
a Formal verification Technique For Embedded software.

Olivier Thiry, Luc Claesen
MEC/K.U.Leuven, Kapeldreef 75, B-3001 Leuven Belgium

phone : +32- I 6 -28 1203, f ax: +32- I 6 -281 50 1, email : cl aesen @ imec.be

Abstract

A method for the verification of embedded software
correctness is presentedl. A formal model for an actual
commercial microprocessor is established. This is done by
modeling the instruction set and processor architecture.
Embedded software takes the form of the assembly
program code to be run on the processor. Specifications
are given as CTL temporal logic formulae. The method
has been implemented in the SMV model checker and is
illustrated by a practical embedded system application: a
mouse controller. The inconsistency of the specification
and the implementation as an assembly language program
as it has been published in the applications book of the
manufacturer has been uncovered.

l.Introduction

VLSI technology has enabled that more and more
complex systems can be integrated on single chips.
Besides dedicated hardware, several systems are currently
built up as integrated embedded systems, encompassing a
dedicated microprocessor with embedded software
togcther with specifiu pcripheral circuits [13]. This trencl
is motivated by the fact that the embedded software
component allows to postpone specific implementation
and functionality decisions until late in the development
process. Having the availability of a microprocessor and
embedded software, allows for design changes later in the
product life cycle without too drastic changes in the
circuit structures. Very often only a ROM has to be
updated. This has led to the problem of what is commonly
known as Hardware/Software CoDesign [10].

The main emphasis in the Hardware/Software
CoDesign area has gone into either the partitioning
problem [11] to make decisions on which parts of the
design go into hardware and which go into software, or in

lResearch
sponsored in part by the European Union under

the ESPRIT 8776 CHARME working gïoup.

the estimation of timing behavior for the implementation
of certain parts in hardware or software. Very little has
been achieved yet in the area of verification of embedded
systems or mixed hardware/software systems.

There is however a definite need to be able to verify
the correct behavior of embedded systems. This can have
as aspects, the verification of the correct implementation
of systems as mixed hardware/software systems or the
verification of certain properties (safety or lifeness
properties) of these systems. In cases where systems are
used in safety critical applications the thorough
verification of the correct behavior is definitely needed.
Examples are numerous: car-electronics, aircraft
electronics, medical applications. A number of the tasks to
be performed (e.g. ABS, automatic suspension etc...) have
to satisfy certain safety criteria. The ABS should not start
breaking at the wrong occasions.

This paper presents a methodology and application of
the formal verification of embedded software [14]. The
instruction set of a commercial microcontroller [5] has
been modeled. A method for the symbolic verification of
software in terms of assembly code [5] on this processor is
worked out. The application of a mouse controller [6]
with Microsoft compatiblc RSZ3Z intcrface has bcel usctJ
as an example. Inconsistencies of the assembly code in [6]
and the flow chart specification in [6] has been uncovered,
illustrating the usefulness ofthe approach presented.

2. The CTL Temporal Logic.

For the modeling and verification of the embedded
software the CTL temporal logic was chosen. Temporal
logic allows to reason with finite state machines that
evolve over time. The intention is to model the machine
architecture as an instruction intelpreter and the assembly
code as a finite state machine. CTL is a subset of temporal
logic defined by Clarke, Emerson and Sistla [3]. Ken
McMillan e.a. fl,41have introduced symbolic srate space
traversal techniques that allow to evaluate CTL formulae
on finite state machines in an efficient way by means of

1063-6404/96 $5.00 O 1996 IEEE

352

symbolic fixed point calculations. This is implemented in
the SMV program [2].

Figure 1 represents the CTL formula : "for all paths,
there exists a state in the future where the boolean formula
g is true (AF g)

In our application, each state is characterized by the
contents of the microcontroller registers and the
transitions are due to the instructions of the assembly code

g

Figurel:AFg

3.Modeling of embedded software

The SMV languagc defined by K. Mc Millan, provides
operation at a suitable high level to allow the description
of finite states machines. It uses the Oriented Binary
Decision Diagram symbolic model checking algorithm to
find out whether the CTL specifications are satisfied.

