. Goossens, P, Six and L. Claesen
IMEC

This paper describes the concepts and the status of the CATHEDRAL-Il
silicon compiler for digital signal processing systems. lt is shown that
efficient layout synthesis is possible, starting from a very high-level
behavioural description of a system, owing to the careful definition of
a target architectural design style and an application domain. An
overview is presented of the different synthesis tools which have been
or are being developed, both for architectural synthesis and
optimisation, and for module and layout generation. With the
underlying design methodology, the world of silicon design will
become accessible to system engineers.

Introduction are many source and target languages, each

of which are optimised for a given task.

Therefore we believe that efficient silicon
compilers will necessarlly be strongly tied
to a particular target application area.

Moreover, since silicon design represents

a delicate trade-off between time, area and
power, we propose in this paper not a pure
compilation system, but one in which the
user has a high degree of interaction.
Furthermore, adaptation to changes in
architecture is possible by means of rule-
based programming techniques. We call
such a system a computer-aided synthesis
system rather than a silicon compiler.

CATHEDRAL-Il is therefore an
application-specific synthesis system. lt is

our experience that the development of
such a system needs to follow a well
defined sequence of steps, which we
identify as follows:

a Define a wide, but concise, class of
system design applications.

This paper reports the status of the work at
IMEC on a computer-aided synthesis system
for synchronous multiprocessor system
chips realising digital signal processing

applications. This system is referred to as

CATHEDRAL-II.
The system supports chip layout synthesis

starting from a behavioural description at
the algorithmic level, and as such differs
from most existing so-called 'silicon
compilers', which only support module
generation, followed by placement and
routing based on a structural description.
The work is part of ESPRIT projects 97 and
1058, which involve contributions from
Philips, Siemens, Bell Telephone
Manufacturing Company, Silvar-Lisco and
the Ruhr University of Bochum.

The work is based on our philosophy that
'the'silicon 'compiler'simply does not and
probably never will exist, just as 'the'
software compiler does not exist, since there

a Define, based on manual design
exercises, a target silicon architecture and

its associated layout style.
o Define a design strategy based on

available designer skills.
a Define the behavioural language and

the silicon modules.
a Only then develop the 'CAD' tools,
with emphasis on 'D'and 'A'.

The organisation of this paper is as follows.
ln the following section we define the
application field of CATHEDRAL-Il, which
is highly complex digital signal processing
(DSP) algorithms in the audio frequency
spectrum. The next section then defines the

target architecture for such algorithms based

on a practical example. A chip will consist
of a number of concurrent processors,

input/output modules and interprocessor
communication by data storage elements.

The paper then introduces a design

method called'meet-in-themiddle', wh ich

encourages a total separation between
system design and re.usable silicon design.
Based on that, we then describe the actual
status of the CATHEDRAL-II computer-
aided design (CAD) system. The system

design starts from a high-level behavioural
language called SILAGE that is oriented
towards DSP. lt is supported by a'compiled-
code' simulator. From this SILAGE
description first a rule-based synthesis is

made of the data path of the processors. A
heuristic scheduling program then generates

the microcode for the processor controllers
and interprocessor communication
network. The layout of the processors is

55Computer-AidedEngineeringJournal April1988

A(k)

T

kt k2 k. k,
Jq

k5 k6

x [1] xL2l x[3] xlt j x15 l x [5]

+ lrequency

61 1 1 1

8 a 1

61 64 64

Fourier
coeff icients

threshold ond
squored
omplitudes

frequency
vo I ues

fundomentol of
optimol sieve ond
lrequency volues

8

b
u
t
I
e
r

omplitucle
mox r mo
computot ion

h
u
t
I
e
f

optimol hormonic
sreve
determinot ion

b
U

I
f
e
t

pitch
estimo tion

omplitude spectrLrm
ond threshold
computotion

Fig. 1 Typical example of a thirdaeneration DSP algorithm - pitch extraction for speech analysis
Note the block structure of the algorithm, consisting of independent processes which will each be assigned to a dedicated processor

synthesised in terms of modules called from
automated re-usable module generators

created by silicon designers and adaptable
to new layout rules. Chip layout is done on
a floorplanner.

The application field of
CATHEDRAT.II

CATHEDRAL-Il is oriented towards digital
signal processing. This field is playing an
increasing role in modern very large-scale
integration (VLSI) based systems but in itself
is still very wide, spanning data throughput
from lkbit/s up to 100 Mbit/s. Therefore
even this area is too wide for one single
design style or for one 'silicon compiler'.

The low-throughput end is well served by
the new generations of general-purpose

DSP processor chips. However, whereas the
first implementable algorithms addressed
such simple cases as digital filtering, today
there is a need to address many applications
in the audio sample range up to a lMbit/s
sampling rate, which require either very
high precision or highly complex algorithms
involving block data processing, matrix
manipulations, multiple data rates and a lot

of decision making besides number
crunching. Examples are digital audio,
speech processing, smart modems, robotics
etc. Furthermore, these applications would
be a lot more aftractive if they also included
adaptable input/output periphery on the
same chip. The general-purpose DSP
processors are not very well suited for the
implementation of these algorithms. On the
other hand a full-custom solution is far too
expensive in design time, and, most
importantly, the time to market for these
usually highly competitive applications is

too large. As a result of the highly
specialised nature of such algorithms, we
start from the conjecture that the algorithm
designer must be able to do the silicon
implementation him/herself. Therefore
CATHEDRAL-Il addresses high ly complex,
blockorientd DSP algorithms in the audlo-
to near-video-frequency range as the
application field.

As a typical example, Fig. 1 shows a pitch
extraction algorithm for speech, as

described in Ref. 1. This example among
others has been taken as a vehicle to study
the design process and to define the tools
in CATHEDML-Il. Real and imaginary parts

of blocks of 64 frequency components
resulting from a discrete Fourier transform
processor are first transformed into an
amplitude spectrum. By averaging, a

threshold is computed to eliminate
irrelevant spectral components. From the
remainder, the maxima in the spectrum are
computed (decision making!), and these are
then compared to 40 'sieves'with meshes
at octave distances. Finally, the best match
is computed as the pitch value. As Fig. 1

shows, this problem, typical for third-
generation DSP algorithms, naturally
decomposes into a number of subprocesses
which are fairly independent of each other.

