
Project No. 1058

Accurate Timing Verification Algorithms for
44?r44
L'--- -.t^*.^ - l$/lt tBt 1{ l-^--,-""---^..-- +oyilulrr ulluulr lvrrJD wlrcult,s.

E. Vanden Meensch, l-. elaesen, $'{. Ee Man t

IMEC vzw, Kapeldreef 75,3030 Leuven, Belgium, Tel +32-16-281203

Abstract

ln thls paper, new algorlthms for tinring verifieation and analysis of synehronous MOS
circuits are presented. lt is shown that a very wide class of timing faults, including
faults related to the use of level sensitive latches, conditional or derived clocks and

with in a unified way. Constraints are formulated which guarantee the absence of
such faults in the circuit for specified clock waveforms. A rule-based mcthod is used

to transfornn the netwerr*s of [t4OS transisters, ehtained from the physical layout by ex-
traction, into a network of unidirectional subcircuits. Each subcircuit is characterised
by a logic nnodel, which is r.rsed to accurately derive the timing constraints. To verify
these constraints, an algorithm is adopted which has bcen presented in [101. The
timing model of the circuit, required by this algorithm, is derived from the created
subelrcuit structure. Because of the rule-hased implementation, the resulting timing
verifier can bc used for a widc range of static and dynamic nMOS and CMOS circuit
designs and requrires no user input besides the circuit and the clock waveforms, which
grcatly enhances the efficiency of its use.

i- Hmt;x'oeflrle{,imu.r

Timing verifiers have become recognized tools for the vcrification of the performance of elcctronic
designs at transistor lcvel [4,5,161. Commonly, they calculate for each node in a given circuit the
settling time, r'7 the !atest point in tlnne at whrch a signo! treqleitioBT ean t,eke p!ece. The requrred
user inpurt eonsrsts e* the settiralg timee af the prsrs?ary ror{'eilt rnqeuts, whick is e disti:'let advantage
over simulation. The user of the tool is not required to specify detailed input excitations: the
calculated settling times are the worst case for all possible excitations.

ln the discussion of the functionality and implementation of a timing vcrifier at transistor level
(i.e. which handles netlists extracted from mask layout), three main issues arise:

1.1 The signal flow modeling problem
The following problem is crucial in timing verification at transistor lcvel: From thc conncctivity
of the MOS devices, which are essentially bidirectional in nature between the source and drain
terminals, a unidirectional model for the propagation of signal transitions is to be constructed.

'Work sponsored by the EC under the ESPRIT-1058 project
lProfessor at Kath. Univ. Leuven

ln ordcr to compute thc latest arrival time at a node, all thc possible ways in which a signal

tnansrtioo,r ean propagate up to this node rnust be kmown. ln all known tianing verificrs, implicit

use is made of knowicdge about circuit design techniques in order to cicrive this unidirectional

model. This means however that deviations of the target design style rcquire modifications of

the tool, spccific preprocessing of the circuit, or additional user information about thc purpose

of the circuitry l7l, [14], [101.

For this rcason, a timing vcrifier inevitably has a specific class of circuits as its field of

application. The introduction by designers of ncw types of latches or gatcs, bootstrapping

techniques, bleeder transistors... is always liable to impair thc modeling algorithm for thc signal

flow in such devices, on which the timing analysis is based. This property is in contrast to analog

simulators, which can be used for any nMOS or CMOS circuit, irrcspective of its purposc.

ln this papcr wc propose a method which makes the knowledge used in thc signalflow modeling

algorithnn explicit, by perforrning a rule-based transformation of the transistor circuit to a network

of unidirectional subcircuits. From this subcircuit structure, the signalflow model can bc formally

derived, as we!! ae t!"re timing eerustnarmie to $pe ver"lfied. T8-ue rctle base eontains a deseriptlon

of the possiblc subcircuits that can occur in the designs that are to be handled by the timing

verifier, together with a model for the logic bchaviour of thc subcircuits. Modifying or adding

the description of a subcircuit requires no low-levcl programming and is therefore rclatively easy.

1.2 The delay modeling problem

ln this paper, we wil! nefer to the mode! for tlre signal flow in the cinctllt as the 'tirning model'.

It is usually represented as a dirccted graph [5!, in which the edges rcpresent signal propagation

through a small part of the circuit. The edges are weighted with the associatcd propagation

delay. Scveral methods have been published to calculate this dclay [6], IlU, [13], [12], 1151.

Each method offers a different trade-off betwecn accuracy, computational cffort and gcnerality.

!n [15], the approximation is nnade that a signal transition at a node takes place whenever a path

of transistors starts conducting. This single path can be approximated as an RC-chain which

(dis)charges the load capacitor at the end of the chain. This method offers very high efficiency

but suffers frorn lack of generality. Furthermore, the delay of a gate is in many cases determined

by thc complex lnteraction of several transistor paths that simultaneously switch on and/or off

(this is already the case in a basic CMOS invcrtor if the input transition is slow). The simple

mode! nnay thcre{one lead to eernslderabEe inaccuraey, if not tuned to the design stylc.

We decided to use local arsa!.)g slrrtuEation to extnact elelay va!ues. This rnethod offers very

high accuracy and generality, but is computationally expensive.

tr.S Timnimg faults im syrachr@n@us circuits

As mcntioned bcfore, a timing verificr for combinational circuits calculatcs scttling times at each

nodc. lt is up to the designer to draw conclusions about whether or not the circuit can be inscrted

in a synchronous system without causing timing faults. More advanced timing verification tools

allow to directly analysc synchronous circuits. The important problcm that arises here is to
dctermine whcn the calculated settling times with respect to the different transitions of the clock

actually imply a timing fault in the circuit.

lmportant work in the dircction of automating the timing verification for synchronous circuits

has been done in [101. This author describes how the timing analysis of synchronous circuits,

irrespcctive of the number of clocks, can be performed by applying a PERT critical path evaluation

of the timing modcl during each phase of the clock cyclc. This is repeated over a numbcr of
clock cycles until thc settling times converge.