3.1 Description of the microcontroller

We give a description of the microcontroller in order to
estimate what characteristics must be modeled : registers,
instructions, data path.

This microcontroller [5] is a RISC-like CPU having
only 35 instructions. Each instruction takes one clock
cycle, except for program branches which takes two
cycles. The lK EPROM memory contains the 14-bit
instructions which compose the program.

We also have 36 general purpose registers (8-bit wide)
and 15 special function registers (status register, low order
8 bit of the program counter, 8 bits real time clock
counter, ...)

Finally, this microcontroller has an 8-level deep
hardware stack: 8 13-bit wide registers.

We will only elaborate a structure including the
instruction set (instruction decode and control, ALU), the

stack, the program counter, the working register, and
some other registers (RAM File registers).

These simplifications have been made in order to focus
better on our modeling. Indeed, our goals are simply to
verify that our approach is possible but not to make a
complete and absolutely general model.

Figure 2 represents the architecture of the
microcontroller

{r3bn)
wR0

s

gs
ffi,*""

I

Figure 2 : block diagram of the microcontroller

Mainly, a model is set up for
the registers
the instuctions

3.2 The registers

The physical registers contain a number between 0 and
255. They are declared as a module containing 8 Boolean
variables. In the example below, the syntax of the SMV
language [12] is used.

ramX represents a 8-bit general purpose register and
b0, bl , ..., b7 the 8 bits of this register.

MODULEmain
VAR

ramX:process REGISTER ;

MODULE REGISTER
VAR

b0:boolean;
b1:boolean;

353

b7:boolean;

Figure 3 :Description of a general purpose register
3.3Instructions

We can distinguish four different types of instructions as

represented in the following figures :

instructions acting on two registers
instructions acting on the working register
instructions acting on one bit
instructions manipulating the program counter

F or rJy'

STATUS

In figure 5, the representation of the instruction OR
between a literal and the working register (V/) is
illustrated.

There are two modules :

IOR, an auxiliary module, which computes the ORing
operation between two parameters a and b

IORLW, the real instruction which applies IOR to W.bi
and Ki (i=0, ...7) where W.bi represents the ith bit of the
working register and Ki the ith bit of the literal.

Z represents the bit ZERO of the status register and is set
to 0 ifthe result ofthe operation is zero.
Pc is the program counter and Inr is the instruction
number(see 3.4)

This code simply defines the next value of each bit of the
working register in function ofthe value ofthe program
counter:
If this value is equal to the instruction number the OR
operation is done
Otherwise the value of the W register is left unchanged.
The same test is also applied to Z and Pc

MODULE IOR(ab)
DEFINE

or:=alb;

MODULE IORLW(InI, Pc, W K0, Kl, K2, K3, Kq K5,K6,K7,Z)
VAR

biO:IOR(W.b0, K0);

bi7:IOR(w.b7, K7);

ASSIGN
next(lil.b0):=

case

Inr=Pc :bi0.or;
:W.b0;

esac;

next(W.b7):=
case

InePc :bi7.orl
:W.b7;

esac;

next(Z):=

Inr=Pc !(bi0.orl. . . I bi7.or);

w

F

w

Ut€Íal

slÁfl.s

w

bir

Stack

PC

Figure 4 : Representation of the 4 types of instructions

3.4 Suppression of parallelism

SMV is a language which allows several modules to
evolve in parallel. For a single processor application,
only one instruction is executed at a time. So a way to
suppress this parallel capability of SMV is required.

In order to achieve this goal, each instruction, in other
words each module, will receive the program counter as

parameter and a number which corresponds to the address
of the instruction. It is like at the butcher's. Each
customer has a number and looks at the counter. When
his turn comes, the client acts and modifies the counter.