This situation is typical and is related to
the fact that in most algorithms communi-
cation bottlenecks occur owing to an
accumulation of sequentially generated data
necessary to create new samples for the next
subprocess. As shown in Fig. 1 this gives
rise to the need for a data storage element
between the two subprocesses. Based on a

careful study of these effects we have
therefore defined a target architecture in
which each of such subprocesses is

assigned to a dedicated processor and the
interprocessor communication, in its most

56 Computer-AidedEngineeringJournal April1988

general form, is taken care of by switched
RAMs. This architecture will be discussed
in more detail in the next section, together
with the description language SILACE (Ref.

2), used for the high-level system definition
from which the multiprocessor structure will
be synthesised.

The target architecture

ln most presentday synthesis tools the target
of the compilation is rather ill defined. ln
order to generate a high-performance, area-
efficient DSP chip, it is obviously insuf-
ficient to consider only hard-wired or even
folded data paths containing registers,
busses, multiplexers and arithmetic logic
units (ALUS) (Refs. 3 and 4).

The key to efficient silicon compilation
is the selection and precise definition of a
specialised target architecture and its
parameters (Ref. 5). This should be
combined with a highly specialised rule
base to translate high-level language
constructs into efficient register transfers to
be executed on that architecture. Only in
this way can higher-order constructs such
as delay management, memory addressing
and multiplication strategies he translated
efficiently, and dedicated optimisation
strategies be applied. Architecture-
independent generation of structure cannot
exploit the particular properties of a target
library and is therefore bound to be sub-
optimal in most cases. ln order to cope with
various levels of technological updates, a

variety of mechanisms have been provided
within CATHEDRAL-||. Updates to rather
closely related (for example scaled)
technologies can be handled by the module
generators. Updates to completely new
libraries are handled by writing a

completely new translation rule base. This
is only feasible if a powerful expert system

shell is available. Updates to new design
methodologies inevitably require a

completely different system and different
optimisation tools.

A careful study of many DSP applications,
conducted in co-operation with the
industrial partners in the ESPRIT projects,
shows that DSP algorithms can be
considered as structured computer
programs to be executed in real time. They
can be described by a set of rather
independent but concurrent'functions' with
strictly local variables. The global
input/output variables are exchanged
between the functions by data storage
elements which perform the necessary data
shuffling and data rate transformations
between two functions. This consideration
has led to the definition of the target
architecture as shown in Figs. 2 and 3.

At the highest level, the proposed
architecture is composed of a set of
concurrently operating processors. Each of
those executes one particular subtask of the
algorithm and is optimally tuned to perform

just that one task (Fig. 2). Each of those
processors operates relatively
i ndependently from protocols, exchangi ng

only data which is global between them.
Dependent upon the data exchange rate

and the amount of buffering needed,
different protocols can be selected:
synchronously switched RAM buffers, first-
in, first-out (FIFO) buffers or request and
acknowledge based synchronisation. The
communication with the outside world
proceeds over an input/output frame, which
can support a large range of input/output
protocols (ranging from parallel to serial,
from synchronous to asynchronous).

One level deeper, as shown in Fig. 3,

each of the processors consists' of a

dedicated data path and a controller. The
data path is optimised for (only) the
particular tasks it has to perform, and is

assembled from a set of selected execution
units (EXUs), interconnected by a restricted
number of customised busses. Each of the
EXUs contains two register files with up to
a maximum of eight registers at its input
side. This composition makes it possible to
avoid the arithmetic and data transfer

boftlenecks. Studies have shown that the
fr.rllowing EXUs are sufficient to span most

of the target application space:

a a general data path - an ALU shifter
unit
o dedicated accelerators - an array
multiplier (with or without adding/sub-
tracting accumulator), an iterative divider,
a comparator unit for fast decision-making
algorithms, a normaliser unit for accelera-
ting a limited set of floating-point operations
a mcmory ROM, RAM, FIFO and an

address calculation unit (ACU).

The modules are stored in a procedural way
in module generators (Refs. 6 and 7) with
a well defined set of parameters (word

length, number of overflow bits, optional
presence of a shifter, ranges of
programmable and fixed shifters, number
of pipeline stages). Each of the EXUs

consists of ovo input register files (of at most

eight register fields) and some combinatorial
logic to generate the desired function. The
registers provide local storage of variables.

processor 3b
U

I
T

e
I CTR L

b
u
I
I
e
r

processor 2processor 1b
u
I
I
e
r CTRL

b
u
I
I
e
r CTRL

b
U

I
f
e
r

uo
{rome

tro
{rome

CTRL

Fig. 2 Target multiprocessor architecture
Processors are locally dedicated data paths communicating global variables through data stream buffers

bus 1 bus 3 bus 4

b
U

t
I
e
f

mu lt
occ

comporotor ACU
b
u
I
I
e(

bus 2

Fig.3 Example of a dedicated data path constructed from a restricted set of parametrisable EXUs

- ALU, ACU, multiplier/accumulator, normaliser, divider and comparator

Computer-AidedEngineeringJournal April1988 57

PC

Bjo f Gjcf lnstruciion

ADRMEM

bronch
F5M

s totu s
FSM

sto tus- bi ts

CC -bits

Fig, 4 Multibranch controller architecture for the data path

RAM is used as background memory.
Scan-path registers and self-test structures

for embedded RAMs are included in the
modules. ln the module generation
environment a test view is included, which
allows the generation of all test vectors as

a function of the parameters of the module.
The maximum clock frequency depends

on the library that is being used (1OMHz

for the current 3g.m CMOS library). lt is

assumed that the module generators supply
modules which can be clocked at this given
frequency. The module generators will
insert pi6eline'stages if the internal logic
causes too much delay (for example
because the word length is too bid and they
will select faster logic structures (for
example a carry-look-ahead instead of a

carry-ripple adder) whenever appropriate.
As a consequence, the synthesis tool only
considers machine cycles and does not
have to consider circuit delays of the EXU

logic. However, it has to know the total
number of machine cycles needed for an
operation on a certain EXU.

