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Abstract—Facial malformations such as overbite or underbite
can be treated by maxillofacial surgery where the mandibula (i.e.
the lower jaw) and/or maxilla (i.e. the upper jaw) is repositioned
to obtain a preferential occlusion. These treatments need to be
carefully planned prior to the actual operation. The planning of
such surgery is an intensive and time consuming procedure in
which the experience and knowledge of the surgeon plays a major
role. As part of a CAD-based surgery planning, haptic interaction
using 3D virtual models of the mandibula and maxilla, haptic
feedback can make planning and surgery much more efficient.
Haptic devices bridge the gap between the virtual environment
and the physical world. An important step in such haptics based
workflow is the collision detection between the two models at an
update frequency of at least 1000 Hz. In this paper the possibility
of the Implicit Sphere Tree algorithm as a collision detection
algorithm tailored for this specific application is presented.

Index Terms—Haptic interaction, Collision detection, octree,
Implicit Sphere Tree, orthognathic surgery

I. INTRODUCTION

Haptic technology is the technology that allows a user to
interact with a virtual object. Where Virtual Reality (VR)
usually is associated with extremely realistic graphics, it can
be augmented with haptic technology where the haptic device,
controlled by the user, interacts with the virtual object. This
device provides a force feedback (haptic feedback) to the user
based on the users actions in the virtual world. A general
consensus is that in order to achieve a realistic touch of a
solid virtual surface, an update frequency of at least 1 kHz
is mandatory [1]. This poses a lot of challenges, such as the
development of collision detection algorithms that can handle
the desired update frequency of more than 1 kHz.
Collision detection has already been researched for a few
decades. The work of Hubbard [2] for example dates from
1995. The main goal is to efficiently calculate the points of
intersection (if any) between two virtual objects, for example
two polygon meshes (e.g. two 3D structures built from
triangles). Typically, this ought to be done at a high update
frequency (at 1 kHz), but without compromising on the
resolution, which means that a lot of primitives, triangles in

this case, are required. If the number of primitives becomes
larger, however, the number of calculations increases too.
A straightforward way to tackle this problem is to take each
primitive in one object and compare it to each primitive
in the other object. This is a very inefficient way to find
collisions, as the problem is proven to have a time complexity
of O(n2) [3]. For the application in this paper, each object
consists of more than 100,000 primitives. With an update
frequency of 1 kHz this requires at least 1010 comparisons
of triangles. This is too much to be practically useful. An
efficient data structure is necessary to represent the objects,
and an efficient algorithm is needed to quickly and accurately
detect collisions between the meshes.

The methods presented in this paper are intended to be
used in pre-operative orthognathic surgery decision making to
enable haptic interaction between virtual jaw models. In order
to be able to ”feel” all contact points during virtual occlusion
finding, a high level of detail is required. This results in large
data structures. The work presented in this paper builds on
the data structure and supplementary algorithms presented by
E. Ruffaldi et al. [4], the Implicit Sphere Tree, and apply it
to the problem of occlusion finding in virtual models of the
mandibula and maxilla. The data structure used is a hybrid
mixture of regular octrees [5] and spherical octrees [6].
In this paper, the implementation and performance of the
implicit sphere tree are presented for this specific application.
Section II describes the implementation, design choices and
virtual environment for the software development. In section
III the performance is presented, and the obtained results are
discussed. Section IV provides conclusions.

II. IMPLICIT SPHERE TREE

In order to generate Implicit Sphere Trees (IST), several
calculation steps have to be taken. First, the given 3D
data structure must be voxelized. Voxelization means that a
cubic bounding box, enclosing the object to be voxelized, is
divided into smaller cubes until a pre-defined cubic size, the
voxel size, is reached. Next, the given voxels are efficiently



represented in an octree (Fig. 1) [5]. An octree is an extension
of a binary tree concept enabling more efficient data structures
to organize and efficiently search objects in a 3D space. The
octree forms the basic data structure that the IST is built
upon. During collision detection, the algorithm will traverse
the octree while simultaneously constructing a sphere-based
representation of the octree. These spheres can be used for
fast approximation of contact points upon collision because
it is easier to calculate the intersection between two spheres,
this geometric primitive is rotation invariant, compared to
bounding boxes, which are rotation variant.