? p
a

?

n

10

a

Figure 1: Examples of timing faults in clocked circuits

ln combination with this analysis algorithm, a rigourous mcthod is needed to derivc thc

constraints on the settling times which are to be verified. ln this papcr, it will be shown how a

set of constraints can bc derivcd which cover timing faults duc to the improper timing of signals

at inputs of level sensitivc latches and precharged circuits. Also the specific timing constraints

rclated to the use of conditional clocks are dealt with in a unified way. ln figurc 1, two situations

are shown which lead to a timing fault in the circuit" ln the first exarnple, the latch output
has not assumed the correct value before the start of thc 'hold phase'. The signal A arrives

too late to be gated in the latch. ln the second cxample, the preeharged output of the gate

unintentionally diseharges. Both timing faurlts are seenlia'rgly unnelated. lt can however be seen

that in both examples the final output state is a storage (or memory) statc which stores the

wrong logic value.

The basic observatiorr ihat, when a memefry siaie (Mi can exisi during a certain phase of the

clock pcriod, it must store thc correct logic valuc, will bc generaliscd and put in a form that is

suitable for computcr verification.

ln Section 2,we will discussthc rulc-based method to partition an MOS circuit intoa nctwork

of unidirectional subcircuits. In Section 3 the logic model of a subcircuit will bc dcfincd as an

cxpression of four operators. The possible output states that are considered are High, Low, Error

and Memory (1,0,E,M). A proof will be given that the operators are sufficient to model arbitrary
subcircuits. ln Section 4, the timing constraints will be formulated. Section 5, 6 and 7 deal

with the timing model and the timing analysis algorithm, which,is needcd to vcrify the timing
constraints. Scction 8 discusscs the problem of compatibility of logic states at different nodes in

the circuit. lt will be shown that a dctection of statically incompatiblc logic states is needed to
avoid false timing errors and to solve the false path problem in the timing analysis.

2 The unidirectional model

ln this scction we discuss the transformation of an MOS transistor nctwork to a network of

subcircuits. As pointcd out above, the purpose of this tranformation is to obtain a unidircctional

model of thc circuit: as opposed to transistors, in which the dircction of signal flow bctween source

and drain terminal dcpends on its connections with the cnvironmcnt, a subcircuit is requircd to

have a number of inputs and one output. Each node in the network of subcircuits is connected to

at most onc subcircuit output. This implies that thc direction of signal flow in thc transformed

network is unambiguous.
First, a notation for networks is given which will be used throughout this papcr. Ncxt, thc for-

mal restrictions of the network of subcircuits will be given. Finally, the rulc-based implemcntation

of the actual transformation algorithm is discusscd.

Both the initial transistor circuit and the result of the transformation arc networks, which

can be described as a set of nodcs N and a set of clemcnts E. Each net n € N is associatcd to

a set of elcments o(n). Each element e € E is associated to a set of nets B(e). ln our case,

diffcrent types of relations exist betwcen the elements and the nodes, and the lists o(n) and

B(e) are differcntiated accordingly. Using this notation, the initial network of MOS transistors is

dcscribcd as El - {.1, m2r. ..}, Nl {n1, n2, . . .}. lf nct n is connected to thc sourcc or drain

of transistor m, this is denoted as

m € o;o(n)
or: n€B;o(m)

tf net n is connected to the gatc of transistor m, this is denoted as

m e cr(n)
or: ne Bg(m)

Thc network of subcircuits aftcr transformation is dcscribed as E2 : {st,s2'...} and N2, which

is a subset of Nl. E2 is a set of sets s; of elements from E. lf nct n is connected to the input of

subcircuit s, this is denoted as
s € a;n(n)

tr net n is connected to the output .r,";;,.:ij' :13 is denoted as

or
€
€

s

n

(n)
(')

dout

Fout

Each subcircuit represents a set of transistors. lrrespectlve of the actual partitioning of the tran-

sistor circuit into subcircuits, the following formal restrictions must be satisficd: Each transistor

must belong to (at least) one subcircuit, and the inputs and output of each subcircuit must be

connected to an internal transistor of the subcircuit.

meEl + 3s€E2; m€s
n€ B;n(s)up"ut(s) + 3m€s; n€ B;o(m)uge(-)

ln addition, in order to insure that the direction of signal flow in the network is unambiguous, for

every node and subcircuit must hold:

lBi"l > 1

lfoutl : 1

laoutl (1

(R.ULE exor)

(IF (
(nmos c6 n4 n3 n6)

(nmos e4 nl n4 n2)
(nrnos e2 n1 n2 n4)
(pmos e1 n3 n2 nl)
(pmos c3 nl n3 n2)

(prnos c5 n5 n3 n4)

(vdd n5)
(snd no))

THEN (
(subcircuit sl)
(name exor)
(output nl)
(input n2 n3)
(element e1 e2 e3 e4 e5 e6)

e1

n1

e2

6
n4

n6

(function (or (and (not n3) n2) (and (not n2)
"3))))))

n3 n2

n5

e5

Figure 2: Example of a subcircuit partitioning rule.

