A formal approach towards electrical
verification of synchronous MOS circuits.

Ivo Bolsens, W. De Rammelaere, C. Van Overloop, L. Claesen, H. De Man !

IMEC Lab., Leuven, Belgium, Phone: +32-16-281203

Abstract

Careful observation of many circuit designs has shown
that a rule base is too weak as a complete representation of
the designer’s knowledge. This paper describes the develop-
ment of a formal theory that captures the designer’sintuition
of electrical correct digital circuits. To be able to produce
software tools that assist the designer to ensure electrical
performance and good digital operation, we developed a set
of axioms and theorems that cover his expertise. The gap be-
tween theory and practice has been bridged by moulding the
theory into software tools that allow for a flexible definition
of good design practice. Rule based programming, symbolic
analysis as well as guided simulation, are the key aspects of
this expert analysis environment. Rules form the top level
component of the verification environment. They are mainly
used to speed up the whole system and to increase flexibility.
The aim is to obtain a good compromise between execution
efficiency and reliable results by a mixture of provable cor-
rect rules, guided simulation and fundamental algorithms,
based on basic logical principles.

1 Introduction.

Due to the growing complexity of integrated circuits, a gap
between high level design expertise and low level electrical

SCANUIT

SCANN

Figure 1. No:f’l, nod? and nodd are memory nodes. The
('B boundaries are indicated.

performance has been created. Therefore there is a need of
software tools that provide the designer with expertise ad-
vice on circuit performance and electrical correctness. This
requires a theory that links the intuitions of an expert cir-
cuit designer with the corresponding principles of a formal
design theory. All concepts should be unambiguous when
formulating such a theory. Therefore, in a first section, we
define the basic terminology and definitions. Next we dis-
cuss the basic axioms and theorems that define good digital
operation. This will be followed by the implications for im-
plementing this theory into software tools. The last section
contains some concluding remarks.

*This research is sponsored by the ESPRIT1058 project of the EC
OProfessor at the K.U.Leuven

2 Terminology.

To provide the designer with an understanding into the over-
all circuit behaviour and to avoid detail, abstraction must be
made of the device physics level. We operate on a network
model as described in [1]. At any level of abstraction a cir-
cuit S(N,E) is described as a set of nodes N and a set of
elements E. Each element is connected via its terminals to
a set of nodes. Elements, nodes and terminals can have at-
tributes such as capacitance, resistance and relations such
as adjacency, output etc...

Because we are concentrating on digital, synchronous sys-
tems, the definition of clocks and derived clocks as well as
memnory nodes is of prime importance. The definifions be-
low do not take into account the delay of signals. These
effects are dealt with at the specification of correct transient
behaviour. Figure 1 illustrates the main concepts,

Clock signal A clock signal C; is a low impedant signal,
characterized by a periodic waveform Vg, (t) with exactly two
transitions during one clock period. A circuit node n; that
generates a clock signal is a clock i.e. n; € Clocks(S(N, E)).

Clock phase A clock phase ¢ is a set of closed time inter-
vals T;, characterized by a boolean function Fy such that

(\V/f- S T', : Fd,(D(ch (t)) A D(Vck(t))) =1
(Iﬁ ¢bT.: : Fy(D(Vo, (1)) ... D(Ve, (1)) = 0)
whereby

Vi, (1) represents the waveform of a signal n;.
D(v) : R — {0,1, X} maps voltage v onto one of
three states.

Non-overlapping clock phases
do not overlap i.e.

$iNgj =0 o Vie(0...00]: Fy(t) A Fy(t) =0

Two clock phases ¢;, ¢;

Clock period,clocks, clock waveforms and clock phases have
to be specified explicitly by the designer.
Clock phases should be specified in such a way that :

Vi, Idbizi + diN gy =0

Ordering of clock phases
phases such that :

We define an ordering of clock

Vit € ¢ip1 @ Ity € ¢; such that 0 < ¢, < ¢ty .

