AN INTELLIGENT MODULE

P. Six, L. Claesen, J.

VSDM division of IMEC, Kapeldreef

** Research sponsored by the

Abstract

An environment for the generation of modules is des—
cribed. It includes tools for interactive design
of parameterised procedures describing the structure
as well as the topology. For the layout symbolic
cells are used which are automatically fitted to-
gether as defined by the topology.

For the verification and characterization rule based
expert tools were developed to recognize registers,
check the clocking rules, find the critical path
and the appropriate test patterns to calculate the
accurate delay via simulation.

Introduction

In the last years, a new approach to the design of
integrated circuits has been introduced to the mar-
ket : the so-called module generators. In this
approach the idea is to generate the layout of cells
or blocks from parameterised software procedures.

In this paper we present the system we are develo-
ping at IMEC for the interactive design of parame-
Lerised generators of VLSI modules like data-paths,
adders, multipliers, RAM and ROM. It provides
immediate feedback in graphics form each time a
command of the module generator is defined allowing
mistakes to be corrected where they are made. The
system is based on powerful constructs to describe
the structure, the relative position of subblocks
as well as the procedures to fit their layout to-
gether. Another new idea is to integrate into the
system, tools for expert verification of clocking-
and electrical rules as well as for generating the
delay model, using automatically generated test
patterns that activate the longest path(s). 1In
this way the designer is relieved from most of the
nitty-gritty of the detailed layout and the cumber-
some search for worst case delay situations.

First we discuss the scope of module generators.
Then the interactive creation of a module generator
and the main features of the module design system
are described. Next the automatic abutment of
symbolic cells to generate the layout of the modules
is discussed. In the last part the intelligent
verification of modules, using rule based tools for
the recognition of registers, checking clocking
rules, pinpointing problems with electribal design
rules like charge redistribution and finding the
critical paths and their delays are presented.

23rd Design Automation Conference

Paper 41.3
730

*h
GENERATOR ENVIRONMENT

Rabaey and H. De Man

75, B-3030 Heverlee, Belgium.

EEC under ESPRIT Project nr. 97

1. MODULE GENERATORS

In traditional systems the design of a chip is done
by composing larger cells out of smaller ones. In
this approach each cell is built by interactively

placing the smaller cells on specific coordinates,

In modern designs a lot of the blocks have some

kind of structure, they are built from smaller cells

or groups of cclls according to 4 certain pattern
(rows, columns...). Examples of this type of blocks
are adders, multipliers, datapaths etc. It also 1
happens that Lhe same functional block is needed 1
with different complexities, like an 8-, a 12- and

a 16 bit adder. 1In the traditional design style

we would create 3 different cells containing res-
pectively B, 12 and 16 full adder cells. The effort

to create and check these functions is repeated over
and over again.

A very simple procedure could be written to place
and connect N full adder cells. This procedure
once written and tested could then generate the
netlist, the layout or the delay for any type of
adder if the designer specifies what value of N he
needs. This kind of procedure is in fact what is
called a module generator.

The first reason for the introduction of module
generators is that, once they have been created,

they reduce the design time. A second reason is

that, instead of designing at the gate level, sys-

tem designers decompose their system specificationin
terms of functional building blocks (FBB) like
counters, registers, PLAa, RAM, ROM which are of MSI

and even LSI complexity. The system designers can
assemble the layout outline of these modules in

nearly the same way as they did in PCB design but _
they lack the skills to design the internals of]
these blocks. This is the role of the silicon]
specialist. Since the functional blocks will be [
used in different applications, they must be desig- 7
ned in such a way that they can be adapted to the 3
environment in which they are used. This means 3
that silicon designs becomes intermixed with pro- {
gramming since the only way to reach the required
flexibility is to make use of parameterized soft-

ware procedures that generate FBB's.

A drawback of programming is that the designer has-
to wait for the compilation and linking steps before
he can check the procedures he has defined. For

this reason we implemented an interpretative system
that shows the result of the designers action .j
immediately on the graphics screen.

0738-100X/86/0000/0730$01.00 ©1986 [EEE

2. THE MEET-IN-THE-MIDDLE DESIGN METHODOLOGY

The scenario for chip design described above suggests
that the system to support this methodology is orga-
nised in two parts as described in Fig. 1. The upper
part is the area of the system designer. He has
access to the higher level design tools such as
register- and functional level simulators, control-
ler synthesis tools and a floorplanner with which

he can place and route the functional blocks. When
he needs data, like the functional description, the
delay or the bounding box of a functional block

he requests this information from the procedures
that contain the definition of that block.