In Section 5, additional criteria will be formulated for a transistor nctwork to form a valid

subcircuit. Within all of these formal restrictions, a partitioning of transistors must be chosen

which yields subcircuits with minimal size and optimal electrical propcrties. We preferred not

to choose a hard-coded solution to the partitioning problem, as this would inevitably limit thc

use of the timing verifier to a certain class of circuits. In ordcr to avoid this bottleneck to the

applicability of the program, a rule-based implementation has been developed.

Basically, the rule base contains a list of connectivity patterns of transistors which corrcspond

to the possiblc types or classes of subcircuits, together with the behavioural model of the sub-

circuits. All occurences of thcse types in a given circuit are idcntified, using pattern matching

techniques [21. Figure 2 givcs an example of a rule which describcs a pass-gate implementation

of the EXOR operation. Adding or modifying such a rule is easy and can, if necessary, be done

by a designer.

It will be described below how the subcircuit partitioning is done by pattern matching on thc

basis of these rules. ln the first two phases of this process, the rules are compiled. This is only

nece$ary after a change of the rule base.

1. Expansion of the pattern. The spccification of the transistors is expandcd into more

basic connectivity conditions (denoted by Ci):

(nmos el nl n2 n3)

u
(ntype el) Cl
(gate el nl) C2

(io el n2) C3

(io el n3) C4

2 Tbanslation of the pattern. Thc arguments in the connectivity conditions are treated

as variables to which a transistor (the arguments with name el, e2,..) or a nodc (the

argumcnts with name nl, n2,..) can be assigned. The principle of thc translation is the

following: each connectivity condition Ci corresponds to a statemcnt Si with a block that

will be executed repeatedly (if the statemcnt is a loop) or conditionally (if thc statement

is a test). Thc connectivity conditions are translated sequentially, and the corresponding

statemcnts are nested:

cL c2 c3 ... -, s1{s2{s3{ .. }}}

The statements are chosen in such a way that the inner block of each statement is executed

with the already encountered variables assigncd to all possible sets of nodes and transistors

that satisfy the preccding conncctivity conditions.

At the moment a certain condition is to bc translated, 0,1 or 2 of its variables are assigned

a node or a transistor. Supposc el is known at the moment the following conditions are to

be translated:

... preceding conditions
(io el n3)

e

(io e2 n3)
(gate n3 el)
... rcmaining conditions

It can be seen that each of the following statements creates an inner block which is travcrsed

for all instantiations of thc translated part of the pattern':

... translation of the preceding conditions

FOR n3 :: all nodes e B;.(el) {
lF c1 is an ntYPe transistor {
FOR e2 :: all transistors € o;o(n3) {
lF n3 e 0g(.1) {
... translation of the remaining conditions

As a conser;llll; the transtation principle, the innermost block of the gcnerated code

is executed for each instance of the pattern in the circuit. ln this position, the THEN-part

of the rule is inserted.

3. Execution of the code. The compiled code implements thc transformation from tran-

.sistor network to network of subcircuits, and is linked to the SLOCOP timing verifier [16]'

This way, the tool is 'customized' for a particular design style. Because subcircuits are

usually small, the pattcrn matching is quite fast: a circuit can be partitioned at a rate of

300 transistors/CPU second on a VAX 8600 computer. The efficiency of the generated

code strongly depends on the order in which thc connectivity conditions are translated; the

rule is preprocessed in ordcr to determine an optimal order before translation'

The currently available rulc base in SLOCOP [16] contains descriptions which cover complete

classes of subcircuits, such as complementary CMOS gatcs. This involvcs morc sophisticated

connectivity conditions, likc for instance the condition that a transistor path must or must not

cxist between spccified nodes. A class of subcircuits is usually dcscribed by means of several
rules. The basic translation process for cach rule is however the samc.

3 The logic model of the subcircuits
ln the rule base, the possiblc generic subcircuits arc described manually in thc LEXTOC language
l2l br a given design style. We will now discuss how the logic model for a subcircuit can bc
spccified in the LEXTOC languagc for use in the SLOCOP [16] timing vcrificr. This model is the
basis for the derivation of thc timing constraints in thc circuit.

From the logic point of view, thc exact voltagc at the input or output of a subcircuit is not
relevant. For each technology, there exists a function D(v) : R -+ {0,1, E}, which maps a
voltage v onto one of three states:

O : logic low
I : logic high
E : error

Thc E indicates an indetermined signal statc that is not accepted by the logic model that is
build of the subcircuit.

or a grven su ctrcu s, owrng notat to note puts and output of
a subcircuit s and the logic statcs at these nodes:

€"ut(s) : {no}
O"(r) : {nr, nz,. . .nru}

D(v(ns)) : y

D(v(n;)) : x;

X:[xr..."ru]T

The output of an arbitrary subcircuit of MOS transistors can, in accordance with prcvious work
[8] be characterised by four states, which lead to a logic model as a function:

F : {0,l}N * {0,1, E, M}

with

F(X) € {0,1, E} + F(X) : y
F(X) : P1 + y is not deternnlned by X

. Physically, the M state indicates that the output of thc subcircuit is in a bistable state. This
means that both an electrically stablc 0 or 1 state can cxist at thc output, together with thcse
input states. Common ways to implement a bistable state is by electrical isotation of a node or by
a loop with an even number of invcrsions. Figure 3 shows examples of subcircuits whose output
statc is M.

Because of the introduction of thc M and E state, the basic operators of boolean algebra are
not sufficient to dcscribe the function F(X) and must be extended. We will use the following set
of operators in order to obtain a concise expression for F(X):

corliunction (AND)

lF x; : E (1 < i < N) THEN xl Ax2... AxN - E

t{

Figure 3: Examples of the bistable (M) state.