3.5 Example

t-

PC

case

iZ;

INSTRUCTION

TYPE I

lNISIRtgrcÀt

TwE2

INSTRUCTION

TYPE 3

E\ÏSIKTTÏCN

T5PE 4

354

esac;

case

next(Pc):=

Inr=Pc :Pc+l;
;Pc;

esac;

Figure 5 : description in the SMV language of the
instruction IORLW

4. Application

4.1 Introduction.

The model is illustred by a simple mouse controller [6]
which is mainly composed of five functional blocks :

Microcontroller
Button detection
Motion detection
RS232 signal generation
5V DC power supply unit.

For this example, we suppose we have three push buttons
When a switch changes or any X or Y movement is
detected, a message is formatted and sent to the host.

4.2 Software details[6]

The software has to :

scan buttons, X and Y motion
format data
send this serial data to the host.

To achieve these three goals, the program is composed
ofthree parts :

the main part tests any changes in the button status and
in the movement counts. Then, it calls five times the
routine Byte.

Byte sends data and periodically calls the routine bit
Bit counts X and Y pulscs.
In this paper we will restrain us to one specification of

the routine bit.

4.3 Specification

From the flow chart [6] some specifications can be
deduced on what this program is supposed to carry out.
We restrict ourselves to a partial description of the
specifications. Indeed, it is not necessary to describe the
program specifications totally to insure that our approach
is valid.

Figure 6: partial representation of the flow chart
concerning the bit routine

Figure 6 is a part of the flow chart of the routine bit.

We can deduce from this that if XDATA =0 is read during
a rising edge of the clock (Ra.b2=1 and CSTAT.b2=0)
then the right flag (FLAGB.b3) is set to 1 in all cases in
the future.

We obtain in CTL :

AG (RA.b2=l & CSTAT.b2=O & RA.b3 =0 -> AF FLAGb.b3 =l)

where (AG p) means for all paths, p is true in each state
and (AF p) means for all paths, p is true for one state in
the future.

5. Experimental results

5.L Our specific example

In the figure 7, the piece of code corresponding to the
flow chart is shown.
NOTATIONS:
BIT0 and BITY are the addresses of sub routines
BTFSC (a, b,c) tests bit c and skip the next instruction if it is cleared
BTFSS (a,b,c) tests bit c and skip the next instruction if it is set
INCF (a"b,c,d,e,f) increments Íegister d and place the result in d if e=l
otherwise in c
BCF (a,b,c) clears bit c
BSF(a,b,c) sets bit c
GOTO (a,b,c) go to addrcss c
INST0 :process BTFSS (0, Pc, RA.b2);
INSTI :process GOTO (1, Pc, BIT0);
INST2 :process BTFSC (2, Pc, CSTAT.b2);
INST3 :process GOTO (3, Pc, BITY);
INST4 :process INCF (4, Pc, W, XCOUNT, I, STATUS.b2);

o

XCount.a- XCoud+ 1
Fl€sat Right Flag

355

INST5
INST6
INSTT
INSTS
INST9

rising edge =instructions 0 to 3

XCOUNT+1
clear right fiag
If XDATA is set then set right flag

Figure 7 : First instructions of the bit routine

lVe applied our model to the complete routine bit (40
instructions). It took 23 seconds on a 486DX33 with 16

MB RAM to verify the specification described in 4.3 .The
listing was found incorrect and the system produces a
counter-example which is a succession of states (registers)
and transitions (instructions). Indeed, it is easy to see that
instruction 6 should be a BTFSC instead of a BTFSS"

5.2 Discussion

The method explained in this paper has shown that it is
possible to model the instruction execution and
verification of instruction properties based on temporal
logic CTL and implement this in the SMV system. The
complexity to model the whole processor and the whole
embedded progïam is still too high for execution with
SMV. This is mainly caused by the fact that a single state
transition relation is being set up in SMV that needs to be
represented by a canonical OBDD characteristic function.
The modeling and verification of larger embedded
programs will require new symbolic analysis techniques
able to cope with the inherent complexities.

