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Abstract

In this paper, an analysis is presented of timing faults in synchronous
MOS circuits. A rule-based method is used to transform the network of
MOS transistors, obtained from the physical layout by extraction, into o
network of unidirectional subeireuits, Each subeireuil is characterised by
a logic model, which is used to accurately derive the timing constraints,
The timing model of the citeuit, required by this algerithm, is derived
from the created subcircuit structure. The logic model allows to elimi-
nate false edges in the signal propagation gruph. The resulting timing
verifier ean be used for a wide range of static and dynamic naMOS and
CMOS circuits.

1 Introduction

Timing verifiers have become recognized tools for the verification of the
performance of electronic designs at transistor level [1,2,11,12,4,13,7].
Commonly, they caleulate for each node in a given circuit the settling
time, or the latest point in time nt which a signal transition can take
place. These delay times are caleulated independent of specific input
excitations as is in contrast to simulation which ean only be performed
for specific input patterns,

Timing analysis and verification for MOS circuits is traditionally per-
formed in a number of steps: (1) signal flow modeling and partioning
in MOS transistors (2) delay modeling [12,3,8,10,9] and critical delay
path analysis. Instcad of using hardeoded heuristies to determine the
signalflow ns in [4,11,12], the SLOCOP timing verifier [13] relies on rule
based cirenit partioning [19] whereby signal flow ns well us logic func-
tionality is modeled for subcircuits to be extracted. This partioning also
allows to identify combinatorial blocks as well ns registers and latches in
MOS cireunits. In contrast of using crude approximative models, SLO-
C'OP uses cirenit simulation [13] for delay detérmination of individual
subeireuits.

A timing verifier calculates settling times for ench node in combi-
nntional circuits. It is up to the designer to draw conclusions about
whether or not the circuit can be inserted in a synchronous system with-
out causing timing faults, More advaneed timing verification tools allaw
to directly analyse synchronous circuits, The important problem that
arises here is to determine when the calculated settling times with re-
spect to the different transitions of the clock actually imply n timing
fault in the cireuit.

Important work in the direction of automating the timing verification
for synchronous circuits has been done in [7]. Szymanski deseribes how
the timing analysis of synchronous circuits, irrespective of the number of
clocks, can be performed by applying  PERT critical path evaluation of
the timing model during each phase of the clock cycle. This is repented
over a number of clock cycles until the settling times converge.

In combination with this analysis algorithm, a rigourous method is
needed to derive the constraints on the settling times which are to be
verified. In this paper, it will be shown how & set of constraints can be
derived which cover timing faults due to the improper timing of signals
at inputs of level sensitive latches and precharged circuits. Also the
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specifie timing constraints related to the use of conditional clocks nre
denlt with in o unified way. In figure 1, two situstions are shown which
lead to a timing fault in the cirouit. In the first example, the lateh output
has not assumed the correct value before the start of the “hald phase’,
The signal A arrives too late to be gated in the latch. In the second
example, the precharged output of the gate unintentionally discharges.
Both timing faults are seemingly unrelated. It can however be seen that
in both examples the final output state is a storage (or memory) stote
which stores the wrong logic value.

The basic observation that, when a memory state (M) enn exist dur-
ing & certain phase of the clock perind, it must store the correct logic
value, will be generalised and put in a form that is suitable for compuler
verification.

In Section 2 the lapie model of a subcircuit will be defined as an ex-
pression of four operators. The possible output states that nre considered
are High, Low, Error and Memory (1,0,E,M). In Section 3, the timing
constraints will be formulated, Section 4 deals with the liming unalysis
algorithm, which is needed to verify the timing constraints. Section 5
discusses the problem of compatibility of logic states at different nodes
in the cireuit. It will be shown that a detection of statically incompatible
logic states is needed to avoid false timing errors and to solve the false
path problem in the timing analysis. More extensive information on the
algorithms in this paper is available in [19].
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Figure 1: Examples of timing faults in clocked circuits.

2 Logic modeling of subcircuits.

The SLOCOP program uses o rule-based subcircuit partioning [14]. In
the rule base, the possible generic subcircuits are described manually in
the LEXTOC language [14] for a given design style. Togther with this
partioning the logic model for the subcircuits is specified.

From the logic point of view, the exnct voltage at the input or out-
pit of & subcircuit is not relevant. For ench technology, there exists a
function D(v) : R — {0,1, E}, which maps a voltage v onto one of
three states: 0 : logic low, 1 : logic high, E ; ¢rfor. The E indicates an
indetermined signal state that is not accepted by the logic model that is
build of the subcircuit.

For n given subeircnit s, the following notation is introdnced to de-
note inputs and output of a subcircuit s and the logic states at these
nodes: Bour(s) = {no} Bin(9) = {mi,na,. . .nw}, Dlv(no)) = w D(n{ni)) =

2iy X =[=1-.. zy]r.