ELSE lF x; :Q (1 < iS N) THEN x1 A x2... Axp -0
ELSE lF x; - 1 (i : 1...N) THEN x1 A x2... A xp : l
OTHERWISE x1 A xz ... A xp : JYI

disjunction (OR)

1

1

o
0

M

M

M

Xi : x1 x2 xN:
ELSE lF x; :1 (1 < i< N) THEN x1 Vxz...Vxp - 1

ELSE IF x; - 0 (i : 1...N) THEN xl Vx2... Vxp - 0

OTHERWISE x1 V xz ... V xp : [t/l

negation (NOT)

lFx:ETHEN-x:E
lF x: 1 THEN -x: 0

lF x: 0 THEN -x: 1

lF x: M THEN -x: M

selection

lF 4:0 (i :1...N) THEN ("r,*2...,XN)l(vr'Y2...,Yru) : M

ELSE lF x; - 1(1 < i< N) AND x;:0 0 - 1...N,:l j) THEN

(*t,*z . ..'tn)l(YttY2"',Yru) : Yi

ELSE lF x; : M (1 < iS N) AND x;:0 fi - 1...N'il j) THEN
(*t,*z ...'xrrr)l(yttY2...,Yru) : M

OTH ERWIS E

(*r,"2 ... ,XN)l(vr' y2.-.,Yn) : E

The sclect operator is necessary as it is the only operation which can evaluatc to E or M when

all its opcrands arc 0 or 1.

ln ordcr to bc able to specify the function F(X) of classes of subcircuits, an additional

construct in the rule base language is necessary: the transmission function TF betwcen two

nodcs in a subcircuit is a boolean function of the subcircuit inputs which evaluatcs to 1 if a

conducting transistor path between the two nodes exists. The transmission function avoids that
logic equations have to be specified in the rule-base for cach instancc of a specific type of gate

(see for cxamplc thc pull up and pull down configurations in a static gate in figure 4).

ln the methods as implcmented in the SLOCOP timing vcrifier [16], a LEXTOC rule base,

u
F

d
F

Figure 4: CMOS pullup-pulldown transistor configuration.

together with the logic functions for the subcircuits has to be defined for a specific design style.

Recently howevcr, useful methods have bcen published for the automatic derivation of al-

gebraic equations for transistor circuits I17,181. Future research should try to build on such a

method, in ordcr to automate the generation of the logic function of thc subnetworks. This will
avoid the current manual specification of the logic function in the rule base.

ln thc rule base, prefix notation is used for the subcircuit cxpression. Use is made of the five

constructs below:

(not x1) negation operator
(and xl x2 ...) conjunction operator
(or xl x2 ...) disjunction.operator
(select (xl x2 ...XVt y2 ...)) selection operator
(tf nl n2) transmlssion function

ln figure 5, a number of examples of subcircuits are shown together with the specification of the

logic model F(X), as specified in the LEXTOC rule basc for CMOS design.

Rule (i) illustrates thc use of the transfer function tf for gencric building blocks. Rule (ii)
illustrates how an exor build up of pass transistors is modelled logically. Rule (iii) dcscribcs the

function of a RS type flip flop build out of two CMOS nand gates.

4 Timing constraints in synchronous circuits
Timing constraints in synchronous circuits follow from the presence of subcircuits which can have

an M state at thc output during certain phases of the global clock period. By definition of the M
state, the actual logic value at the subcircuit output is determined by thc preceding sequence ot
events at the subcircuit inputs. The purpose of the tirning constraints is to formulate conditions

under which this sequencc of events can or will lead to an incorrect logic value for the M state

at the subcircuit output. First, notation will be prescnted to denotc clocks and clock waveforms.

Next, we introduce the conccpt of 'settling time' of a node. Finally, the timing constraints are

discussed and formulated in terms of the settling timcs of the nodes in the circuit.
To the clock inputs of a synchronous circuit, periodic waveforms are applicd. The following

notation will bc used:

Clocks: nci €N2, i:1...g
Logic state of the clocks: D(v(nc;)) : xci € t0,1)
XQ : [xc1 *.q]T
Clock waveform: XC1 XCo

The time point at which XCi-r -- XC; is called tc; (tc1 : g;

n
1

n
2

n
2

(i) (select ((and n1 (tf n2 vdd)) (and nl (tf n2 gnd))) (nl (not n1)))
(ii) (or (and (not n1) n2) (and (not n2) n1))

Figure 5: Subcircuits with a corresponding logic model specification.

Each time interval (tc;,tc;*1) during which the clocks are stable at the value XC; is callcd a clock

phase.

For an arbitrary node n in the circuit, the settling times during a certain clock phase are

dcfined as the latest possible time points at which a signal transition can take place aftcr the

beginning of thc clock phase, under the assumption that the states of the clock would bc kcpt

at the value of this phase. The following notation is used:

U(n): latest possible time point at which node n changes from 0 to 1

D(n): latest possible tirne point at which node n changes from 1 to 0

The scttling times of internal nodes in thc circuit are determined by the scttling timcs of the
primary inputs. The timing constraints will be expressed in terms of these settling times. ln the

following section, the algorithm to calculate 1.,!(n) and D(n) for each node in the circuit and for
cach clock phase will be discussed.

A timing fault in a circuit occurs when thc M state at a certain node and during a certain

clock phase does not store the intended logic value. This condition imposes constraints on the
settling times at certain nodes in the circuit.

ln order to formulate the constraints, it must be observed that for each subcircuit, during a
certain clock phase XC;, a number of inputs ft have no dctermined logic statc, whilc the others

are determincd by the states of thc clocks. lf all possible combination of statcs t "t.
applicd at

the inputs fi, the set O; of potential states (0,1,E or M) at the outpu! of thc subcircuit during
the i-th clock phase is obtained:

F(X) :0 <+ 0 e O;

F(X):1<+1eO;
F(X):M<+MeO;

The following timing constraints can thcn be formulated, which must hold for cach subcircuit
and each clock phasc:

lx
li
ri

nc
nc to

to

nc nc

toto

Figure 6: Timing faults covered by the first timing constraint.