The lower part of the system is more like the tra-
ditional chip design environment. It provedes the
silicon engineer with tools to define the contents
of the functional blocks, to simulate them at the
logic and circuit level and to create its layout.

The main difference with the traditional design
system is that the result of what we call the mo-
dule creation is not the simple layout of one spe-—
cific instance of a certain function but a proce-
dure that can be used to generate a set of instan-
ces of that function.

The above described methodology is what we call the
meet-in-the-middle design methodology. At IMEC we
are developing a system ralled CATHEDRAL 2 (Ref. 1)
based on this methodology. In the rest of this
paper we present the tools involved in the module
creation part of the system.

3. MODULE CREATION

Programs that create modules have been implemented
using traditional pbrogramming languages like PASCAL
and C (Ref. 2-4). The main disadvantage of these
systems is the delay introduced by the compilation and
linking steps, from the time the designer specifies
the module and the moment he can check the results
of certain actions or barameter assignments.

Our idea is to Create an interactive environment,
where the designer has immediate feedback in
graphics form, each time a command of the module
generator is defined. In this way mistakes are
detected exactly where they are made and can be
immediately corrected.

To remain flexible in adapting the input language
we decided to implement the command parsing of the
first version of the system in LISP while for some
of the Supporting algorithms, like the compactor
and router we use PASCAL and C for reason of effi-
ciency on the Vax.

When we want to describe a module there are essen-
tially two types of information we have to capture

— STRUCTURAL data describing how the module is built
up from lower level modules, how they are inter-
connected and which are the input and output
terminals.

— TOPOLOGICAL data describing how the sub-modules
have to be placed relative to each other, how
they fit together and which of the interconnec-—
tions are realised by abutment or routing.

Furthermore since the generators must be able to
describe a set of modules rather than only one
instance, constructs like LOOPS and IF.. THEN. .ELSE

must be provided and we must be able to define
structural parameters, like the word-length of an
adder or the depth of a ROM. The structural and
topological data must then be defined as a function
of these parameters.

In the next part we present the main features of the
interpretative procedural design capture system.

We will highlight, by an example, the fact that the
designer does not not need to bother about layout
details but is able to place blocks relative to

each other. The system then takes care of the de-
tailed fitting of the blocks.

3.1. Main features

In a traditional design environment, the structural
data is captured via a schematic editor and the to-
pological data is entered on a graphics system like
Calma or Applicon. The main difference between a
schematic block diagram and a floorplan is that
they present the design from a functional versus

a layout point of view. Since in essence the same
information of contained in both views, we have
decided to combine these two views in the first
version of our system.

To design a new module generator, the first thing
that must be done is telling the system that we
start with a new medule. At the same time Lhe para-
meters for this module are specified. For instance
the command

(EDIT-COMP (RAM N M))
specifies the start of the definition of a block
called "RAM" with two parameters N (number of
address bits) and M (wordlength) .

Lower level modules can be included in a module by
the ADD-COMP command. This command provides a

added, where it must be located and what transfor-
mations (rotate, £flip) must be performed on it.
The location is given as a grid point or a series
of grid points specifying the relative locations
of the instances. The command

(ADD-COMP RAMCELL, 1..(*2 M) 1..ExpT 2 (- N 1)) :ROT 90)

will place the component RAMCELL, rotated by 90 de-
grees on the gridpositions 1 to 2 times in M in the
X direction and from 1 to 2 to the power N-1 ip Y,
assuming that two columns of memory cells are multi-
plexed on the one sense amplifier. For N=4 ang

M=4 this command would result in the display shown
in fig. 2a. Fig 2b shows the graphic response

after adding the decoder to the right and the multi-
pPlexers and sense amplifiers on top of the array.
Fig. 2c shows the final layout of the ram after the
cells have been fitted together (see further).

If an instance of the component that we want to add
WITH THE SPECIFIED SET OF PARAMETERS does exist in
the library, its blackbox representation, generated
from the compacted layout (see further), is loaded
into the system and used for display. If only the
definition of the component exists it is executed
WITH THE SPECIFIED SET OF PARAMETERS, added to the
library, loaded and used. If not even a definition
of that component exists the system will give a
warning and bropose two options

to start the definition of that component first or
at least give a "dummy" blackbox it can use to
temporary represent the undefined component.