6. Conclusions

Embedded systems are becoming more and more
important as a means to integrate versatile and cheap
systems. The correct behavior of embedded software and
hardware is crucial in most applications. This paper
describes a method for the verification of embedded
software on a commercial embedded processor. It has
been applied to the verification of an example software
implementation at the level of assembly code.
Inconsistencies in the implementation of a published
application have been shown. The application of
traditional techniques for symbolic state-space traversal is
limited due to complexity problems in the symbolic state

space representation and manipulation. Therefore future
research is oriented towards applying other techniques
such as SFG-Tracing [7,8] that have proven to be able to
cope with practical problems of complexities of 230,000
transistor chips.

Acknowledgments

This work has been supported in part under the ESPRIT
CHARME working group 8776.

References

[1] K.L. McMillan, "Symbolic model checking", Camegie
Mellon University, Kluwer Academic Publishers, 1993.

t2l R.E. Bryant, "Graph-Based Algorithm for Boolean Function
Manipulation", IEEE Transactions on Computers, vol. C-35,
No.8, 1986.

[3] E.M. Clarke, E.A. Emerson, A.P. Sistla, "Automatic
Verification of Finite-State Concurrent systems using Temporal
Logic SpeciÍications", ACM Transactions on Programming
Languages and Systems, Vol. 8, No. 2, April 1986,page244
263.

t4l J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, J.
Hwang, "Symbolic Model Checking: 1020 and beyond", in
Proc. of the Fifth Annual Symposium on Logic in Computer
Science, June 1990.

[5] Microchip Technology Incorporated, "PlCl6C7 1", 1994,
page 2.328-2.372.

[6] Microchip Technology Incorporated, "Embedded Control
Handbook", 1993, page 2.121-2.133.
[7] L. Claesen, F. Proesmans, E. Veriind, H. De Man, "SFG-
Tracing: a methodology for the automatic verification of MOS
transistor level implementations from high-level behavioral
specifications", Proceedings 199 I International Workshop on
Formal Methods in VLSI Design, ed. P.A. Subrahmanyam,
ACM-SIGDA, Miami, Jan 9-11, 1991.

[8] L. Claesen, M. Genoe, "Multi-Level Formal Verification of
High Level Synthesis: a Reality", Proceedings SASIMI'95,
August 25-26,1995, NaraJapan, pp. 106-113.

[9] H. De Man, J. Rabaey, P. Six, L. Claesen, "Cathedral-Il: a

silicon compiler for digital signal processing", IEEE Design and
Test of Computers, December 1986, Vol. 3, No. 6, pp.73-85.

[0] K. Buchenrieder, A. Sedlmeier, C. Vieth, "HWSV/ Co-
Design with PRAM's using CODES",
in Proceedings CHDL'93, Computer Hardware Description
Languages and their Applications (A-32), ed. D. Agnew, L.
Claesen, R. Camposano, Elsevier Science Publishers B.V.,
1993, pp. 65-78.

I l] J. Henkel, Th Benner, R. Ernst,W. Ye, N. Serafimov and

G. Glawe,'COSYMA : A software-oriented approach to
hardware/software Codesign", The journal of Computer and

Software Engineering, Vol.2, No.3, pp.293-314, 1994.

:process BCF
:process BTFSS
:process GOTO
:process BSF
:process GOTO

(5, Pc, FLAGB.b3);
(6, Pc, RA.b3);
(7, Pc, BITY);
(8, Pc, FLAGB.b3);
(9, Pc, BITY);

356

lt2l K.L. Mc Millan, "The SMV system DRAFT", Camegie-
Mellon University, February 2, 1992.

[13] L. Claesen, D. Beullens, R. Martens, R. Mertens, S. De
Schrijver, W. De Jong, "SmartPen : An Application of
Integrated Microsystem and Embedded Hardware/Software
CoDesign", proceedings ED&TC, User Forum, Paris I l-14
March 1996, pp20l-2o5
tlal O. Thiry, "Symbolic Verification Technique of Embedded
Software" Masters Thesis, K.U. Leuven (Belgium), 199+1995

357