Timing constraint 1.

If

Then
O;-
o:

MeO; A Oi-r\Oi l{}
1€
0€

1\
1\

O; + U(ns) <tc;
O; =+ D(ne) < tc;

lf a determined boolean state (1 or 0) can exist during a certain clock phase but not during the

next clock phase, it must have scttled before the start of the second phase. This is based on

thc consideration that this state may have to be be stored by the M state during thc second

phasc. Figurc 6 shows two examples of timing faults which can occur when the constraints are

not satisfied. In thc first case (6a), the output of the latch has not reached the intended state

before the latch 'closes'. ln the second case (6b), the output of the dynarnic gate is not yet

precharged bcfore the end of the precharging phase of the clock pcriod.

Timing constraint 2.

tf

Then
Meo; ^ or \{u}l{}
V tr,i2 during XC;

F(x1) I M

F(X2):_M
Xz : Xttt
xl,t :0

+ U(n1) < tci

F(xl) I M

F(X2) :_v
Xz : Xtt
Xl,t : 1

+ D(n1) < tc;

lf during a certain clock phase both an M state and a dctermined boolean state are possible

at the output, no input transition must take place at thc subcircuit during this clock cycle that
changcs the output from thc determined boolean state to the M state. This is bascd on the
considcration that thc purpose of the M state can be to store thc value of the previous clock
cycle. Figure 7 shows timing faults which are cxcluded by thc second timing constraint. Signal
nc is directly influenced by thc primary clocks. ra1 is an input signal to the subnetwork. ln 7a,

there is a time interval during which an unintendcd state can 'slip' through thc latch, becausc

the condition signal A is not stable in time. ln the case of 7b, the output of the precharged gatc
may discharge because the inputs have not all stabilized at the end of the prccharging phase of
the clock pcriod.

to

nc

tc D(n

1
nn

I

ncnc

I

Figure 7: Timing faults covered by the second timing constraint.

tc D(n

q

1 i
F)

1

5 The timing model
ln this and the following two sections, we will discuss the timing analysis algorithm. The purpose

of this algorithm is to calculate the settling times U(n) and D(n) for every node n in the circuit
during each clock phase, which enables to verify the timing constraints. For the purpose of timing
analysis, all known timing verifiers implicitly2 or explicitly 3 use a signal flow model that takes
the form of a dircctcd graph, referred to as 'dependency graph' or 'causality graph'. An edgc
in this graph signifies that a signal transition at its tail is followed by a signal transition at its

zE.g. in [14] where the model is dynamically extracted from the circuit during the citical path analysis
3n.g. in [ro1

head aftcr thc time delay associated with this edge. The timing model we present here is more
detailcd in thc scnse that the signal propagation is not considered to be uncond,itionol, but the
logic conditions for cach edge are known and stored with the edge. Thesc conditions can be uscd

to climinate false paths from the timing analysis. This is the topic of the last section. The actual
algorithm that wc use for timing analysis has first been prcsented in [101. lt will be discusscd in
morc detail in the next sections.

To dcrive the timing model for a circuit, consider for each subcircuit thc sct of scquences

X1 . . . X1 of input vectors X; € {0,l}N which cause thc state of the output y to change:

vvr * \ (1)

E".i u..ror must bc different from its predecessor in exactty one entry: Xi : Xi-rT, where the

notation XI is used to denote a vector of boolean values which is diffcrent in one entry from the
vector X :

X_: lrr . . .xN]T with x; € {0,1}
XI : lxr .. .xt-1 - xt xt+1 . . .xN]T

It must be noted that the expression F(X) for the subcircuit does not contain sufficient information
to automatically determine all sequences that satisfy (1). The reason is that when F(X):y, 11t.

we usc is inadequate and the problcm can only be solved by using a considerably morc complex
finitc state model for a subcircuit, instead of a simple equation. Howevcr, we observe that it is

usually possible to choose a subcircuit partitioning in such a way that the following holds:

Subcircuit property
For every sequence Xr . . .Xl

with X; e {0,1}N and Vi lt : Xi+r - XiT

holds: F(Xi):M + yi :yi-1
This property of the sequential behaviour of the subcircuit states that when a single transi-

tion at one input causes the output to bccomc bistable, thc logic value at the output remains

unchanged. As a corrollary of this property, evcry sequence X1 . . . X1 with

F(Xr), F(Xr) € {0,1}
F(xr) I F(xr)
F(Xz)...F(Xr_r) : M

Vi lt : Xi+r - XiI

(2)

propagates a signal transition. The input nt makes a transition from xt,L-l + Xt,L. The output
makes a transition yl-l *+ YL : F(Xr) -- F(X1). To build the timing modcl for the
subcircuit, consider all possible sequences X1 . . . X1 that satisfy (2). Each of those sequences

is represented as an edge in a directed grapha g(V,t), where the vertices are the inputs and

outputs of subcircuits and every pair X1-1,X1 (with X[: Xl-rT) corresponds to an edge E in t
from n1 (the subcircuit input that makes a transition) to ng (thc subcircuit output). The other
entries in X1 form the set of propagation conditions (n;,x;,1) i:1...N, if t associated to
this edgc. This set is denoted by A(E).