Paper 41.3
731

‘-

If the user chooses to define the missing component,
an EDIT-COMP command is automatically issued.

To provide connection points to the module at a
higher level of the hierarchy terminals can be de-
fined. In the module itself the interconnection

of the sub-modules is defined by specifying a net
and the terminals of the sub-modules and of the mo-
dule itself that are connected to it. As with the
ADD-COMP command facilities to express repetitive
connections are provided in the ADD-CON command.

(ADD-CON (CARRY 1...(-N 1)) (COUT 1..{(- N1) 1) (CIN 2...N1))
would connect all the carry signals in an N bit
adder when the cells are placed from left to right.
The first loop defines the names of the nets (CARRY
1 to N-1) and the other loops define the pinnames
and the component position of the pins connected

to those nets (eg. pin COUT of the components on
gridpoints [1,1] to [N-1,1]).

Note that no assumption is made at this stage of
how the connections will be realised. The physical
connection will be realised later by the ABUT
command or when the router is called to generate
the wiring between terminals of the same net. At
this moment a river router has been implemented and
we are workinq on the integration of a channel rou-
ter.

The final step of the module creation phase is to
save the steps of the interactive session into a
procedure that can later on generate the instances
of the module on request of the system designer.

3.2. Leaf cell design

By using the commands described above the module
generator procedure can be specified and can be
hierarchically refined until the leaf cells are
reached. For the leaf cells we must give the full
layout information. For this task we use CAMELEON
our symbolic layout editor (Ref. 5). This program
can be started as a subprocess from within the mo-
dule generator environment.

CAMELEON allows the user to design the layout of a
cell using point elements like transistors and
contracts, wires to interconnect the point elements
and areas to define for example the n- or p-well

in CMOS technology. After the topology (the rela—
tive positions of the elements) is entered a com-
paction step, based on a constraint graph and a
longest path algorithm (Ref. 6), is performed to
minimise the area of the cell. The design rules and
parameter values for the particular technology used
are read in from the technology description file
(Ref. 7) and the compaction makes sure that the

layout is correct with respect to these design rules,

also taking into account extra constraints the user
may have specified.

3.2. Abutment of cells

A technique to interconnect cells that is often
used in the design of structured modules is abut-
ment. This means that the layout of the cells is
done in such a way that the connections are made by
just placing them side by side.

In a traditional layout environment abutment of
cells can only be achieved by taking into account,
while designing the layout of a cell, the require-
ment to abut to the other cells. In our system the

Paper 41.3
732

designer can express this requirement by the
command :

(ABUT XORY (CELL-LIST)).

The module generator environment will then call the
compactor, load the cells specified in CELL-LIST
and put the required horizontal or vertical con-
strains (dependent on the value of XORY), between
the terminals of adjacent cells.

CAMELEON will then compact the internals of the
cells, taking into account the constraints imposed
by their neighbours. Fig. 3a and b show a set of
cells before and after the ABUT command has been
applied.

The way we solve the abutment of the cells is as
follows : each of the cells is compacted separately.
From the constraint graph we extract what we call
a "substitute graph" that contains the constraints
imposed on the terminals by the internal components
of the cells. The substitute graphs of abutting
cells are combined by putting constraints between
connecting terminals. Then the larger graph is
solved by the longest path algorithm resulting in
constraints to be imposed on the individual cells.
The final step is to recalculate the longest paths
for the individual eells but taking into account
the constraints imposed from solving the combined
substitute graphs.

4. VERIFICATION OF THE MODULES

One of the difficult problems with module genera-
tors is to prove their correctness over the vali-
dity range of the parameters. The traditional way
of doing this, is by simulation. However simulation
is a subjective test method which depends entirely
on the patterns defined by the designer to detect
expected problems. It is costly in CPU time and
does not guarantee to capture unexpected problems.

To overcome these drawbacks we have developed
DIALOG (Ref. B) a set of rule based analysis tools
that allows to detect violations against basic
design principles. These tools are based on the
LEXTOC language which provides powerful facilities
to express rules about MOS circuits. Fig. 4 gives
an overview of the verification system.