Derived clock signal A node n; generates a ¢;;-derived
clock signal if

¢ 7; is an output node of a DC-connected network [2]

2113

ISCAS’88

CH?2458-8/88/0000-2113%1.00 © 1988 |[EEE

o and V¢ : IF Fy (1) A Fy,(t) = 0= D(V,(t)) =0

Ve: T Fo(t) A Foy(t) = 0 = D(Va (1) = 1.

e and V¢ : Driven(n;) = 1. (The predicate Driven(n;)
is 1 if there exists a conducting transistor path to an
external input.) [2]

e and V,,,(t) has zero or two transitions during each clock
period.

In the context of this paper we concentrate on non-overlapping
clock phases. However this does not affect the generality of
the theory.

Logic node A logic node is a circuit node for which there
exists at least one possible conducting path to VDD that
is not passing via other logic nodes and there exists at least
one possible conducting path to GND that is not passing via
other logic nodes.

Memory node A node n; is a ¢; memory node if

e 7, is the output of a DC-connected network.
e and Vt € [0...00] : IF F,(t) = 1 = There exists a

possible conducting path to a logic node or an external
input, that is no refreshing path..

o and there exists a clock phase ¢;;1 that does not over-
lap with ¢; such that
IF Fy,, = 1 = There exists no possible conducting
path to a logic node or an external input
or
There only exists a possible conducting
path that restores the actual value D(V, (t))).

Intuitively one can state that a ¢; memory node can receive
new information during phase ¢; and has to hold this infor-
mation at least during ¢;41.

Memorisation phase The memorisation phase ¢ of a ¢;
mentory node n; is the maximum set of time intervals T}
characterized by the logic functions Fj, such that

e Vt € T;: There exists no possible conducting path that
can alter the value of n;

o and Vt € T, : Fo(D(V;(t))... D(Va(t)))
o and ¥t ¢ T} : Fn(D(Vi(t))... D(Vi(t)))

1
0

whereby

{j ... k} are called control nodes (i.a. clocks).
F,, states the conditions that must hold for n; to
be in memorisation phase.

Combinational block. A combinational block (CB) is a
subnetwork such that

e All terminals of the CB are external inputs or outputs
of the circuit, memory nodes or derived clocks.

e and all external inputs, outputs, derived clocks and
memory nodes of the CB are terminals of the CB.

e All DCN’s of the CB form a connected graph.

Evaluation phase The evaluation phase ¢ of a ¢; memory
node n; is the maximum set of time intervals T}, character-
ized by the boolean function F. such that

and Vt € T; : 3 a conducting path to at least one logic
node or external input,
that is no refreshing path.

and Vt € T; : F(D(V;(1))... D(Vi(t))) =1
and Vi ¢ T; : F.(D(V;))...D(Vi(t))) =0

whereby

{j ...k} and {u ... w} are itiputs of C'B;

j ... k} are control nodes, {u ... w} are called
data nodes.

{7.. . k}N{w...w} =10

F is a boolean function of inputs of CB;.

3 Definition of correct digital
behaviour

Given the above definitions, we are now able to formulate
sufficient conditions for MOS circuits to behave correctly i.e.
to have a correct level sensitive behaviour, independent of
transition delays. The requirement of good digital behaviour
of a network can be reduced to claiming correct behaviour
of combinational blocks. Correct behaviour of a CB can fur-
ther be divided into correct steady state behaviour, correct
memorisation behaviour and correct transient behaviour. As
a first axiom we state :

Axiom 1 : Steady state behaviour A combinational
block shows a correct steady state behaviour, if every out-
put node, for any logic combination of input signals, during
the evaluation phase, can have one and only one steady state
value that is recognized as a logic 1 or a logic 0.

This implies among others that during evaluation, a com-
binational block cannot have internal memory states that
influence an output, because the output values may not de-
pend on the sequence of input values.

The second basic axiom we postulate concerns the mem-
orisation behaviour of memory nodes.