The graph gV,e) is a model for the signal flow in the circuit. ln order to obtain the timing
modcl, a delay value is to be associated to cach edge. ln the approach as used in the SLOCOP
program, the propagation delay of the input transition to the output transition is calculated by

aThis graph is in fact another form of the 'causelity graph' of [10]

xl
x2

x3

x4

xs

v

1

1

1

0

0

1

1

0

don
don

2

x

01
11
00
00

*1

x

3
*4

x-
b

't care

t care *5 v

F(X) 0

0 1

M

0

M
0

1001
0011

lMMO
1110

1

Figure 8: Don't care inputs for signal propagation.

x1

x2

x3

x4

x1

x2

x3

x4

*2

x

x

001
111
100
000

1

v
00 00
00 00

0

0

3

F(X)

v

F(X) I
1

M

1

*4

v

Figure 9: Two equivalent initialisation sequences.

an analog simulation of the subcircuit to which thc input excitation X1 . . . X1 is applied. ln order
to reduce thc number of simulations to be done and the number of cdges in thc graph, three
observations are made:

1. Dontt cares. lf the logic value x1 at a particular subcircuit input n1 is not changed
throughout the sequcnce X1 ... X1, and the sequence still satisfics (2) with n1 sct to -x1, only
one cdge E is added to g(V,t), without a state for n1 in A(E). lt is assumed that the state of
n1 has no influence on the dclay of the edge, so only one simulation is to be done. Examples of
don't care inputs are shown in figure 8. The notion of don't care input (which can a$ume both
0 and 1 in all vectors of X1 . . . X1 without changlng the responsc of the output) is generalised to
sets of inputs that can assume any combination of states. For some subcircuits this can lead to
collapsing large number of edges.

2. Equivalent initialisation. The first L-1 vectors in the sequencc initialise the output.
It is assumed that every initialisation sequence which leads to the same vector Xg_1 is cquivalcnt
and willgive risc to the same edge in the timing model (i.e. the propagation delay is not influcnced
by the history preceding the first state y1-1). An example of equivalcnt initialisation is shown in
figure 9.

3. Length of the initialisation sequence. lt is assumed that the output of cach
subcircuit can be initialised with a sequence of at most thrce vectors. This means that only
sequences of length L < 4 are to be considered, which makes is possiblc to exhaustively evaluate
all possible sequcnces F(Xr)...F(Xr) to verify whether they satisfy (2) or not. As shown in
figure 10, for a subcircuit with a basic latch function, a sequence of lcngth 3 is needcd to initialise
thc output: no shorter sequence is possiblc. This imposes a minimum length of L:4. Informally,
this assumption can be refrased as the requircment that the subcircuit has no internal states;
a subcircuit with internal states (c.g. a shift register) could require much longcr initialisation
sequences. lf the only memory function of the subcircuit is at its output, sequcnces of limited
length are sufficient.

This assumption has consequences on the granularity that is chosen for the sequential behavior
of the subnetworks in the rule base definition.

x1

xz

.'l
F(X)

v

*2

Figure 10: Initialisation sequence to get a L-+0 transition at the output of a latch

6 Timing analysis of cornbinational circuits
Thc goal of timing anaiysis is to calculate for each node n in the timing model the scttling timcs

for a logic high and low signal, respectivcly denotcd with

U(n): latest timepoint at which node n changes 0-r1
D(n): latest timepoint at which node n changcs 1-+0

ln a combinational circuit, we assume that for each node n with lo"rt(n)l : 0, the values U(n)

and D(n) are given. Thesc valucs represent the scttling times of the inputs of thc circuit.
The valucs of U(n) and D(n) for all othcr nodes can then be obtained by evaluating all

subcircuits in topological ordcr (i.c. a subcircuit is not handled beforc all the subcircuits that
drivc it) as follows:

10 01
0011

vlMMO
1110

U(no): MAX
U(n;) + weight of edge ni -+ n0 with T; - 0--+1 and To : 0--+1

D(ni) 1 weight of edge ni --+ n0 with T; = 1--+0 and To : 0*1

D(no) : MAX (H[:i]l ;:[ll :l::;: :i] :: ;ill lt : ltl ::l T:
=

lt8
where the maximum is takcn over all edges ni --+ n0 and T;,Te denote thc input and output
transition of the edge. This algorithm is known as the PERT algorithm [3] and used in several

existing timing verificrs.

7 Timing analysis of synchronous circuits
The analysis of synchronous circuits is different from the analysis of combinational circuits because

the timing model is no longer an acyclic graph. Therefore, the PERT algorithm can not be used.

However, during each clock phase the propagation conditions of a numbcr of cdgcs in the graph

arc in logic contradiction (see Section 8) with thc states of the clocks during this phase. For

a synchronous circuit, it can safcly be assumed that climination of these cdges from the graph

yields an acyclic graph during cach clock phase. This is in thc assumption that small cyclcs

can be taken up in subnetworks that are described in the rule base. Under this condition, it is

possible to repeat the PERT evaluation described in the prcvious section for each clock phasc.

Each evaluation gives the worst case settling times U(n) and D(n) for evcry node n in the circuit,

in rcsponse to a rising or falling edge of the clock wavcforms. The algorithm is summarized

below:

REPEAT
FOR, every phase in thc clock period DO

Eliminate edges from the SPG with incompatible conditions;
Detcrmine U(n) and D(n) by the sensitizable critical path

algorithm on the remaining graph [1];
Vcrify timing constraints

ENDFOR;
UNTIL convergence: U and D are incremented with cxactly one clock period for all nodes.