4.1. MOS network extraction

To verify the design we first have to extract from
the layout a model for the cell on the circuit
level. This can be done very easily since the
stick diagram contains the devices and the inter-
connection wires. The internode capacitances can
be found by detecting the points where elements
cross. Starting from the extracted MOS transistor
network the user can perform the following tests

4.2. Decompilation

First it is checked if the network belongs to the
class of valid circuit configurations, eg. static
CMOS using passive multiplexing trees and prescri-
bed registers. All parts of the circuit violating
these rules are flagged as errors.

Next, a high level check on the clocking can be
done. Starting from the primary clock information
the drived clocks are found, latches are detected
and separated from combinatorial logic. By
assigning the appropriate properties to the nodes

|-
i

in the network illegal combinations can be detected
and reported. Examples are

A DERIVED CLOCK CAN ONLY BE FORMED WITH SIGNALS
LATCHED ON THE SAME CLOCK PHASE.

A LATCH DATA INPUT MUST NOT BE A PRIMARY CLOCK.

Fig. 5 shows the response of DIALOG to a clocking
rule verification request. The system has identi-
fied and highlighted that a loop exists containing
only a single clock phase which could cause a

race problem.

4.3. Electrical rule checking

Starting from the primitive circuits found in the
previous step we search for illegal configurations
like open, short, odd n- p-MOS combinations etc...
For all acceptable circuits, it is checked if they
can guarantee correct logic levels. This check is
not restricted to static situations but includes
dynamic effects like charge redistribution.

An example of a possible problem circuit, and the
rule involved in the checking procedure is given

in Fig. 6. It must be noted that to diagnose the
occurence of an error on node B caused by charge
sharing, we have to find the combination of input
signals that creates the worst case configuration.
This is done by the SETUP-INPUTS procedure. Using
these inputs, the part of the circuit under investi-
gation is simulated on the circuit level using the
SIMMY module (Ref. 9). The output waveforms of the
simulation are then checked to see if the voltage
node on node N2 drops below 3.0 volts. If so, a
message is issued telling the designer charge
sharing problems can be expected on node N2. If
the designer does not believe this diagnosis, a
facility can be called to display the conditions
creating the problem situation and explain by what
successive steps it was detected.

4.4. Timing verification

If the circuit has passed al the general rules we
must still check that it does not violate the timing
specifications for the module. From the primary
clock specifications, the edges of the clock inputs
for the latches are computed and the maximum
allowed delay of the combinatorial blocks can be
calculated.

To check that a block satisfies this restriction,
we locate the critical path using a gradual refine-
ment technique. First we eliminate the bulk of the
shorter paths using simple RC models. For the re-
maining paths test patterns, generated at the gate
level, are applied to the inputs in a circuit simu-
lation step (again using SIMMY) to automatically
calculate the gate delays. Finally, logical impos-
sible paths are eliminated, the most critical paths
are cut out and sent to a circuit simulator, to-
gether with the appropriate test patterns to
calculate the accurate delays. These can then be
compared with the allowed delay of the block.

Fig. 7 highlights some of the power of the timing
verifier. The program has identified the critical
path in the circuit and generated the pattern re-
quired on the other nodes to be able to activate

it. If the "thick line" nodes are forced to logic
1 and the "thin line" ones at logic 0 a "0 to 1"

transition at the upper left input causes "1 to O"

e e R R e

changes on the "dashed"nodes and "0 to 1" transi-
tions on the "dotted" nodes. The dashed and dots
have been used for clarity in black and white re-
productions, these states are represented by colors
in the real system. Using these patterns a circuit
simulator is activated to find the accurate delay
for the critical "dot-dash" path. This delay can
then be stored and used by the system designer as

a characteristic of this block.

We want to stress that in the complete process of
defining this delay the designer does not need to
define a critical path or specify any simulation
pattern. All these time consuming tasks are auto-
matically handled by the program.

CONCLUSIONS

1n this paper we presented a set of tools tc create
an intelligent environment for the interactive
design and verification of parameterised modules
to be used in the VLSI design. The main features
of the system are an interactive tool to design
the structure, the topology and the layout of the
modules including automatic abutment of symbolic
cells and a set of rule based verification tools
providing facilities for the recognition of re-
gisters, checking clocking rules, pinpointing
problems with electrical design rules like charge
redistribution and finding the critical paths and
their delays.

ACKNOWLEDGEMENT

The tools in this system have been developed through
the cooperation of many people. We want to thank
more in particular I. Bolsens, J. Cockx, K. Croes,
L. Rijnders, E. Vanden Meersch, I. vVandeweerd and
all those who contributed to the concepts and
implementation with their creative inputs.