A multi-branch, microcode-based
controller, as shown in Fig. 4, has been
selected to control the data flow through the
data path. This structure is flexible and
powerful enough to handle a large span of
algorithms in a flexible and efficient way.
It can support heavily decision-making-
oriented as well as regular, repetitive
algorithms. Some of the EXUs can also have
a local controller. This helps to reduce the
complexity and the size of the central
controller. An example of such a controller
is the decoder of the register files. Note also
that another controller is needed at the
highest level to control the data flow
between the processors and to the outside
world.

An example of a processor data path
constructed using the proposed strategy is

shown in Fig. 3. lt is used to compute the
amplitude spectrum of a signal, given the
conrplex frequerrcy dorrrairr spectrurrr arrd
at the same time to determine the maximum
amplitude. lt consists of three concurrent
units: a multipl ierlaccumulator, a compara-
tor and an ACU. This data path can perform
an amplitude computation and an update
in the maximum calculation in two cycles
(average).

The'meet-in-themiddle'
design strategy

Fig. 5 Meet-in-themiddle design methodology supported by CATHEDML-II

58

The complexity of the algorithms to be
implemented far exceeds the circuit or even
the logic gatg level. Moreover, since silicon
designers are so scarce, we can not exploit
the potential of such systems if they cannot
be used directly by system engineers having
no detailed knowledge of the silicon imple-
mentation,

It is therefore necessary that silicon design
knowledge (at the micrometre level) be
localised in re-usable modules at the
MSI/LSl level familiar to the system
designer. This leads to the design scheme
shown in Fig. 5, which we have defined as

the meet-in-the-middle design metho-
dology. This methodology can be
characterised as follows:

a System design is strictly separated from
silicon design. The interface is located at the
level of arithmetic/logic operator blocks,
data storage, controllers and input/output
units. These are the EXUs of our target
architecture. The silicon primitives used at
that level are called modules. Design at the
system level then consists of translating a

system specification into a structure, which
is a netlist of module instances. Placement
and routing of layout instances of the

top - down bottom -u p

sygiem system chip

re9

system
desi g n

f loorplon
processor

'meet - in-the-
funcl ion modu le

m! le'

gote

procedurol
modu le
design cell

t ronsislor rect

loyou t
technology rules

system ond
sof twqre
eng i neers

loyout circuit
sottwore
engineers

technology
engi neers

Computer-AidedEngineeringJournal April1988

modules is then the chip design.
a Silicon modules are re-usable, just as

standard cells are. ln this way the costly
investment in high-performance, advanced
silicon technology design is limited and the
cost is wriften off over as many designs as
possible.
a However, silicon modules are much
more complex than standard cells, and to
save even more in terms of silicon design
cost these modules must also be capable of
surviving a number of technology updates.
Therefore modules must be technology
adaptable.
a Silicon modules, however, are not the
privilege of a particular foundry or CAD
vendor. Since the competitive edge
between system houses will not be in the
technology, but in the architectural techni-
que and in the implementation of it, we
expect that module design will require a
powerful design environment in itself for a
local team of silicon designers. This may not
yet be the case today, but we expect this
to happen in the future.

Note that, in this design style, system
designers design in a topdown fashion
duwrr [o [lreir usual irrLerrlrediate level. The
silicon people design in their usual boftom-
up fashion, composing the LSI level
modules from functional building blocks
(see below), which in turn are composed
of logic leaf cells at transistor level. lt is as

if both parties meet each other in the middle
of the design abstraction levels. ln this way
scarce talent is optimally used, and the
design process corresponds to the usual
patterns.

However, owing to the above character-
istics, some fundamental deviations from
classical design at silicon and system level
do occur. They are related to the fact that
module generators will be software proce-
dures rather than fixed geometrical
structures, and also the fact that we expect
system designers to think at the algorithmie
rather than the structural level. This will
become clearer after giving next the outline
of the CAD toolbox as we are developing
it for CATHEDRAL-Il.

Fig. 6 Outline of the CATHEDRAL-II CAD system

the hardware structure of the chip. The latter
is defined in terms of the EXUs, as discussed
in the section on the target architecture. lt
is this part that forms the cornerstone of our
system. We believe that an efficient transla-
tion can only be done if it takes the
properties of the target architecture into
account. Furthermore, a strong interaction
with the designer must be possible.
Therefore we have not opted for a fixed type
of compiler, but rather for an interactive
system based on a rule-based Prolog
translator to synthesise the structure of the
data paths of the processors. As we will see,

the user can influence the compilation by
using so-called pragma statements. These
statements do not modify the original
behaviour (as this would violate the
principle of design correctness'by
construction') but only the way in which the
behaviour is mapped into the hardware
representation.

Besides the mapping into the data path,
a lot of procedural optimisation also has to
take place, such as scheduling of
microcode, register count minimisation and
bus merging. This is done using C programs
called from the Prolog environment. The
synthesis part then generates the hardware
structure in terms of instantiated versions of
the EXUs and the controllers. The call for
instantiation of the EXUs, controller ROMs
and programmable logic arrays (PLAs) as

well as the communication RAMs and
FIFOs is passed through a procedural linker
to the module generators. As will be
discussed later, these are software
procedures capable of generating the
necessary views to build the final chip

layout, its characterisation test and
documentation. These views are sent to a
floorplanner. This floorplanner allows for
interactive placement of the modules and
automated routing based on the netlist
produced by the synthesis system.