The advantage of this algorithm lies in the absencc of any assumptions about thc synchronising

actions of the clocks. Signals arc not assUmed to be stablc at latch inputs or outputs at ccrtain

time points of the clock period [101. The algorithm correctly handles signals that propagate

through latches during the time intcrval that these arc in 'sample' modc. As an illustration,

figure 11 shows a 2-phase clocked circuit and a simplified timing modcl. The tablc bclow gives

thc settling times as computed by thc algorithm.

Clocktransition A B C D

0

20

45

65

90

t2
L2

60

60

105

38

38

83

83

nc1 0-+1
nc2 0-+1
nc1 0 --+ 1

nc2 0 --+ 1

nc1 0 --+ 1

18

18 44
63 44
63 89

108 89

Table 1. Execution trace of the timing analysis algorithm for thc model of figurc 11.

ffi irgsigrr.fFpropagatiorand-
therefore do not change the settling times (they could however have an influence if prccharged

gatcs were used). lt can be seen that after a number of itcrations, the settling timcs arc merely

incremented by onc clock cycle and no more iterations need bc donc.

1 2 1 2

D A

ncncncnc

33
cB

nc

nc

t

2

20 45

Figure 1-1: Simplified timing model and clock waveforms. The edges marked with r are

eliminated during rc1 : 0; those with or during nc2 - 0'

8 Compatibility of logic states

Both the timing model and the timing constraints are derived from the logic modcl of the

subcircuits. These subcircuits are dcfined for a specific design style in the LEXTOC rule basc

dcscription. lt will be shown in this section that another benefit follows from thc availability of

0

this logic model in the timing vcrificr. Considcr the following situation: A logic statc (0 or 1)

can bc imposcd on an arbitrary number of nodes in thc network. lf thc states arc arbitrarily
chosen, it is possible that they can never occur simultaneously in the circuit, because of logic

incompatibility (e.g. a 0 state may be assigned to both the input and output of an invcrtor). We

will denote a set of (node, logic state) pairs with the symbol A. lt is thcn possible to definc a

boolean function e(A), which determincs the compatibility of thc sct A:

e(A) : 1 <+ A is not contradictory
e(A) : 0 <+ A is contradictorY

An implcmcntation of the function e is given below, based on the D-algorithm which has been

adapted to the sct of operators used in thc logic model of the subcircuits. Essentially, this
algorithm for propagation of logic states in a network of logic operators is similar to event-driven

logic simulation at gate level, except for the fact that signals can also propagate from the output
of an operator to the input. Below, the evaluation procedure of the operators is given.

. y:-x
1. lF x is known, set y to X
2. lF y ir known, rct x to y

o Y:x1Ax2...AxP

2' lF Y:t ' set x' to 1 for all i

3' lF x; :0 for anY i, set Y to 0
4. lF x; is unknown and,

xi : 1 for all ifi and,

V:0, set x; to 0

o Y:xlVx2...VxP
1' lF 4 : 0for all i, set Y to 0
2' lF Y:Q ' set xl to 0 for all i

3' lFx; :Lfor anYi'setYtol
4. lF x.; is unknown and,

xi :0 for all ifi and,
y: 1, set x; to 1

o y : (srrs2...,sru)l(dr,dz...,yru)
lF s; - 1 for any i,

1. set s; to 0fior allili
2. lF di is known, set y to d;

3. lF y is known, set d; to y
The procedure determines all nccessary implications of logic states at inputs and output of

each operator. Logic contradiction is detected when both a 1 and a 0 state arc implied at the
same node. This causes the function e to return 0. Note that only the 0 and 1 state are to be

considered, as the M state does never cause any implications and an implication of an E state is

taken to be equivalent to contradiction.

We will demonstrate the use of the function e (A) with thrce applications in the timing verifier:

Elimination of edges during each clock phase ln thc timing analysis algorithm, a num-
ber of edges can be eliminated from the timing model during each phase of the clock
period. Each edgc E in the graph has a number of propagation conditions associated to
it, denoted with A(E). Whcther an edge is to be eliminated or not can be established by

evaluation of the function e for the propagation conditions of the cdge, together with the

(iLl"
{

I
I
I

I
I

vl-

(iii) \----, t-
--'

Figure 12: Partitioning of a D-flipflop, giving rise to false timing constraints.

states of the clocks during that particular clock pharc;

f
^(el

(i /

\
\

I
I
,
I

I
\
\

\
\
I
I
,

\ (nc;,xc;) i:1..q

This is in contrast to the method used in LEADOUT [10] where simulation is used to
detcrmine the relevant transitions under each clock phase.

Elimination of false timing constraints ln Section 4, it is explained how timing constraints
are derived from thc logic modcl of the subcircuits. ln practice this rcquircs the evaluation
of the subcircuit expression for all possible input vectors X of each subcircuit during cach
phase of the clock period. lf applied literally, thc two rules givc rise to many false timing
constraints. Thesc false constraints can be eliminated by verifying thc logic consistency of
each tested input vector by evaluation of the function a.

Figure 12 shows a first example. lt is possible that, according to thc rule base for subcircuit
partitioning, the D-flipflop is split into four subcircuits as indicated with dashed lines (it is

not possible to further partition the cross-coupled NAND gatcs as this would give rise to
unwanted cycles in the timing model). When the clock rp is 0, both inputs of the cross-

couplcd nands are 0 and the set @ of possible output statcs is {M}. When p is 1, and
with thc subcircuit (iv) considcrcd separatcly, the set O that will bc obtained is {0,1,M}.
As a consequence, the second timing constraint applies. However, if the input vectors to
the subcircuit (iv) which are not logically consistent with the environmcnt are rejccted,
the possibility of the M state is ruled out because the inputs to subcircuit (iv) are always

complementary. Therefore, the timing constraint is detected to be false.