REFERENCES

(1) H. De Man : "Evolution of CAD tools towards
Third Generation Custom VLSI Design”, Invited
Paper ESSCIRC 1985.

[2] M. Buric et al. : "Silicon Compilation
Environments", Proceedings IEEE Custom Inte-
grated Circuits Conference, pp. 208-212,

May 1985.

[3] B. Muller et al. : The Chipgenerator Concept -
A New Approach to Full Custom CMOS IC Design”,
Proceedings of the 11ith European Solid-State
Circuits Conference, pp. 186-192, Sept. 1985.

{4) T.G. Matheson et al. : "Embedding Electrical
and Geometrical Constraints in Hierarchical
Circuit-layout Generators", Proceedings IEEE
International Conference on Computer Aided
Design, pp. 3-5, Sept. 1983.

[5] L. Rijnders et al. "CAMELEON Version 1.1,
Users Guide", Report nr. 5-C1-3 of EEC project
MR~-03-KUL, available from IMEC.

[6] M.Y. Hsueh et al. : "Computer Aided Layout of
LSI Circuit Building Blocks", Proceedings of
the International Symposium on Circuits and
Systems Conference, pp. 474-477, July 1979.

[7]) R. Zinsner et al. "Technology Independent
Symbolic Layout tools", Proceedings of the

Paper 41.3
733

IEEE Internat. Conference on Computer-aided-
Design, Sept. 1982.

[8]H. De Man et al. : "DIALOG : An Expert Debugging

system for MOS VLSI Design", IEEE Transactions
on Computer Aided Design, Vol. CAD-4, No. 3, pp.
303-311, July 1985.

IQJJ. Cockx : "SIMMY Users Manual", Internal Report.

RN B I

canaagam .
L 31-4-1-3-¥:4- 30
Yy 4-7-4-4-4- 38
LY Y1-1-1-4-3-4-
Iaaeaeam .
L 3-1-3-4-3-
Tagaaaans .
Taaaaaagm . G e
— e e]

2a.

RaM a4 4

TdBaca

qaaraaa g
qaxgaaza ST E Yo
gtazacaa H S g e e
cagaacac
CREAIIAR
SRTRERKAR . . ., | oo
. ERATRRQT . : C

Fig. 2 : Interactive built up of a parameterized

RAM.

a : The array of RAM cells

b : Relative positioning of decoder multi-~
Plexer and sense amplifiers.

¢ : Final RAM layout after automatic abutment.

Paper 41.3

734

Fig. 1 :

SYSTEH &
SYS Chip SOF TWARE
PEOPLE
SYS Chip
LSt
FBB Sl=——
St. CELL Ssi
RECT
LAYOUT CIRCUIT

The meet-in-the-middle design methodology.

0
1

Fig. 3

1.

: The automatic abutment of cells.

[LAYOUT)

[MOSNE TWORK |
ogic compare
DECOMPILATION [(DFT rule check
/ lock rules
elay

Cap. noise

Rule ~-Charge red.
Base ELECTRICAL Open/short
pikes
HIegshflrcunt cut
[[Guided simulation“f—test
compare

TIMING Critical path

Fig. 4 : Overview of the DIALOG Verification
system.

®
in [out
@

al

(RULE '(charge-sharing
*IF

[1 i
> - >

Fig. 5 : Example of a loop detected by DIALOG.

((PROPERTY
(RELATION
(RELATION
(PROPERTY

fibar-ndyn el)
input nl el)
output nl e2)
fibar-pdyn e2)

(RELATION output n2 el)
(RELATION component e3 el)
(RELATION input nl e3)
(RELATION inout n2 ed)
)
*THEN
((ASSIGN-INFO possible-charge-sharing e3)
(SETUP-INPUTS el 1)
(SIMULATE el)
(*IF
((DURING fibar (> 3.0) TL)
(ATTRIBUTE voltage N2 (> 3.0) T1))
*THEN
(ASSIGN-INFO real-charge-sharing ed))))

Fig. 6 : Example of a circuit with charge
sharing problem and the rules to detect
it.

o 4%_

.

N

r

to:ﬁ'
'
®

Fig. 7 : Automatic identification of critical
path and required test pattern.

—: Z2EIO
esee® : one to zero
----- : zero to one
————: Zero

Paper 41.3
735