The implementation of the application has been realized in
C++, using the open-source framework CHAI3D [7] in Visual
Studio. This framework, in conjunction with previous results
[8] provides a sturdy backbone upon which the IST can be
implemented. Finally, in this paper it is assumed that the initial
3D data structure is presented in a STL file format.

A. Voxelization

The voxelization algorithm is inspired by an application
of the Image Synthesis Group at the Trinity College Dublin
[9]. To voxelize a 3D triangular mesh, a data structure called
Spatial Hashing is used. This hash is built by first determining
the longest edge (l) of the smallest possible box containing the
entire object. The length of this edge serves as the length of
the 3D cube that composes the hash. Once the required voxel
size s (the length of the voxels edges) is given, the number of
voxels n in each Cartesian direction can be found:

n =

⌈
l

s

⌉
(1)

The result of (1) is incremented until n equals a power of
2, which makes further calculations easier (II-B). When n is
found, a 3D array -the Spatial Hashing- with n elements in
each direction is initialized. These elements, small cubes with
edge length s, are called voxels. Each triangle in the STL-file
is then placed in this hash according to a specific procedure:
First, all voxels with the potential to intersect the triangle are
selected. This is done by calculating the bounding box of the
triangle and search for all voxels contained by this volume.
Then, each of these voxels is checked for intersection with
the triangle. This is done with the triangle-cube-intersection
algorithm [10]. Now, each voxel can be classified using
the method of [11], which distinguishes 4 types of voxels:
Free space, Interior, Surface and Proximity. The voxels that
intersect with a triangle are Surface voxels. Proximity voxels,
the voxels within a range of approximately 2s from the outer
surface of the object, can easily be found using the surface
voxel as well as the triangle it intersects with. Since the
triangle originates from an STL-file, its normal -given in the
STL-file- can be used to determine which voxels neighboring
the surface voxel are proximity voxels. Currently, there is no
need to distinguish between Interior and Exterior (Free space)
voxels, as these are not necessary for collision detection and
are therefore classified as Undefined.

B. Octree

In order to rapidly search through all available data, the
voxelized structure is turned into an octree. In principle, an
octree can be viewed as a cube divided in half along each
Cartesian direction. This provides 23=8 equal cubes that each
enclose 1/8th of the original cube. The original cube is called
the parent and the smaller cubes are the children. Both, the
parent and the children, are considered tree nodes. To further
build the tree each of these children can once again be divided
into 8 new cubes until the desired tree depth and/or accuracy is
reached. The nodes on this level are called the leaf nodes. To
transform the voxelization into an octree, it is necessary that
the number of voxels on each axis is a power of 2. The voxels
of the Spatial Hashing always correspond to the smallest cubes
of the octree, the leaf nodes. Equation (2) can then be used
to calculate the amount of levels in the octree to completely
fit the Spatial Hashing. As recommended in [4], the added
parameter L (level) will play a large role in determining the
characteristics of each level in the octree. For L going from 0
to maxL in the tree, let L=maxL be the highest level consisting
solely of the root node. Let L=0 be the lowest level of the tree,
consisting of the leaf nodes which correspond to a voxel.

log2(n) = maxL (2)

It is fairly intuitive to build the octree bottom-up, starting from
L=0. By grouping 8 adjacent voxels in a 2×2×2 fashion, these
8 voxels can be transformed into nodes, the children of one
node at L=1. When all voxels are processed this way, all the
nodes of L=1 can be grouped 2×2×2 to become children of
nodes at L=2. This way, the octree can be built one layer at a
time. There are a few weaknesses in this strategy, though. A
first weakness is that the possibility exists that a far larger than
necessary number of voxels in the Spatial Hashing is created
by requiring each axis to be a power of 2. As it happens to be,
all voxels added by increasing n to a power of 2 are Undefined,
and per definition of no use. A second weakness is that for the
octree, the only nodes of interest are the nodes containing a
relevant voxel (Surface or Proximity). All other nodes saved in
the octree contribute to unnecessary calculations and memory
consumption. But these issues can be, to a certain degree,
resolved with an easy optimization.

