
Theorem Proven in Circuit Design
V, Stavridou, T.F. Melhm and R.T Boule (Eds.)
Elsevier Science Publishers B.V. (North-Hollmd)
@ 1992 IFIP. All righs resened.

37

A Description Methodology for Parameterized Mod-
ules in the Boyer-Moore Logic t

D. Verkesto, J. Vandenbergho, L. Claesenob, H. De Manoó

o IMEC, Kapeldreeí 75, 3001 Leuven, Belgium

oó Professor at Catholic University Leuven, Kard. Mercierlaan,300l Leuven, Belgium

Abstract
We present a method to hierarchical/y describe combinatorial and, sequential circuits in
the Boyer-Moore logic. The description style resembles the style of traditional hardware
description languages and should look quite familiar to hardware designers. In addition
it allows an easy translation to existing hardware description languages.

Keyword Codes: 8.7.1; F.a3;1.2.3

Keywords: Integrated Circuits, Types and Design Styles; Formal Languages;
Deduction and Theorem Proving.

L fntroduction
The description style we propose hele was developed to formally describe, specify and
verify a module library which is used by the CATHEDRAL silicon compiler suite [1, 2]. The
module librarv comprises some 25 functional building blocks (FBBs) built up hierarchically
from over 60 leaf cells. All the functional building blocks are parameterized in the word
length. Some building blocks also have other parameters which indicate some particular
structural composition of the module. The FBBs are the basic building blocks of the
silicon compilers and hence the correctness of the synthesis result depends heavily on the
correctness of the FBBs. This is the main reason we perform a formal and mechanical
verification of all the FBBs in the library [5, 6] by means of the Boyer-Moore theorem
prover [3].

At the moment the synthesis system provides two routes to layout. One makes use of
standard cell layout techniques and in that case the structure of the FBBs is described in
HILARICS [4] - a language used internally in IMEC for the description of parameterized
structure. From the HILARICS descriptions standard cell layout of the instantiated FBBs

lResearch sponsored by ESPRIT BRA 3216 CHARME

38

can be obtained. The other route makes use of custom layout for the FBBs and in that

case the structure and, layout of the FBBs is described in a module generation environment

(McE) [?].
Since the formal descriptions of the FBBs in Boyer-Moore logic cannot be used directly

by the synthesis system we have implemented some tools to provide a link with the

actual silicon compilers. The formal descriptions in the Boyer-Moore logic [3] are used

to automatically generate parameterized descriptions in the HILARICS language for all

the FBBs. From these descriptions standard cell implementations can be obtained. The

formal descriptions are also used as a reference for net list comparison of the extracted

layouts generated from the MGE descriptions of the FBBs [6]. Finally the Boyer-Moore

descriptions are used as a starting point for the formal verification of synthesis primitives

in the CATHEDRAL 2nd synthesis system [8, 9].

The traditional method for the description of digital synchronous circuits in the Boyer-

Moore logic was introduced by Hunt [10] for the description of the FM8501 and its suc-

cessors and consists of modeling the behavior of the design directly in the logic' Every

hardware circuit is modeled by a function in the logic which has as formal parameters the

input terminals of the circuit, A hierarchical design is built up by combining the various

functions describing the components of the design. Circuits which are parameterized'by

the word length of their inputs are described using recursion. To model sequential designs

the registers (or state variables) are included as additional parameters of the functions and

are updated appropriately in every recursive call. Every recursion step of this " sequential"

function corresponds to one clock tick.
Recently Hunt introduced a new method for describing circuits in the Boyer-Moore

logic using list constants [11]. Several interpretation functions can be provided to give

a semantic meaning to the list constants. The semantics of the HDL developed in this

way are described using these interpretation functions. The obvious advantages of this

approach are

o a description which can be made to resemble a conventional HDL more closely;

o the possibility of having several interpretation functions which describe different

aspects of the design (behavior, timing, ...);

r the possibility to define transformations and prove them conect with respect to the

interpretation functions.