Axiom 2 : Memorisation behaviour A ¢; memory
node n; shows a correct memorisation behaviour :

o If F,, characterizing the evaluation phase of n; is peri-
odic and
if during all timepoints where Fy, A...AFy, = 0 and
during Fj;,, = 1, no new value can be presented to n;.

e or if F, is not periodic and if during all timepoints
yields F, @ F,,, = 1, and during F,, = 1 no new value
can be presented to n; and during at least one clock
phase which is a subset of the memorisation phase of
n; there is a conducting transistor path to refresh the
stored value.

The third axiom concerning transient behaviour makes a
distinction between derived clocks and CB memory nodes.

Axiom 3 : Transient behaviour

e A memory node n; has a correct transient behaviour
if, before the end of the evaluation phase, n; reaches
the steady state value depending on the input values,
present at the beginning of the evaluation phase and
n; holds this steady state value until the beginning of
the memorisation phase.

2114

Yt € T;: IF n; € outputs(CB;) = D(V(n;)) = F(D(V,)...D(V,

o A ¢$-derived clock n; has a correct transient behaviour
if as a consequence of a ¢ transition n; evolves glitch-
free to a steady-state value and keeps that value until
the next ¢ transition. The transition time of n; must
be small enough to guarantee no races.

4 Software aspects

Above we stated three axioms that describe sufficient (not
necessary) conditions for correct digital behaviour. Axiom
three deals with the timing behaviour of a MOS network. We
will limit ourselves to verification of correct steady state and
memorisation behaviour, Checking the timing of a circuit is
beyond the scope of this paper and is extensively handled in
5] [6].

1 [T!) allow for an efficient and flexible verification tpol, we
opted for 3 mixture of rule based programming and fun-
damental algorithms. The basic flow of the verification
process is depicted below :

Step 1 ; Check user defined clocking information
for its obedience to the restrictions of
clock phases and waveforms.

Step 2 : Create a directed graph representation of

the network by dividing it in DC-connected

components.

Step 3 : :
their pull-up and pull-down transmission
functions. [1]

Step 4 : Detect derived clocks.
Step 5 : Detect asynchronous feedback loops.
Step 6 : Detect memory nodes
- Fire rules that find most commonly used
register configurations.[1]
- Execute algorithm detect-memory-nodes
on remaining part of the network
(see algorithm 1)
Step 7 : Divide network into combinational blocks.
Step 8 : For every combinational block :

- Fire rules to detect provable correct
subcircuits.

- If there still exist subnetworks that are
not flagged correct : execute
investigate-dcn-subnetwork
(see algorithm 2)

Algorithms and rules are embedded in the expert system
environment DIALOG. The rule mechanism and the nature
of the rules are extensively documented in [1]. Algorithm 1
describes the general procedure to detect circuit nodes that
obey the above definition of memory node.

Algorithm to detect ¢; memory nodes

Let the boundary conditions be :
Fy =0AFp,, =1AF;, =0(k#i+1)
FOR all DCN; DO
IF DCN; not processed by a rule DO
FOR all n; € outputs(DCN;) DO
IF {Fpullup == 0/\ Fpulldown =0) V
pullup = T4 /\ Fpulldown = ﬁi) V
(Fpullup =ny /\ Fpu”down = O] V
{Fpullup =0 /\ Fpulldown = n_z]
is consistent with the boundary conditions DO
ASSIGN possible-memory-node to n;

Fire rules to detect logic nodes and create

Let the boundary conditions be :
Fy, = 1A Fy, =0 (k # i)
FOR all possible-memory-nodes n;, DO
IF (Fpullup ?é 0 /\ Fpullup '_]é TLi) V
(Fpulldown :/'é 0 /\ Fpulldown ?é ﬁi)
is consistent with the boundary conditions DO

ASSIGN memory-node to n;
Algorithm 1

During a preprocessing step all register configurations
which are present in the knowledge base of the given design
style will be detected. Therefore algorithm 1 will only eval-
uate the remaining DCN-outputs. Given that (IF = = y)
= (X +Y = 1), gives rise to a reformulation of algorithm 1 in
terms of a tautology checking problem. Figure 2 depicts the
general rule statement to recognize a phase! memory node
in the case of a two phase non overlapping clocking strategy.