Finally, we will explain how the module
generators can be adapted to a new tech-
nology file by the use of symbolic layout.
Also new techniques to verify correctness
during the design of new module generators

are provided. Note also on Fig. 6 the bold
line in the'middle', which is the boundary
of the activity of the silicon designer, who
provides the library to the many system
designers using the CAD system for a large
variety of system design jobs. We will now
discuss each of the parts of the system
separately.

System specification language -SILACE
Unlike most socalled silicon compilers,

which are basically only layout generators
from structural description, CATHEDRAL-
ll starts from a behavioural specification
language. The system designer, just as

would a highJevel language programmer,

describes his/her DSP algorithm in a pure
behavioural language without any structural
biases. Other behavioural compilers (Refs.

4 and 8) use a procedural language (Pascal-

or C-like). ln that case the control flow is

implicit to the code and, in case a fixed
microprocessor architecture is used, the
compiler is similar to a traditional software
compiler. However, in such cases the
potential throughput of silicon is not
exploited. The other extreme is to use a

The CATHEDRAL-II CAD system

Outline of the system
Fig.6 glves an outline of the

CATHEDRAL-II CAD system. System design
is first described at the behavioural level in
the SILACE language (Ref. 2). This is a very
high-level language especially oriented
towards DSP system specification, as will
be discussed below. lt is at this high level
that we also have a very efficient simulator
in order to verify the correctness of the
proposed algorithm to be implemented.

Based on this system description we
describe below the actual synthesis part of
the CAD system. The synthesis system will
translate the behavioural description into

orc hi tecturo I

knowtedge

system

si licon

o{locotion
pro9mos

SI LAGE
behoviourol syst
descri pt ion

computer-oi ded
syn thesis

portitioning
ossignment
proq mos

chip structure

linker f loorplonner
timing verif ier

mosk
tope

modu le
generotor

I oyou t
timing
test
fu nct i ono I

techno logy

Computer-AidedEngineeringJournal April1988 59

in out

b31 o3'l

o12 b22 a22

sdction 1')
t''

section 2 first order

a

t define WORD num<20, 0> func main(ln: WORD) Out: num=
begin

Sectionl = blquad(ln, all , a12, bl 1 , bl2);
Section2 = biquad(Seotion'l ,.a21, a&, b2l , b22l;
Out = Firstorder(Section2, a31, b31);

end;

I define al l 0.625
r define a12 1

r define bl1 0.5
define b12 0.375
r dsllne a2I 7
I detine a22 1

r detine b21 0.3125
t define b220.78125
r define a31 0.5
r define b31 0.375

func biquad(input, al , a2, b1 , b2 : num) : num =
begin

State=inpul+WORD(bl * State@1) -WOFD(b2 * Sate@2);
r€turn=State+WORD(al * State@l) +WORD(a2 * State@z);

end;

func FirstOrder(input, a, b : num) : num -
begin

State = input +WORD(b * State@1);
return = State + WORE(a * State@'l)i

end;

b

Fig. 7 SILAGE description example
a Signal flow graph of a fifth-order PCM filter
b S|LACEdescriptionofthefifth-orderPCMfilterexample-notetheapplicativenatureofS|LACEaswell asthefinitewordlengthtypes

regi ster-tran sfe r level descri pti on where, by
definition, no control flow is given and the
maximum concurrency is given in the
language. ln such cases the implementation
efficiency is very heavily influenced by the
way the behaviour is described.

ln contrast to these two approaches, we
use a description which is applicative and
therefore purely behavioural, and we add
programs for interactive mapping into
hardware. Therefore the input language to
CATHEDML-II has the following two
separate parts:

o For describing the behaviour of the
algorithm, the applicative language SILACE
(Ref. 2) is used. The main idea of SILACE
is to capture the signal flow graph of a signal
processing algorithm, such as illustrated by
the fifth-order PCM filter example shown in
Fig. 7a. Fig. 7b shows the SILAGE
description of the PCM filter. A SILACE

60

description contains no structural
information and does not enforce any
degree of concurrency, nor does it contain
information about the implementation of
the control flow. This gives the compiler the
full flexibility to select between the fastest

and the cheapest implementation, starting
from the same behavioural input descrip
tion. We consider this to be of prime
importance, because of the excessive CPU
times needed to simulate the behaviour of
complex DSP algorithms. ln SILACE, signals
are represented by variables, which can be

thought of as infinite arrays in time. The
implicit time index is never written. The
values of a variable at any moment in the
past can be recovered by using a delay
operator '@'; so instead of writing a [f] and
alt-21 one writes a and a@2.

Relations between variables are expres-
sed by explicit timediscrete equations. The
ordering of these equations is irrelevant.

Each equation has to be considered true at
any moment in time. Equations can be
conditional. Loops can be used as a

compact notational format (repetition) but
they do not imply any control flow.
Between the equations inside a loop, there
might be precedence or not. A loop

(i :1.. N)

begin

end;

is equivalent to the quantifier V i: 1 <i<N.
Operations on variables are represented by
function calls. A large number of functions
suited for describing typical DSP operations
are predefined. Word lengths of signals and
finite word length characteristics of
operators can be fully specified (at this
moment for fixed-point operations only).
Typing is almost completely implicit, but

Computer-AidedEngineeringJournal April1988

the designer can change the type of any
variable by using coercion.

It is to be noted that in CATHEDRAL-II
a 'compiled-code' simulator is available
to simulate the SILACE description. This
simulator generates C code, which can be
compiled and executed. Once a SILACE
description is checked for correctness, no
further lower-level simulation is necessary,
in principle, owing to the use of the
interactive synthesis tools.

o The second partofthe inputdescription
is made up of compiler directives, also
called'pragmas'. Since SILAGE is applica-
tive, the compiler must generate both a

structure and the detailed timing of the
micro-program. As discussed before, it will
only be able to do so by using a very well
defined target architecture. This allows both
the compiler and the designer to make
abstract decisions on a very high level and
still perform a relevant cost evaluation,
because bottom-up design information is

continuously used when making high-level
decisions. ln the interactive concept of
CATHEDRAL-Il the system designer is able
to give sfructu ral hints to the compiler at as

high a level as possible. Tlris can be dorre
by adding high-level directives, called
'pragmas', to the behavioural description.