C. Optimized octree

A simple and intuitive way to optimize the octree, is to
exclude any voxel that is not relevant. Starting bottom up, each
group of voxels is monitored. A group that does not contain
any relevant voxels will always result in a parent node one
level higher that does not lead to any relevant voxels. This
node is flagged as being empty, and the group of voxels are not
represented explicitly in the data structure. One level higher,
any group consisting of 8 empty nodes should not be saved,
and the node on that level enclosing these 8 empty nodes
should then be flagged as empty. This process is repeated until
the top of the tree is reached. If executed correctly, for L≥1, all
nodes in the tree contain at least some relevant information. On
L=0, it is possible that some Undefined nodes grouped with



Fig. 1. Basic octree construction. Each node is divided in 8 child nodes.

relevant nodes are saved. While not completely eliminating
every unnecessary node in the tree, the number of unwanted
nodes in the octree will be greatly reduced which solves the
second issue described above. Indirectly, this also partially
invalidates the first issue, as almost none of the unnecessarily
added Undefined voxels will remain saved in the octree. This
also allows further optimization by adapting the algorithm in
such a way that it is no longer necessary to require n to be a
power of 2. When given n′ conforming to (1) but not a power
of 2, let n′′ be n - n′. As it is known all voxels beyond n′ are
Undefined, these n′′ voxels can be extrapolated onward from
n′. In this way, the Spatial Hashing only needs to save n′ voxels
instead of n voxels, again reducing the memory consumption
for larger data structures.

D. Implicit Spheres

During collision detection, the octree is traversed while
simultaneously constructing a spherical representation of the
octree. This spherical representation is the IST, which consists
of implicit spheres. These spheres are called implicit because
the spheres are not explicitly calculated and stored during
precalculation but are derived from the current state of the
octree whenever needed. In order to do this, it is necessary
to first define an efficient way to derive a sphere from an
octree(node). Based on [4], two methods are implemented and
explored. The first method, the simple method, is based on
(3) in [4] and the logic of the octree. Equation (3) gives the
minimal radius r to enclose a cube with an edge length x. The
center of the sphere matches the center of the cube.

r =

√
3

2
x (3)

Since the edge lengths of the child nodes of a node are x/2,
the radii of the spheres enclosing those child nodes are half
the radius of r. The offset of the centers of those spheres
from their root is s×2L−2 according to [4]. However, in this
application, this formula is found to be incorrect and must
be adapted to s×2L−1. Each of the child nodes then must be
offset this distance on each of the Cartesian axes.
The second method looks to optimize the collision detection by
reducing the necessary amount of collision checks. In order to

do this, the radius of an implicit sphere has to be minimized
according to the child nodes occupation. If, for example a
node only has one relevant child node, the enclosing sphere
only needs to enclose this individual child, not the entire
eight child nodes. The various situations are discussed in [4]
and can be implemented by using a lookup table where the
correct radius and offset for each situation can quickly be
found. Fig. (2) illustrates this by showing the L=2 implicit
sphere occupation for a 32×32×32 octree. Since the total
volume of the IST decreases by implementing the lookup table,
fewer intersections will occur, meaning the amount of collision
checks reduces.

Fig. 2. Level 2 implicit sphere occupation for a 32×32×32 octree following
the simple method (left) and the optimized method (right). Notice that on the
right side the enclosed volume is remarkably smaller than the volume on the
left side. The grey lines accentuate the bounding box of the original figure,
the green lines give the skeleton of level 2 of the octree based on data from
[12].

E. Collision detection

Now that a method has been explained to calculate the
IST from a given octree, it is possible to implement collision
detection according to [4]. Computing whether two spheres
collide requires only one condition (4) to be fulfilled. Let r1
and r2 be the radii of the spheres 1 and 2, and C1 and C2 be
the centers of those spheres. If this condition is fulfilled, it is
certain that the two spheres intersect.

r1 + r2 ≥ |C1C2| (4)

Since this is easier and faster than calculating collisions
between cubes, collisions are calculated using the IST’s
derived from the octrees.
In order to calculate whether or not two objects collide, the
implicit spheres enclosing the root node of those objects
octrees are first calculated. If the two spheres collide, the next
level is checked. By comparing each root node child of the first
octree with each root node child of the second octree using
implicit spheres, all colliding branches are found. For each of
these child nodes, their colliding children can again be found
by comparing its children to those of the node it collides with.