The main drawback of this approach is an increase in complexity of the correctness proofs.

In [11] it is mentioned that sequential circuits can not yet be modeled in the proposed

HDL, but this is probably just a matter of time.
In this paper we will describe a method which allows to hierarchical/g describe the

structure of combinatorial anil sequential parameterized designs d,i'rectly in the logic. The

description template is developed to have the feel of a traditional structure description

language such as the HILARICS language in use in IMEC. The method will make extensive

use of the LET construct which is available as syntactic sugar in the Boyer-Moore logic.

It will use association lists to assign names to inputs and registers of the cells being

described. The function describing the circuit will return an association list with the

value of the outputs and possibly new values for the registers.

39

The motivation for the development of this description style will be explained in the
next section. In section 3 we will discuss the implications this description style has for
the proofs of correctness with the theorem prover. Some conclusions are due in section 4.

2 Requirements for description and verification of
a module library

Our first attempts [5] at modeling the module library followed Hunt's first approach
closely. However, for the formal verification of a hierarchically constructed module library
this approach has some disadvantages: it cannot deal with a variable number of terminals
and it is impossible to describe sequential circuits hierarchically. Due to the mixture
of behavior and structure in the definitions, the descriptions are difficult to translate to
conventional HDLs such as HILÀRICS.

In the remaining of this section we will discuss these problems in more detail using
a simplified version of the multiplexor FBB (see figure 1) and the serial-parallel register
FBB (see figure 4) as an example. The simplified multiplexor nux has two parameters: the
word length nb and a flag nbus to choose between a configuration with two or three input
busses. A possible instance of the multiplexor is e.g. (mux 24 T) to create a multiplexor
which can select one out of 3 input busses which are all 24 bits wide. The simplified version
of the serial-parallel register spreg consists of a simple register and the multiplexor and
it has three operation modes: initialization, hold and shift-up. This simplified version of
spreg has only one parameter nb to indicate the word length of the operands.

2.L HILARICS, a conventional HDL
The description style we propose in this paper is intended to look familiar to hardware
designers and consequently to be easily translatable to a traditional HDL as HILÀRICS.
In this first subsection we wili therefore briefly discuss the major features of HILARICS
and indicate some of the main differences of the language compared to the Boyer-Moore
Iogic.

The language in use at IMEC for the structural description of parameterized modules
is HILARICS. TLis language ,-lescriLes struclule olly i.e. hierarchical colrrpositiorr and
interconnections of cells. A HILARICS description consists of four blocks:

1. A cell header definition containing the name of the cell, the parameters and their
type information.

2. An interface definition declaring the inputs and outputs of the cell together with
their type and possibly dimension.

3. A component definition block which declares the components being used and which
indicates of which cell they are an instance.

4. A connection definition block which indicates how the different components are
interconnected with each other and with the external terminals.

40

It is possible to use control constructs such as conditionals and for loops to describe the

interface, component and connection block or parts thereof. HILARICS allows for net

oriented as well as component oriented descriptions. Recursive descriptions are allowed

but can only be used in the net oriented description style. An important aspect of
HILARICS is that once a signal or terminal is declared to be of type bit vector, all references

to that signal must explicitly include the dimensions of the signal'

The description style used in Boyer-Moore descriptions of t'he FBBs can probably be

described best as recurs'iue and, component oriented. The main difrerence with a recur-

sive and component oriented HILARICS description becomes obvious in the description

of sequential circuits. Sequential circuits are modeled in Boyer-Moore logic by recursive

functions. The registers or state variables are included as formal parameters of the func-

tion and they are updated in every recursion step, In that way every recursion step of
the function corresponds to one clock tick of the global clock in the sequential circuit.
The registers have to be included as formal parameters because the Boyer-Moore logic is
purely functional and hence the only way to pass the next state value of the register to

the next invocation of the recursive function is through the function's formal parameters.