The output of an arbitrary subcircuit of MOS transistors can, in
accordance with previous work [5] be characlerised by four states, which
lead to a logic model as a function: F : {0,1,E, M}N — {0,1,E,M}

with
F(X)e{0,1,E} = F(X)=y
FX)=M =y is not determined by X
Physically, the M state indicates that the output of the subcircuit is
in a bistable state. This means that both an electrically stable 0 or 1

state can exist at the output, together with these input states. Common
ways to implement a bistable state is by electrical isolation of a node or

i. (select ((not nl) (and nl (not n2))) ((not n1) n2))
ii. (select ((and nl (tfn2 vdd)) (and nl (¢f n2 gnd))) (nl (not n1)))

Figure 3: Subcircuit with a corresponding logic model specification.

by a loop with an even number of inversions. Figure 2 shows examples
of subcircuits whose output state is M.

Because of the introduction of the M and E state, the basic operators
of boolean algebra are not sufficient to describe the function F(X) and
must be extended. We will illustrate the extension of the AND operation:
conjunction (AND)

IFz;=E(1<i<N)THEN 2y Azy...Aey=E

ELSEIF z; =0 (1 <i< N) THEN z; Azz...Azy =0

ELSEIF ;=1 (i=1...N) THEN &y Auz... Axy —1

OTHERWISE =y Azy...Aey = M

The definitions of the operators OR, NOT and SELECT is given in
[19]. The SELECT operator is necessary as it is the only operation which
can evaluate to E or M when all its operands are 0 or 1.

In order to be able to specify the function F(X) of generic classes of
subcircuits, an additional construct in the rule base language is neces-
sary: the transmission function tf between two nodes in a subcircuit is
a boolean function of the subcircuit inputs which evaluates to 1 if a con-
ducting transistor path between the two nodes exists. The transmission
function avoids that logic equations have to be specified in the rule-base
for each instance of a specific type of gate (for example for all pull up
and pull down configurations in a static CMOS gate).

In figure 3, an example of a subcircuit is shown together with the
specification of the logic model F(X), as specified for a specific design
style in the LEXTOC rule base for CMOS design. It describes the func-
tion of an RS type flip flop build out of two CMOS nand gates.

Automatic methods for determing logic expressions of MOS subcir-
cuits have been presented recently {17,18] and should be investigated for
avoiding the need for manual specification of logic expressions in the rule
base.

3 Timing constraints in synchronous cir-
cuits

Timing constraints in synchronous circuits follow from the presence of
subcircuits which can have an M state at the output during certain
phases of the global clock period. By definition of the M state, the ac-
tual logic value at the subcircuit output is determined by the preceding
sequence of events at the subcircuit inputs. The purpose of the tim-

ing constraints is to formulate conditions under which this sequence of
events can or will lead to an incorrect logic value for the M state at the
subcircuit output. First the notation will be presented to derote clocks
and clock waveforms. Next, we introduce the concept of 'settling time’
of & node, Finally, the timing constraints are discussed and formulated
in terms of the settling times of the nodes in the circuit.

To the clock inputs of a synchronous circuit, periodic waveforms are
applied. The following notation is used:

Clocks: n¢; € N2, i=1...q

Logic state of the clocks: D(v(nc;)) = zc; € {0,1}

XC =[ze; ... ch]T

Clock waveform: XC; ... XC,

The time point at which XC;_; — XC;j is called t¢; (te; =
0)

als

Figure 2: Examples of the bistable (M) state.

Each maximum time interval (te;,?¢;4,) during which the clocks nre
stable at the value XC; is called a clock phase.

For an arbitrary node n in the circuit, the settling times during a
certain clock phase are defined as the latest possible time pnints at which
a signal transition can take place after the beginning of the clock phase,
under the assumption that the states of the clock would be kept at the
value of this phase. The following notation is used:

U(n): latest 0 to 1 transition time at node n
D(n): latest 1 to 0 transition time at node n (1)

The settling times of internal nodes in the circuit are determined by
the settling times of the primary inputs. The timing constraints will be
expressed in terms of these settling times. In the following section, the
algorithm to calculate U(n) and D(n) for each node in the circuit and
for each clock phase will be discussed.

A timing fault in a circuit occurs when the M state at a certain node
and during a certain clock phase does not store the Intended logic value.
This condition imposes constraints on the settling times at certain nodes
in the circuit.