(Defrule phasel-memory-nodes ()
(*If
((property static-DCN-oulput nodel)
(attribute pull-up xfl nodl)
(attribute pull-down xf2 nodl)
(true-tautology
(or (not phase2) (and (not xf1) (not x{2))
(and nodel (not xf2)) (and (not nodel) (not xf1)))
(*not (false-tautology
- (and phasel (or xf1 x[2)))))
*Then
((assign-attribute memory-node phasel nodel))))

Figure 2.

An important part of this rule consists of verifying the con-
sistency of boolean expressions. Hereby we are making use
of a powerful tautology checking program that is successfully
exploiting rule based techniques to cut down execution time.
3]

Once the memory nodes are detected, we can divide the
network into combinational blocks, which will be investi-
gated separately. For every CB , feedback loops are cut.
Feedback loops are only allowed to restore a logic value, all
others are reported as errors. The directed graph of DC-
connected networks is leveled. For all input combinations of
the CB that make the evaluation phase condition to hold,
the CB is verified by recursively investigating all DCN’s on
possible charge-sharing or w/1 errors that have a sensitive
path to a CB output. The kernel of this procedure is de-
picted in algorithm 2.

The function Investigate(DC N;) returns a list of output-
results of the CB, generated for each possible combination
of logic values of the nodes in the list short-circuit | high-
impedant.

The overall verification complexity equals O(NCBinputs)

whereby N can vary from 1 to 2.
In worst case, if no knowledge about the circuit nor the de-
sign style is present, N equals 2. However, experience has
shown that in most cases large parts of the network will be
processed by design style specific rules. We can reduce the
execution time by leveling the DCN’s of a CB in such a way
that those being verified locally and found correct can be
excluded from the list of subnetworks to be investigated. By
this means we can diminish the number of input combina-
tions to be examined. In the extreme case when a CB is
completely approved by the rules of the knowledge base , N
equals 1. This occurs for example when the CB is composed
ff] static CMOS gates or is obeying the NORA-CMOS rules
4]. ’

2115

Algorithm to detect relevant problems in
DC-connected networks

Investigate (DC N;)
IF i > total number of DC-connected networks in ¢'B; DO
investigate <= return CB-output-values
ELSE DO
FOR all k, € outputs(DCN,) DO
IF Fpullup =1 /\Fpulldown =0DO ka +1
IF Fpullup = OAFpu”down =1DO ku <=0
IF Fpullup =0 /\ Fpulldown =0DO
push &, on list high-impedant
IF Fpullup =1 A Fpullduwn =1DO
push k, on list short-circuit
IF high-impedant | short-circuit = () DO
investigate < investigate(DC N;y,)
ELSE DO
FOR all logic combination of nodes in short-circuit |
high-impedant DO
push investigate(DC N;,,) on investigate
IF 3i,j € investigate : i # j DO
DC N; has a sensitive path to CB-output
FOR all i € short-circuit |J high-impedant DO
Search subnetwork of DCN that forms a
conducting path to i
Investigate subnetwork for possible errors.
Return Investigate
Algorithm 2

F

rf?‘J:l“' B
“-—-1[! r-qlr\]_l]-J'-|>—'
! ?_[_l

il
|

Ful = [_

ity g Fady
Fil

l o}
il
l Fie L Fil L Fia
A 4 {>° “J'.'I.__ --f)o— L . [>.o-— S
;L-Cbig ICsmall Chig ICﬁmll :Ebig

Figure 3. Error situations, not detected by the program.

Esmn

Errors that occur due to transient effects, delays in signal
transitions will not be detected by the above verification
procedure. Examples of such errors are depicted in Figure
3.

Next we give an overview of the possible error configu-
rations that are detected and reported during the execution
of algorithm 2.

Violations against good design practice.