The register does not occur as a cell (function) in the body of the recursive function de-

scribing the sequential circuit. In HILARICS a register FBB is simply a block with input
terminals and output terminals, just as any other piece of hardware. When translating

the Boyer-Moore description of a sequential circuit to HILARICS the register block would

have to materialize out of thin air.
To give Boyer-Moore descriptions of ihe FBBs a more familiar look to hardware design-

ers and to make them easier to translate into HILARICS we'll have to meet the following

requirements:

o Separation of structural parameters' physical inputs and state variables.

o Facilities to describe FBBs with a variable number of physical input terminals (such

as the multiplexor) and state variables.

o Provide a way to describe a register as a function in t'he body of the recursive

functions describing sequential circuits.

o Hierarchical modeling of sequential circuits'

The first two points will be discussed in the next section and the two last points in
section 2.3.

2.2 Variable number of terminals

In the introduction we already mentioned that modules have parameters which control

the exact composition of the module. As a consequence the number of inputs and outputs

of a module may vary depending on the parameters. For example the multiplexor FBB

can have two or three input terminals depending on the value of the nbus flag. Due to
this parameterization it is not possible to describe these FBBs in the Boyer-Moore logic

by a function with a fixed number of inputs.

4l

The obvious solution to this problem is to use a list ofinputs. The successiveelements of
the list represent the different input terminals of the cell. When a FBB has a parameterized
number of inputs this will affect the length of the list inputs but it will not affect the
number of formal parameters of the function describing the cell. To access a specific
terminal of the cell one has to know the place of this terminal in the linear list inputs.
The actual names of the terminals can be assigned to the appropriate nest of CARs and
CDRs using the LET construct available as syntactic sugar in the Boyer-Moore system.
Inside the body of the definition the terminals can then be referenced by their names as

illustrated by the definit,ion of the multiplexor in 2.1.

(defn nux (nb nbus inputs)
(Iet ((cnux (cAR inputs))

(ita (CADR inputs))
(itb (CADDR inputs))
(itc (CADDDR inputs)))

(if (and (Nurnberp nb) (not (equa1 nb 0)) (Boolp nbus) (Iistp inputs))
(if (equa1 nb 1)

(if nbus
(BV (a-rnux3 (BVbit ita) (Bvbit itb) (BVbit itc)

(BVbit curux) (BVbit (BVvec croux)))
(BVniI))

(BV (a-mux2 (BVbit ita) (Bvbit itb) (BVbit cmux)) (BVnil)))
(if nbus

(BV (a-mux3 (BVbit ita) (Bvbit itb) (BVbit itc)
(BVbit cmux) (BVbit (BVvec cnux)))

(rnux (sub1 nb) nbus
(list cmux (BVvec ita) (BVvec itb) (Bvvec itc))))

(BV (a-mux2 (BVbit ita) (Bvbit itb) (BVbit cnux))
(mux (sub1 nb) nbus

(Iist cnux (BVvec ita) (Bvvec itb))))))
(Bvnil))))

In this definition, BV is the basic constructor for the bit vector data type. It is ax-
iomatized in the Boyer-Moore logic by an invocation of the shell principle as indicated in
definition 2.2.

tl

(add-shell BV BVnil BVp
((Bvbit (one-of truep falsep)
(BVvec (one-of BVp) BvniL)))

false)

The result of (BV abool abv) is a new bit vector consisting of the original bit vector
abv with the boolean abool appended in front of it. The invocation of the shell principle
also axiomatizes the destructor functions BVbit which returns the first bit of a bit vector
and BVvec which returns all but the first bit. F'urthermore a recognizer function BVp is
created. This function returns true on bit vector objects and false on all other objects.
Finally the BVnil function represents the bottom object of the bit vector shell.