In this way, using a depth-first search algorithm, pairs of
colliding leaf nodes are found. Since each leaf node correlates
with one voxel, colliding voxels can be found. Using this
algorithm, one distinct advantage directly stands out: Each



implicit sphere is only calculated if its parent sphere collides
with another sphere, which means it is only calculated if it has
the potential of colliding. This means the number of calculated
spheres during runtime is minimal, which minimizes the
overall calculation time. On the contrary, if the entire sphere
tree had to be calculated each time a collision check was
executed, the overhead would significantly increase.

III. RESULTS

The procedure described in section II is used to derive the
IST for both the upper and lower jaw model with respectively
119,110 and 106,696 triangles. A representation of the used
lower jaw model is depicted in Fig. 3. The results in the
following sections are the results obtained for the lower jaw
model, however the derived conclusions are also applicable
for the upper jaw model.

Fig. 3. STL-version of the lower jaw used for testing the data structures and
collision detection based on data from [12].

A. Spatial Hashing

Figure 4 gives the surface voxel count in function of the
voxel size and figure 5 gives the calculation time to voxelize
the jaw in function of the voxel size. When examining the
construction of the spatial hashing, it can be concluded that
there is an exponential growth in the calculation time and
the number of used voxels. After examining this growth
it becomes clear that the relationship between either voxel
amount and calculation time is cubic. This means that the time
complexity is O(n3) and that the growth is a function of n3,
where n is the number of voxels in one dimension. Equation
(5) for calculating the number of voxels m, given n from (1),
also highlights this relationship.

m = n3 =

(
l

s

)3

(5)

Following this observation, a new conclusion arises: Voxeliz-
ing an object will always be a trade-off between efficiency
and accuracy. Efficiency is inversely proportional to m for a
given object: every voxel needs to be calculated and stored.
Therefore, if m increases, the efficiency will decrease. Accu-
racy however is inversely proportional to s. If s decreases, the
accuracy will increase (smaller cubes can more easily be used

to mimic complex shapes) but m will also increase, decreasing
efficiency. It is impossible to maximize both simultaneously.
Figure 6 illustrates the voxelized lower jaw for different voxel
sizes.
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Fig. 4. Number of surface voxels in function of the chosen voxel size. Note:
For the voxel sizes 10, 5 and 1 the number of surface voxels (92, 397 and
11120) is too small to show on a linear scale.
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Fig. 5. Calculation time in function of the chosen voxel size. Note: For the
voxel sizes 10, 5 and 1 the number of surface voxels (92, 397 and 11120) is
too small to show on a linear scale.

Fig. 6. Jaw voxelization, with a varying accuracy based on the voxel size.
Left: Voxel size = 10. Middle: Voxel size = 1. Right: Voxel size = 0.4 based
on data from [12].

B. Octree

When the object is voxelized the next step, structuring the
data, is taken by converting the spatial hashing into an octree.



Figure 7 and figure 8 provide some insight concerning the
calculation time and octree size in function of the voxel size.
Fundamentally, the same cubic trend as discussed in III-A also
appears during the octree construction. When looking at the
calculation time for the octree, it becomes clear that not only
the voxel size but also the spatial hashing size defines the
necessary calculation time. While a slightly smaller s (adding
a few more voxels) may result in a slight relative increase in
time (relative to times with the same spatial hashing size), the
real jumps in time duration occur when the spatial hashing
increases in size. This can be explained by the fact that while
not all voxels are saved as leaf nodes in the tree, all voxels are
visited at least once to check whether it is a relevant voxel or
not. So, while perhaps only 10% of the voxels are relevant, all
voxels are visited once, which has a significant impact on the
calculation time. The minimum total amount of nodes relative
to the amount of nodes when all voxels are used for the octree
construction can easily be estimated without measurements
since a level L will at least contain as much nodes as (L -
1) divided by 8. For voxel size 1 this would result in 12700
nodes instead of the actual 14600, indicating that many nodes
do not contain 8 relevant children.
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Fig. 7. Octree calculation time in function of the voxel size.
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Fig. 8. The number of nodes in the entire octree and the number of leaf
nodes for a certain voxel size.