For our target architecture, three types of
pragmas are supported:

! pragmas for splitting up an algorithm
into processors - pragma

/pole, processor, 2'

forces the function 'pole' to be imple-
mented on processor 2

n hardware allocation pragmas -
pragma

'alloc(alu, 3)'

allocates three arithmetic logic units
(ALUs) in the data path

n pragmas for assigning an expression
or a class of expressions to an execution
unit instance - pragma

'assiSn(pole(a, -).(- *y), alu, 2)'

forces any multiplication using the local
variable 'y' in any function call 'pole'with
first argument 'a'to be executed on ALU
instance 2. Note that the underscore '_ ' is

used as a wild character.

The synthesis system - mapping and
optimisation

Based on the SILACE specification we are
now faced with the task of generating the
data path and the controller of the
processors as well as their intercommunica-
tion network. We refer to Fig. B to illustrate
the following different tasks:

a Data path synthesis: The synthesiser,

JACK-THE-MAPPER, deduces a data path
structure, consisting of a set of EXUs, from
the SILACE description. The methodology

Computer-Aided Engineering Journal

adopted in JACK is to use a mixture of auto-
mated tools and user interaction to solve
this extremely complex optimisation and
search problem. ln fact, our experience has
shown that a system designer often has a
good insight into the complexity and the
computational bottlenecks of an algorithm.
Therefore he/she is perfectly capable of
estimating the required amount of parallel-
ism and the acceleration units needed. The
most-time consuming and error-prone job
is not located in the allocation task, but in
the operator assignment, the controller
generation and the minimisation of the
execution time, the register usage and the
bus count. This is where the synthesis task
has to come in and has to be extremely
good in order to be acceptable.

Based on these considerations, we have
deduced the following synthesis strategy
(Fie. 8):

n The SILACE description of the
algorithm is first passed to a preprocessor.
The tasks of the preprocessor are to parse

the SILACE description, to perform syntax
and semantic checks, to determine the
data types of all signals and to perform
a number of local transformations,
cornrnon to most general-purpose
software compilers (such as, for example,
the elimination of common subexpres-
sions). ln addition to the behavioural part
of the SILACE description, the preproces-
sor also inputs a set of userdefined
allocation and assignmenf pragmas

(which will steer the compilation
process).

! ln order to transform the preproces-
sed applicative high-level language
description of the algorithm into a

customised processor structure, the
mapping tool has to assign primitive
SILAGE operations to execution units,
define the bus structure and assign the
SILAGE and intermediate variables to
register files and background memories.
This task can be divided into a transla-
tion and a number of optimisation
subtasks.

The translation step transforms behavi-
oural primitives into architectural
primitives. This step is of extreme
importance, since it will determine how
efficiently the architectural properties can
be exploited. ln order to cope with archi-
tectural changes and expansions, this tool
has to be flexible and expandable by an
inexperienced user. Therefore it has
been implemented in a rule-based
fashion. This rule base captures the
knowledge of the architecture designer
and addresses the real creative step in the
synthesis process.

lhe translation might be straight-
forward for a simple addition, but is far
more complicated for constructs such as

multiplication (parallel, parallel-serial,
constant multiplication), algorithmic
delays, matrix operations, repetitions,
floating-point operations, double-preci-

Fig. I The synthesis part of the CAD system of CATHEDRAL-II

April 1988

ollocotion ond
ossignment
progmos

system
des i g ner

Sl LAGE olgorithmic description

simu totor
MO N KEY

portit ioning
Progmos

SILAGE per
processo r

preprocess rng interprocessor
communicotion

tronslotion /compi tqtion
JACK- THE- MAPPER

RTL

schedu I i ng/ossignment
ATOMICS

doto poth/
orecr

register binding
bus merg ing

control ler
cycle count

RAMs
Fl Fos

L_ j J

61

d-1rt-
I

_l

h,r-2,rlu-1D.a,LFor,cttrlha-l-tar-1hn-1-..1u-l

II

alto'rti9. I 0."fry.qq! ap,l*.: ac ttlrr.tLttor elLrirtie. 2

b

lt€3lgr t'l 0trl.';19
a

I!+lffileLt0 altgnattrc ? 0g{l'',t t6 Cgcla: l8

d

ell,F'6tlvc I ll.3lgn tcr f/{jld,,r fr

e

bt''JltJ-l

?r.rt-F
frL-"r

.|fl I

*

Fig. 9 Processor synthesis example
a Default data path generated by JACK-THE-MAPPER - this solution with four busses is scheduled by ATOMICS in 36 machine cycles
b Same data path as in Fig. 9a after bus merging - rescheduling now shows the need for three more cycles (Fig. 10 shows the scheduled

register-transfer code)
c Layout generated for the processor of Fig. 9b - from left to right: ALU with register files, controller circuitry, RAM
d Redesign by JACK and ATOMICS of the processor based on the pragma 'assign (- * -, mult,l)', whereby all multiplications are executed on a

multiplier and scheduled in 18 cycles
e Redesign based on a r+partitioning pragm4 whereby a threeAlU solution is scheduled in 20 cycles

62 Computer-Aided Engineering Journal April 1988

sion arithmetic etc. A second set of rules
implements the interconnection strategy.
It generates the necessary busses, input
multiplexers and tri-state output buffers.
The current rule base for the
multiprocessor architecture consists of
more than 100 rules, but new ones are
being added regularly (as our experience
grows). A user-friendly knowledge
acquisition system is being developed to
ease the introduction of new rules.

a Scheduling/assignment (Ref. 9): As a

result of the translation step, the SILACE
description has been transformed into a data
path structure and a register-transfer (RT)

description of the algorithm. ln the RT
description no timing is imposed on the
operations. A number of assignments (for
example the binding of an operation to a
particular EXU instance) are also left open.
The tasks of the scheduling operation thus

n the ordering of the RT operations on
the time axis in such a way that the
execution of the algorithm takes a

minimal number of cycles
tr the binding of the undefined
assigrurrcrrts so thut thc allocutcd
hardware is used in an optimal way.