IF node € list high-impedant DO
IF number of logic nodes in conducting part > 1 DO
ERROR — MESSAGE : More than one logic node
writes info to a high impedant output.
ELSE IF number of logic nodes in conducting part = 0
DO
ERROR—-MESSAGE : Noinformation is given to node,
internal memory state detected.
ELSE IF capacitance(logic-node) >
3 x ¥ capacitance(conducting-part - logicnode)
DO
IF logic-node # node DO
WARNING — MESSAGE : info passed
via charge-sharing from logic-node to output
ELSE DO
ERROR — MESSAGE : invalid value given to output

via charge-sharing.

The nodes that are flagged because there exists a short cir-
cuit between VDD and GND are further analysed :

IF nr-logicnodes in conducting part >=1 DO
Simulate conducting part with given input pattern
IF D(V(node)) = X DO
ERROR — MESSAGE : bad W/L ratios.
IF D(V(node)) =1 DO
WARNING — MESSAGE : possible pseudo nmos
or restoring logic.
IF D(V{(node)) = 0 DO
WARNING — MESSAGE : possible restoring logic.
ELSE DO
ERROR - MESSAGE : probably pmos transistor in

nmos path or vice versa.
5 Conclusion.

In this paper, we presenied a formal view on the analysis
of electrical behaviour of synchronous MOS circuits. Rule
based techniques are used to derive the intended behaviour
of the transistor schematics, by applying rules of common
sense (7], to increase efficiency of the verification proce-
dures by topological rules that recognize known circuit con-
figurations and (o locally approve specific subcircuits by
applying provable correct rules. The combination of rule-

based verification methods and fundamental algorithms, founded

on a formal theory, allows to generate the relevant error mes-
sages. No restrictions are placed on the structure of the
network. To our knowledge the mixture of expert system
techniques and procedural programming is new in this area
of research. The main effort is now concentrating on mould-
ing the above in a usable software ool and extending the
knowledge base to add more heuristics to the verification
process to increase the execution efficiency.

Acknowledgment

The authors thank F. Van Aelten whose ideas contributed
to the proposed verification strategy.

References

[1] H.] De Man, I. Bolsens, E. vanden Meetscli and J. van Cleynebreugel : " Dinlog
an Expert Debugging System for MOS VLS! Design”. IEEE Transactions on CAD
of Integrated Cireuits and Systems, vol CAD, no 3, pp 303, July 1985,

(2] D. Dumlugol, H.J. De Man, P. Stevens, G. Schrooten : "Lorcal Relaxation Algo-
ritlins for Event-Driven Simulation of MOS networks Including Assignable Delay
Maodelling”, IEEE Transactions on CAD of Integrated Circuits and Systems, vol
CAD-2, no 3, July 1983,

[3] P. Lammens : "The Function TC, a Tutorial”, Esprit1058, Technical Report, Part
2, Leuven, December 1986.

[4] N.Gonealves, H. De Man :"NORA : A Racefrre Dynamic CMOS Technique for
Pipelined Logic Structures.” IEEE Journal of Solid-State Circuits, Vol Sc-18, No
3, pp 261-266, June 1983.

[5] J.K. Qosterhout, "A Switch-level Timing Verifier for Digilal MOSVLSI”, IEEE
Trans. on Computer-Aided Design, CAD-4, no 3,pp336-349, July 1985.

(6] E.Vanden Meersch, L. Claesen,H.De Man : "Slocop, A Timing Verification Tool for
Synchronous CMOS Logic” Proc. ESSCIRC, pp. 205-207, Delft, The Netherlands,
Sept 12-18, 1986.

[7) N.P. Jouppi : "Derivation of Signal Flow Direction in MOS VLSI" [EEE Transac-
tions on CAD, Vol CAD-6, No 3, May 1987.

(8] J.A. Brazozowski, M.Yoeli : "Combinaltional stalic (MOS networks”, Integration,
the VLSI journal 5, pp 103-122, 1987,

2116