In order to formulate the constraints, it must be observed that for
each subcircuit, during a certain clock phase X C;, a number of inputs i
have no determined logic state, while the others are determined by the
states of the clocks. If all possible combination of states X are applied
at the inputs ii, the set ©; of potential states (0,1,E or M) at the output
of the subcircuit during the i-th clock phase is obtained:

3% FX)=0e0co;

3X: FX)=181€6;

JX: FIX)=M& Meo;
The following timing constraints can then be formulated, which must
hold for each subcircuit and each clock phase:

Figure 4: Timing faults covered by the first timing constraint.



Timing constraint 1.
) ) ) 1€0;_1\0; = U(ng) < te;

HMecO;A0;_1\0; £{} Then 0€ 01\ 0; = Do) < tes

I & determined boolean state (1 or 0) can exist during & certain clock
phase but not during the next clock phase, it must have settled before
the start of the next phase, This is based on the consideration that this
state may have to be stored by the M state during the second phase.
Figure 4 shows two examples of timing faults which can occur when the
constraints ere not satisfied. In the first case (4a), the output of the
latch has not reached the intended state before the latch 'closes’. In the
second case (4b), the output of the dynamic gate is not yet precharged
before the end of the pracharging phase of the clock period.

Timing constraint 2.

KM e A O \{M}#{} Then vV X\, X, during XC;

F(X1)# M F(Xy) M
F(X:)=M F(Xy) =M

- N N 1
X =x.} = U(ne) < te; Xo-xf = D(ny) < te;
T1t = 0 T = 1

If during a certain clock phase both an M state and a determined
boolean state are possible at the output, no input transition must teke

te, D(nl) te; Ding)

Figure 5: Timing faults covered by the second timing constraint.

place at the subcircuit during this clock cycle that changes the output
from the determined boolean state to the M state. This is based on the
consideration that the purpose of the M state can be to store the value of
the previous clock cycle. Figure 5 shows timing faults which are excluded
by the second timing constraint. Signal nc is directly influenced by the
primary clocks. n is an input signal to the subnetwork. In 5a, there is
a time interval during which an unintended state can ’slip’ through the
latch, because the condition signal A is not stable in time. In the case of
5b, the output of the precharged gate may discharge because the inputs
have not sll stabilized at the end of the precharging phase of the clock
period.

4 Timing analysis of combinational circuits

The goal of timing analysis is to calculate for each node n in the timing
model the settling times for a logic high and low signal, respectively
denoted as in (1). In a combinational circuit, we assume that for each
node n with |aeye(n)| = 0, the values U(n) and D(n) are given. These
values represent the settling times of the inputs of the circuit.

The values of U (n) and D(n) for all other nodes can then be obtained
by evaluating all subcircuits in topological order (i.e. a subcircuit is not
handled before all the subcircuits that drive it) as follows:

U(n;) + delay n; — ng with T; = 0—1 and T, = 01

U(no) = MAX ( D(n;) + delay n; — np with T; = 1-0 and T, = 01

(n;) + delay n; — no with T; = 0—1 end T, = 10
)

u
D(ng) = MAX ( D(n;) + delay n; — no with T; = 1—0and T, = 10

1XT js defined in the next section as & vector of boolean values which is the same
as vector X with only & different value for entry t

where the maximum is taken over all edges n; — np and T;, T, denote
the input and output transition of the edge. This algorithm is known as
the PERT algorithm [16] and used in several existing timing verifiers.

The analysis of synchronous circuits is different from the analysis of
combinational circuits because the timing model is no longer an acyclic
graph. Therefore, the PERT algorithm can not be used. However, during
each clock phase the propagation conditions of & number of edges in the
graph are in logic contradiction (see Section 5) with the states of the
clocks during this phase. For a synchronous circuit, it can safely be
assumed that elimination of these edges from the graph yields an acyclic
graph during each clock phase. This is in the assumption that small
cycles can be taken up in subnetworks that ere described in the rule
base. Under this condition, it is possible to repeat the PERT evaluation
described in the previous section for each clock phase. Each evaluation
gives the worst case settling times U(n) and D(n) for every node n in
the circuit, in response to a rising or falling edge of the clock waveforms.
The algorithm is summarized below:

REPEAT
FOR every phase in the clock period DO
Eliminate edges from the SPG with incompatible conditions;
Determine U(n) and D(n) by the sensitizable critical path
algorithm on the remaining graph [15];
Verify timing constraints
ENDFOR,;
UNTIL convergence: U and D are incremented with exactly one clock
period for all nodes.

The adventage of this algorithm lies in the absence of any assumptions
about the synchronising actions of the clocks. Signals are not assumed
to be stable at latch inputs or outputs at certain time points of the
clock period [7]. The algorithm correctly handles signals that propagate
through latches during the time interval that these are in 'sample’ mode.