A graph-based scheduling tool called
ATOMICS has been developed. Special
features of ATOMICS are its capability to
schedule repetitive programs and to handle
input/output constraints. ATOMICS has

been used to schedule extensive programs
and has proven to achieve the optimal
schedule in most cases. Related, additional
optimisation steps are:

Z Register binding/bus merging: Once
the exact timing schedule of RTs has been

determined, the dimensioning of the
register files as well as the assignment of
the variables to precise register fields
(based on a lifetime analysis of the
variables) and the minimisation of the bus
count (bus merging) have to be
performed. Procedural optimisation
functions have been developed for both
tasks and have been integrated in the

JACK environment.
A Communication hardware synthe-
sls: After the derivation of the processor
hardware and the controller timing, it is
possible to synthesise the interprocessor
communication hardware and to derive
the structure and contents of the central
controller. The tasks of this synthesis fool,
which is currently being developed, are

to select the cheapest communication
protocol (FIFO or RAM based/single or
double buffering), to dimension the buffer
arrays and to determine the exact timing
of the control signals needed. lt must be
mentioned that the selection of a certain
protocol can result in a number of extra
constraints on the processor timing or
hardware, so that a re-iteration on the
processor synthesis might be needed.

Computer-Aided Engineering Journat

Fig. 10 Excerpt from the register-transfer code and the symbolic microcode
a Register-transfercode
b Symbolic microcode

An example of processor synthesis
The following is an example of the

synthesis of the fifth-order PCM filter in Fig.

74 as described in the SILACE code in Fig.
7b. When this code is sent through JACK
without any pragmas, it will first produce
the cheapest possible silicon solution in
terms of EXUs. The data path structure
generated is shown in Fig. 9a. lt contains
an ALU for all operations, a small RAM to
store the state variables and to perform the
communication with the input/output, and
a block'ROM-CTRL'which forms the link
to the controller over which immediate
addresses can be fetched.

Note that in this solution four busses are
used and a scheduling using ATOMICS
shows that 36 cycles are needed to execute
the filter algorithm. This is the fastest
possible execution time using three EXUs.
However, when using the bus-merging
algorithm, after about one minute of CPU
time on an Apollo 3000 system, we get a

new solution, as in Fig. 9b, where all the
busses have been merged into a single bus

at the expense of only three additional
cycles.

Fig. 10a also shows an excerpt of the
scheduled register-transfer code produced
by ATOMICS. lt contains all the transfers

Potential 0:

x35 : reg - 2 - alu - 1 - x31 @1 : reg - 1 - alu - 1 | alu _ 1 = passa,
bus-2-alu-1bus-1 -rom-ctrlbus-1 -ram-1bus-1 -alu- | =x35 <0>;

x35 : reg - l - alu - 1 - x31 @1 : reg - 1 - alu - 1 | alu - 1 = passa,
bus-2-alu- lbus- 1 -rom-ctrlbus- 1 -ram- lbus- 1 -alu- 1 =x35 <0>;

Potential 1

x31 : r€g-2-alu-1 +x17@1 : reg-1-alu-1 | alu-1=passa,
bus- 2 - alu - lbus - 1 - rom - clrlbus - 1 - ram - lbus- 1 - alu - 1 = x31 <0>

Potential 37:

xl : r€g - 1 - ram - 1 * x7 : reg' -2 - alu - 1, x3 : reg - 1 - alu _ 1 | alu - 1 = add,
bus- 2 - alu - lbus - 1 - rom - ctrlbus - 1 - ram - lbus - 1 - alu - 1 = xl <0> i

Potential 38:

x1 : r€g-3- ram -'l * x2 : reg-2- ram - 1, xl : reg - 1 - ram - 1 | ram - 1 =write <0>i

Total of 39 potonlials

Total of 39 machine cycles

a

< 0> /.Startup'/
UPD CREG I0l = srogstart, CREG t1 I = CREG tol ;

JMPIFCREGtll -z I I lCREGtll -IFCREG[o] - 1 I I ICREGIoI -0FlFl

< 1>/'Potontial0'/
CTL reg - 2 - alu - 1 : W[0, 4], reg - 1 - alu - 1 : R t5, 71, alu - 1 : passa,
reg-1 -alu-1 : W[6, 7], r€g-1 -alu-1 : R[5, 7], alu-1 : passa; UPD; JMP3:

< 2> /.Pol€ntial 1'l
CTL reg-2-alu- 1 :W[1,4], rsg-1-alu-1 : Rt4,71 , alu- 1 :passa; UPD; JMP 4;

< 3> /*Potential 2'l
CTL reg-2-ram-1 : W[0, 0], rom-ctrl : const[1, 1]; UPD; JMP 5;

< 39>/'Pot€ntial38-/
CTL reg- 2- ram - 1 : R[0, 0], reg - 1 - ram - 1 : Rt0, 01, ram - 1 : writ€; UPD; JMP 0;

b

April 1988 63

that have to take place during the 39 cycles;
the part of the code following the vertical
bars is a symbolic representation of the
control signals required by the transfers. Fig.

10b shows part of the finite-state machine
description, or symbolic microcode,
derived from the RTL description. This code
is the input for a program that generates the
ROM and PLA matrices of the controller.
When the designer is satisfied with this
result he/she can call the module generation
environment to generate the ALU, ROM,
RAM and controller instances. They are
then placed and routed on the floorplanner
to give the layout shown in Fig. 9c. ln this
way very fast turnaround design is possible.
However, if, for example, the speed is not

sufficient, the designer can add pragmas to
the SILACE description and generate new
solutions quickly. In Fig. 9d the pragma

'assign (- x -, mult, 1)'

states that all multiplications should take
place on a single multiplier. The solution
now contains a multiplier and runs in only
1B cycles.