C. Implicit Spheres

When the octree is constructed, it can be converted into an
IST. In the results (Fig. 9) concerning the implicit spheres, two
observations stand out. First, the optimized implicit spheres
result in a significant decrease in contained volume compared
to the simple implicit spheres. The volumes are calculated with
respect to a unit volume defined as V=

√
3
2 × π×23(L−1)×s3.

This is the volume of a sphere enclosing a voxel. Note however
that while the volume difference seems very large on L=7, in
that case it only concerns one sphere (i.e. the root sphere).
Optimized spheres detect fewer false positive collisions than
simple spheres therefore there is a greater chance that the
simple sphere still needs to execute 8 extra collision checks
while none of its children collide.
Another important observation is that the calculation time of
the simple sphere is significantly less compared to that of
the optimized sphere. This indicates that collision checks with
optimized spheres are far more time consuming than those of
simple spheres. Because of this, optimized spheres must result
in a smaller number of false collision checks to compensate
for the increased time delay. Figure 9 visualizes the volume
difference between the simple sphere implementation and the
optimized spheres on the other hand.
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Fig. 9. Total volume of all implicit spheres on each level.

D. Collision detection

Finally, after constructing the IST, collision detection can
be performed. Therefore an IST is created for both models,
the lower and upper jaw. The dept-first search algorithm is
used as the tree traversal algorithm. Both models are loaded
into the CHAI3D platform. The model of the lower jaw is
fixed while the upper jaw model descent upon the lower jaw
model. In this case, the lower jaw size is 73.0×27.5×60.9
and a step is the displacement with a value of 1 in any
Cartesian direction. Since an STL file contains no scale
information, these values need to be compared to the real
size of the lower jaw. Figure 10 provides a graph with the
refresh rates in function of the voxel size. When the haptic
refresh rates measurements are examined, it becomes clear
that the optimized spheres in fact do not reach the desired



update frequency. Simple spheres are more efficient when the
distance has decreased to a certain point (between 20 and 25).
Because the simple spheres are larger, an intersection occurs
faster. Even though in most cases this only means a small
number of additional collisions checks are needed, this still
creates a higher update frequency compared to the optimized
implementation. When the distance between the objects
decreases, the number of collision checks becomes so large
that the sub-optimal delay in optimized sphere calculations
negates the advantage of having to do less checks.
Furthermore, it is also clear that the current haptic feedback
rates do not meet the desired 1000Hz when the objects are
too close to each other. In the worst case, the frequency
is as low as 50 Hz for optimized spheres, and 100Hz
for simple spheres. Partially, however, this is because the
code is not fully optimized. The worst case always occurs
right before collision, because then the largest number of
spheres need to be checked for a potential collision without
actually having a collision. Certainly, for the optimized
sphere tree there is a lot of room for improvement, but it
does not end there. A couple of effective optimizations can be:

• Save the IST. Currently, the IST is constructed during
collision detection. This has one clear advantage: It does
not need to be saved. This increases memory efficiency,
but greatly reduces the calculation speed of collision
detection. If the IST is saved after construction in a
preprocessing step, the only thing left to do would be to
traverse the sphere trees and the on the fly construction
could be neglected. Since the octree, as argued in [4],
is only needed due to the complexity of the independent
sphere tree construction, it is also possible to just remove
the octree from the memory once the IST has been saved.
This option is not explored in [4] but has a lot of potential.

• A more efficiently implemented lookup table. This would
result in faster collision checks for optimized spheres,
however it will also result in a memory usage increase.
The lookup table also is very suitable for possible hard-
ware implementations.

A final remark concerning the optimization of the collision
detection is that optimized implicit spheres have far more
room for improvement than simple implicit spheres. This
suggest that while simple spheres are more efficient now,
optimized spheres have the potential to still swiftly surpass
that efficiency.

IV. CONCLUSION

The potential of the Implicit Sphere Tree is examined as
part of a CAD-based surgery planning. Although the desired
update frequency of 1000 Hz is not met, as great accuracy is
required for the medical application, the gained insights show
that there is still room for improvement. The implemented data
structures however are a decent foundation for further research.
The potential of the IST suggests that further optimization
and study might cause it to reach the 1000 Hz evaluation
requirement. The conducted research also opens the path
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to a new idea, namely to save the IST once the octree
is fully constructed. This too provides more possibilities to
make the IST viable for haptic feedback in highly accurate
environments.
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