5 Compatibility of logic states

Both the timing model and the timing constraints are derived from the
logic model of the subcircuits. These subcircuits are defined for a specific
design style in the LEXTOC rule base description, It will be shown in
this section that another benefit follows from the availability of this logic
model in the timing verifier. Consider the following situation: A logic
state (0 or 1) can be imposed on an arbitrary number of nodes in the
network. If the states are arbitrarily chosen, it is possible that they can
never occur simultaneously in the circuit, because of logic incompatibility
(e.g. a 0 state may be assigned to both the input and output of an
invertor). We will denote a set of (node, logic state) pairs with the
symbol A. It is then possible to define & boolean function £(A), which
determines the compatibility of the set A:

e(A) = 1 & A is not contradictory
£(A) = 0 & A is contradictory

An implementation of the function ¢ is given below, based on the
D-algorithm which has been adapted to the set of operators used in the
logic model of the subcircuits. Essentially, this algorithm for propagation
of logic states in a network of logic operators is similar to event-driven
logic simulation at gate level, except for the fact that signals can also
propagate from the output of an operator to the input. Below, the
evaluation procedure of the operators is given.

1. IF x is known, set y to T
2. IF y is known, set x to §
L] y=x1A2a...ANTn
1. IF z; = 1 for all i, set y to 1
2. IF y=1, set @; to 1 for alli
3. IF z; = 0 for any i, set y to 0
4. IF ; is unknown and,
z; = 1 for all i#j and,
y=0,set ; to0



[ y=aVaey...Vaoy
1. IF 2; = 0 for all i, set y to 0
2. IF y=0, set @; to 0 for all i
3. IF 2; =1 for any i, set y to 1
4. IF z; is unknown and,
z; = 0 for all i#]j and,
y=1,set z; to 1
o y=(s1,82...,9x5)|(d1,d2...,un)
IF 5; = 1 for any i,
1. set s; to 0 for all j # i
2. IF d; is known, set y to d;
3. IF y is known, set d; to y

The procedure determines all necessary implications of logic states
at inputs and output of each operator. Logic contradiction is detected
when both a 1 and a 0 state are implied at the same node. This causes
the function ¢ to return 0. Note that only the 0 and 1 state are to be
considered, as the M state does never cause any implications and an
implication of an E state is taken to be equivalent to contradiction.

We will demonstrate the use of the function e(A) with three applica-
tions in the timing verifier:

1. Elimination of edges during each clock phase In the timing
analysis algorithm, a number of edges can be eliminated from the timing
model during each phase of the clock period. Each edge E in the graph
has a number of propagation conditions associated to it, denoted with
A(E). Whether an edge is to be eliminated or not can be established by
evaluation of the function « for the propagation conditions of the edge,
lugelher with the states of the clocks durmg that particular clock phase:

{ A(E)

(neiyze;) i=1.q

This is in contrast to the method used in LEADOUT [7] where sim-

ul;llliou is used to determine the relevant transitions under each clock
phase,

2. Elimination of false timing constraints In Section 3, it is
explained how timing constraints are derived from the logic model of
the subcircuits., In practice this requires the evaluation of the subcircuit
expression for all possible input vectors X of each subcircuit during each
phase of the clock period. If applied literally, the two rules give rise
Lo many false timing constraints. These (alse constraints can be elimi-
nated by verifying the logic consistency of each tested input vector by
evaluation of the function ¢.

An example is given in figure 6. During each phase of the clock
period, M is & potential output state of the multiplexor, which gives
rise to a number of timing constraints, However, the invertor excludes
the M state and hence the timing constraints. This can be detected by
application of the function ¢ to all tested input vectors of subeircuit (ii),
to verify whether they are indeed possible.

3. Elimination of false paths

The remaining subgraphs of the causality graph in each clock phase
are assumed to be acyclic, as all cycles are assumed to be detected by
the rule base. In each such subgraph, the largest sensitizable paths have
to be found. However due to the fact that timing verification is signal
value independent it can occur that paths found by a PERT analysis
can not logically be excited and that the path found is false. In order
to avoid this, the logical compatibility for the edges in a path have to
be taken into account. In [15] efficient algorithms, as implemented in
SLOCOP, which effectively solve these problems are described.

Figure 6: Partitioning of a multiplexor circuit.

6 Conclusions

An alternative view on timing faults in synchronous MOS circuits, and
the way these faults ean be verified has heen presented. To our kuu\f'l—
edge, all existing timing verifiers ignore the logic behaviour of the cir-
cnitry to be analysed. We showed that the availability of a logic maodel
allows o automatically derive a detailed timing model and (he timing
constraints which are to be verified. Additional advantages of the logic
modeling lie in the possibility to rule out false timing errors and exclude
false paths from the analysis. Because of the rule-based subeircunit par-
titioning, the SLOCOP timing verifier has been used for a wide range of
static and dynamic nMOS and CMOS circuit designs.
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