Fig. 9e shows a re-partitioning pragma,
whereby the designer forces the use of an
ALU for each section in the filter and for
all additions and multiplications. This leads
to a solution in 20 cycles. The reason for
this high speed in spite of not using a

multiplier is the result of the fact that JACK

contains rules to decompose fixed
coefficients into a minimum number of
additions and shifts, and this clearly shows
the advantage of the rule base intelligence.
Finally note how such a synthesis system
allows a very rapid scan of the design space,

since each debugged microcode redesign
costs an average designer around one week
instead of about five minutes in
CATHEDRAL-II. ln the next section we
describe the module generation environ-
ment for CATHEDRAL-ll.

Mod u I e generator d esi gn envi ron men t
To allow the definition of a parametris-

able module generator, the creator of it
needs a system that enables him/her to
design the leaf cells and provides high-level
commands to express the composition of
a module as a function of the parameters.
Since the composition rules may be as

complex as 'Fit a number of leaf cells so that
their terminals connect by abutment' or
'Route set of nets', the algorithms to support
these high-level commands must also be
provided in an integrated environment.

. A drawback of a lot of the existing
module generators is the delay between
definition and executlon, introduced by the
compilation and linking steps of the
traditional programming languages they are
implemented in. To overcome this pioblem
we have designed an interactive
environment that gives feedback in graphics

form each time a composition rule of the
module generator is defined, allowing
mistakes to be corrected immediately after
they are made.

To describe a module we have to capture
four types of information:

Fig. 11 AtU module generation
a Craphical definition on the screen while defining a parametrisable ALU module generator after

adding the topology of the components
b Craphical definition on the screen while defining a parametrisable ALU module generator after

adding the interconnection

o structural, defining the sub-modules of
a module
a topological, defining the relative
placement of the submodules
a connectivity, defining how the
submodules must be interconnected and
where the input and output terminals of a
module are
a construction, defining how submodules
fit together and which of the interconnec-
tions are realised by abutment or routing.
ln the first version of the module generator
in CATHEDRAL-Il, called MCE (Module
Cenerator Environment), structural and
topological information is entered at the
same time. Components are added on grid
points to represent their relative ordering
but not their final co-ordinates. Fig. 1 1, for
example, shows a copy of the screen while
defining an ALU module generator. To add
a column of N cells of type CENERAL
(shaded in FiS. 1 1) at x: B and

Y:1,2,. . .,N we use the command

(ADD_COMP CENERAL B I 1.. .N |)

As can be seen from Fig. 11, the cells are
represented by their outline at this stage,

l
x

l

ffiffim
ffitJ m
r*l t't t,,it',,,tI--- I L-l V.444

;
$

I
$

I
n
u

I
a
u

I

I

m
ffi

ffi
ffi
m
m
HJ

N3J

(AL.U 8)

N I'

;
I

HIB

E

I
I
!
T

ffifJ m
ffitJ m
[;ltJ m
ffitJ m
ffiHm

a

I
iltl II

l-H-t=,f
iltl lt

f1=:::::::I:_ l-t
'I

--l-re- r-T
IIII

tH--- ._ r 1__
Iil ilil-----EI-$-i=--t r1
ilt iltl

--Il
III IIII ill

b

64 Computer-AidedEngineeringJournal April1988

resulting in a clear picture and fast display.
Connections can also easily be defined by
specifying a net name, and the list of
terminals of the connected components.
The command

(ADD_CON (OUr3
|

(our lB...Bl I

(Pour le .el
I

defines the N connections with net names
OUT3[1] . . .OUT3 [N] between the pins
OUT of the cells in column B and pins
POUT of the cells in column 9. Note that
no assumption is made at this stage of how
the connections will be realised.

Note that indices of array-like structures
can be expressions, like (N- 1) being the
last ripple signal of the adder in the ALU.
MCE allows the association of an expres-
sion with each horizontal or vertical grid
line on the display (see they-axis in Fig. 11).

The creator can then, by simply placing
cells and pointing at grid points graphically,
use the associated expressions as co-
ordinates in tlre autorrratically gerrerated
Lisp procedure. This is the first step towards
graphical definition of module generator
code.

For the design of the leaf cells we use
CAMELEON, our symbolic layout and
compaction program (Ref. 10). Layouts are
assembled from point elements such as

transistors and contacts, wires to intercon-
nect them, and area definitions, such as the
n- or pwell in CMOS technology. The
layout is then compacted, using a constraint
graph and a longest-path algorithm, to
minimise the area of the cell. The program
assures that the layout is correct with respect
the design rules, as specified in a

technology file, also taking into account
extra constraints that the user may have
specified. Technology changes can easily
be accommodated by changing the values
of symbolic constants, like MIN-POLY-
WIDTH or MIN-CATE-OVERHANC, in the
technology file and compacting the cell
again.

The construction rules specify how the
real layout of the module must be made,
starting from the topology, the connections
and the basic cells. Two basic options exist:
either the cells fit on each other and can be
pushed together, or routing must be added
to make the connections. Both options are
available in MCE. The ROUTER command
allows the user to define a horizontal or
vertical channel and the nets that have to
be routed. A river and a channel router are
available. The COMPACT command will
move components together in the x or y
direction as specified. The designer can
combine these construction rules to first
route some channels and then compact the
global module.

ln a traditional layout environment
abutment of cells can only be achieved by
taking into account, while designing the

Computer-Aided Engineering Journal

Fig. 12 Example of the automatic pitch matching of a set of data path cells
a Original symbolic layout
b Cells after terminal pitch matching

Fig.13 layout of two address calculating units generated by specifying two different sets of
parameters to the module generatol

April 1988 65

Nll
Nl)

N l))
a

b

layout of a cell; the requirement to abut to
the other cells. ln our system the designer
can express this requirement by the
command (ABUT XORY(CELL-LIST)). The
module generator environment will then
call the compactor, load the cells specified
in CELL-L|ST and compact the internals of
the cells, taking into account the constraints
imposed by their neighbours. Figs. 12a and
b show a set of cells before and after
applying the ABUT command.