A second example is given in figure 13. During each phase of the clock period, M is a
potential output state of the multiplexor, which gives risc to a numbcr of timing constraints.
However, the invertor excludes the M state and hence the timing constraints. Again this
can be detected by application of the function e to all testcd input vcctors of subcircuit
(ii), to vcrify whether they are indced possiblc.

Elimination of false paths The remaining subgraphs of thc causality graph in each clock
phasc are assumed to be acyclic, as all cycles are assumed to be detected by thc rule base.

ln each such subgraph, thc largest sensitizable paths have to be found. However due to the

(ii)
\

I
\
I
I

(i

./
-'z/-/

Figure 13: Partitioning of a multiplexor circuit'

fact that timing verification is signal value indepcndent it can occur that paths found by

a pERT analysis can not logically be excited and that the path found is falsc. In ordcr to

avol ca com

ln [1] efficient algorithms which effectively solve thesc problems are describcd

I Conclusions

An alternative view on timing faults in synchronous MOS circuits, and the way thcse faults can

be verified has bcen presented. A rulc-based method is presented which solves the signal flow

modeling problem in timing verifiers in a flexible way. The rule base also contains information

to build a logic model for the circuit. To our knowledgc, all cxisting timing verifiers ignore thc

logic behaviour of the circuitry to be analysed. We showed that the availability of a logic model

altws to automatically derive a detailcd timing model and the timing constraints which are to be

verified. Additional advantages of the logic modeling lie in thc possibility to rule out false timing

errors and excludc false paths from the analysis. The rule based method for timing verification

as uscd in SLOCOp [16] has been combined with the algorithms for timing verification of multi-

phase clocked systems wherc signal delays can propagate over level sensitive latches as published

Ly T.Szymanski [10]. Because of the rule-based subcircuit partitioning, the SLOCOP timing

verificr has been used for a wide range of static and dynamic nMOS and CMOS circuit designs.

The rulc based approach for timing verification is operational in the SLOCOP 116l timing verifier.

Current work conccntrates on implementing the concepts presented in this Papcr.

References

lU J. Benkoski, E.Vanden Meersch, L.Claesen, H.Dc Man, Efficient Algorithms for Soloing

the Fa1se Path Problem in Timing Verification, Proceedings IEEE ICCAD conference,

Santa Clara, Novcmber 1987.

I2l H. Dc Man, l. Bolsens, E. Vanden Meersch, J. Van Clcynenbreughel, DIALOG, An Expert

Debugging System for MOSVLil Design,lEEE Transactions on Computer-Aided Dcsign,

CAD-4, No.3, June 1985, PP. 303-311.

[3f Shimon Even, Graph Algorithms, Computer Scicnce Press, 1979.

[4f Robert B. Hitchcock, Timing Verification and, the Timing Anolysis Progmm Procccding
of the 19th Design Automation Conference, 1982, pp.594-604.

[5f David E. Wallace, Carlo H. Sequin, Plug-in Timing Mod,els for an Abstract Timing
Verifier, Proceedings of the 23rd Design Automation Confcrcnce, 1986, pp. 683-689.

[6f Seung H. Hwang, Young H. Kim, A.R. Newton, An accurote d,elay mod,eling technique

for switch-leael tirning oerification, 23rd Design Automation Confercnce, June 29- July
2, 1986, pp.227-233.

[7f Norman P. Jouppi, TV: an nMOS Tinting Analyzer, Procccdings of thc Third Caltech
VLSI Conference, 1983, pp. 72-85.

l8l G. Ditlow, W. Donath, A. Ruehli, Logic Equations lor MOSFET Circuits, lnternational
. Symposium on Circuits and Systems, IEEE, 1983, pp. 752-755.

l9l Diagnosis of automata failures: A calculus and, a new method, IBM J. Res. Dcvclop.,
Oct. 1966, pp.278-28L.

[10f Thomas G. Szymanski, LEAD?UT: A Static Timing Analyzer of MOS Circuits,|EEE
ICCAD '86, Santa Clara, C,A, Nov. 1986, Digest of Technical papers, pp. 130-133.

[11f Mark D. Matson, Lancc A. Glasser, Macromoileling and, optimisation of d,igital MOS
VLil circuits,lEEE Transactions on Computer-Aidcd Design, Vol. CAD-5, No. 4, October
1986, pp. 659-678.

[12] D. Etiemble, V. Adeline, Nguyen H. Duyet, J.C. Ballegeer, Micro-computer Oriented,
Algorithrns for Delay Eaaluation of MOS Gates, Proceedings of thc 21st Design Au-
tomation Conf. pp. 358-364.

[13f Zhong L. Mo, Michael R. Lightner, A Two Parameter Delay Mod,el for Switch Leuel
Simulation, 1984, ?

[1af John K. Ousterhoul, Crystal: a Timing Analyzer for nMOS VLil Circuits, Proceedings
of the Third Caltech VLSI Conference, 1983, pp. 58-69.

[15f John K. Ousterhout, Switch-Leoel Delay Moilels for Digital MOS VLff, Procccdingsof
thc 21st Design Automation Conference, 1984, pp. 542-548.

f16f E.Vanden Meersch, L.Claesen, H.De Man, ,9.f,OCOP: a Timing Verification Tool tor
Synchronous CMOS Logic, ESSCIRC '86 Delft, pp.205-207

[17f R.E.Bryant, Algorithmic Aspects of Syntbolic Switch Netuork Analysis, IEEE Trans.
Computcr-Aidcd Design of lntegrated Circuits, July 1987.

[18f R.E.Bryant, Boolean Analysis of MOS Circuits,lEEE Trans. Computer-Aided Design of
lntegrated Circuits, July 1987.