The final step of an editing session in
MCE is to save the commands into the
module generator procedure. This is done
automatically each time the designer stops
working on a module. From this procedure
modules can be generated for any set of
parameters in the allowed range.

To avoid the trouble of inventing a
complete new language and taking
advantage of the interpretative nature of Lisp

the first version of the MCE was imple-
mented as a superset of Lisp. For the more
arithmetic-intensive algorithms such as

compaction and routing, Pascal and C
programs are called from Lisp. The system

has been tested through the design of six
EXUs defined for the target architecture in
CATHEDRAL-Il. The resultlng layout of two
instances of the ACU is shown in Fig. 13.

The use of Lisp as the basis of MCE
provides the creator with all the flexibility
of a high-level programming language,
enabling him/her to define module genera-
tors that require more complex composition
procedures. An example of this is the
comparator shown in Fig. 14.

Conclusions

This paper describes the concepts and status
of the development of an application-
specific silicon compiler for highly complex
DSP algorithms. We have shown that
development of a silicon compiler is only
possible after a careful limitation of the
target silicon architecture for a restricted
application area. Only then can a CAD
system be developed. Most parts of the
synthesis and module generation system
have been successfully prototyped, and the
first large chip designs are now being
undertaken. The use of artificial intelligence
programming techniques plays an ever
more important role in the prototyping
activity. Behavioural silicon compilation, as

well as the module generators to support
it, will require new skills from both system
and silicon designers and it remains to be
seen how they will react to it in the future.

Acknowledgments

The authors would like to acknowledge
contributions from many people: in the first
place all the members of the IMEC VSDM
group and in particular K. Croes, L. Rijnders,
l. Vandeweerd, M. Pauwels, F. Catthoor, M.
Bartholomeus,). P. Robin, E. Vanden

Fig. 14 Comparator module generation
a lnterpretatively generated representation of the structure of a 6 bit comparator
b Layout of the 6 bit comparator - some cells are connected via abutment, others with routing
c Layout of an 8 bit comparator, proving the flexibility of the module generator created

Meersch and L Bolsens. We also wish to
acknowledge contributions from all our
ESPRIT 97 partners, especially Philips,
Siemens, Bell Telephone Manufacturing

Company and Silvar-Lisco. ln particular we
are grateful for significant inputs to the target
architecture from Dr. J. Van Meerbergen of
Philips.

References

'1 SLUYTER, R. J., KOTMANS, H. J., and VAN LEEUWAARDEN, A.: A novel method for pitch
extraction from speech and a hardware model applicable to vocoder systems', Proceedings
of IEEE lnternational conference on Acoustics, speech, and signal processing, Denver, co,
USA, April 1980, pp. 4s-48

2 HILFINCER, P.: A high-level Ianguage and silicon compiler for digital signal processing'.
Proceedings of IEEE Custom lntegrated Circuits Conference, portland, OR, USA, May 19gi
pp.213-216

3 KOWALSKI, T. J., CEICER, D. J., WOLE W. H., and F|CHTNER, W.: ,The VLS| design automa-
tion assistant: from algorithms to silicon', IEEE Design & Test of computers,lggs, 4, (2),
pp. 33-43

4 TRICKEY H.: 'Flamel: a high-level hardware eompiler', IEEE Transactions on Computer-
Aided Design of Integrated Circuits,1987, CAD-6, (2), pp.259-269

5 CATTHOOR, F., RABAEY J., COOSSENS, G., VAN MEERBERCEN, J, 1., JAIN, R., DE MAN,
H. J., and VANDEWALLE, J.: Architectural strategies for an application-specific
synchronous multiprocessor environment', IEEE Transactions on Acoustics, speech &
S i g n a I P roc e s s i n g, 1988, ASSP-36, (2), pp. ZiS-ZAC

6 SlX, P., CLAESEN, 1., RABAEY J., and DE MAN, H.: An intelligent module generator
environment'. Proceedings of 23rd ACM-IEEE Design Automation conference, Las Vegas,
NV USA,)uly 1986, pp. R0-73s

7 SlX, P., VANDEWEERq 1., and DE MAN, H.: An interactive environment for creating
module Senerators'. Proceedings of 12th European Solid-State Circuits Conference', Delft,
Netherlands, Sept.'1986, pp. 65-67

I MARWEDEL, P.: A new synthesis algorithm for the MIMoLA software system'. proceedings
of 23rd ACM-IEEE Design Automation Conference, Las Vegas, NV, USA, July 1986,
pp.m-Y7

9 COOSSENS, C., RABAEY J., VANDEWALLE, J., and DE MAN, H.: An efficient microcode-
compiler for custom DSP-processors'. Proceedings of IEEE lnternational Conference on
Computer-Aided Design, Santa Clara, CA, USA, Nov. 19BZ pp.24-?f

10 CROES, K., DE MAN, H., and SlX, P.: 'CAMELEON: a process tolerant symbolic layout
system'. Proceedings of 13th European Solid-state circuits conferencg Bad Soden, west
Cermany, Sept. 1987, pp. 193-196

Prof. H. De Man is with the lnter-University Microelectronics Centre, Katholieke Universiteit
Leuven, Naamestraat 22, 3000 Louvain, Belgium, Prof. .1. Rabaey is with the Department of
Electrical Engineering & computer science, University of california, Berkeley, cA94720, lJsA,
and J. Vanhoof, C. Coossens, P. Six and L. Claesen are with IMEC vzw, Kapeldreef 75, 8-3030,
Leuven, Belgium.

Computer-AidedEngineeringJournal April1988

I

ba c

66