42

cnuÍll cmulllmuÍ21

ita[]

itbtll

itb[21

orlll
ir4r1
itbtll
i.cÍ I I

cmuo

or[2]

ort3l

i|€ll2l
irb[21

itcÍ21

ital3]
itbt3l
itc[31

o

muo ita[21 cmuxl

i0

il

i0

il

i2

o

itat3l

irbt31

ita[41
ita[41

itbt4l
itc[41

(mux 4 F inFrts) (mu 4 T inputs)

Figure 1: The simplified version of the multiplexor

The functions a-rnux2 and a-mux3 model the basic multiplexor leaf cells with resp. 2

and 3 data inputs as can be seen in figure 1. The base case of definition 2.1 corresponds to

input busses of size 1. In that case only one leaf cell is placed and depending on the value

of nbus this will be a-:nux2 or a-:nux3. In the recursive case the output is constructed

with the BV function. The first bit is the output of the leaf cell applied to the first bits

of the input busses. The remainder of the bit vector is constructed by a recursive call to

nux with input busses which are now one bit smaller.

This kind of definition has a number of drawbacks:

1. To instantiate (call) the nux FBB one should be aware of the order in which the phys-

ical input terminals appear in the formal inputs list. In any conventional hardware

description language it is sufficient to remember the names of the terminals.

2. It is not evident fi'om the definition what the type is of the input terminals nor

under which condition certain terminals ale present in the FBB (e.g' when do we

have an j.tc terminal).

3. Ii is not clear what the name or type is of the output terminals.

4. When an output of a certain component is used more than once, this component

will occur twice in the description. This may pose problems when translating to

HILARICS because one cannot decide whether this double occurrence was intentional
or not. In addition components are not given names.

To solve problem 1 we will use an association lists for the inputs instead of a linear list.

The order of the terminals in this association list is of no importance since the terminals

irbt4l

rl
é
N

rl
c
N

N

':É
N

tD

x

rP

rl

rÈ
á

ó

43

can now be referenced in the body of the definition by their names. Since hardware
circuits can also have multiple output terminals, the functions describing the FBBs will
also return association lisis. We define this association list in Boyer-Moore logic in the
following way (assoc is a builtin function of the Boyer-Moore logic which performs the
same function as the Common LISP assoc function):

(defn n€t (terrnl terrn2 nets)
(cons (cons ternl terrn2) nets))

lzr

(defn tern (name nets)
(cDR (assoc nane nets)))

The function net adds a pair with terml as key and tern2 as value to the association
list nets which has the efect of making a connection from terrnl to tern2. Note that
in the Boyer-Moore descriptions there is always a sense of d,irection to the connections:
terrnl is the name of an input terminal or an external output terminal and tern2 has to
be the name of an output terminal or an external input terminal. The function têrn can
be used to access the output terminal nane from a component or to access an external
input name.

Problem 2 will be solved by providing an explicit type checking function for the FBB
which contains all the information concerning the parameters and input terminals of the
FBB. For the multiplexor this will be:

(defn nux-inp (nb nbus inputs)
(if (and (Nurnberp nb) (1essp 0 nb) ; nb is a positive, non-zêro integer

(Boo1p nbus) ; nbus is a Boolean
(J-istp inputs)) ; inputs is an (association) list

(and (BVtype (term 'ita inputs) nb)
(BVtype (tern 'itb inputs) nb)
(i f nbrrs

(and (BVtype (term 'itc inputs) nb)
(BVtype (terrn ,cnux inputs) 2))

(BVtype (tern 'cmux inputs) 1)))
F))

In this definition (BVtype abv anum) is a shorthand for establishing that abv is a bit
vector of size anum. In Bover-Moore terms:

(defn BVtype (abv anurn)
(and (BVp abv) (equal (BVsize abv) anurn)))

In definition 2.4 Lhe test of the conditional establishes the type of the structural param-
eters. If all of these parameters are of the correct type then the rnux-inp function returns
true when the conjunction in its then branch is true. This conjunction declares the type
of the physical input terminals: terminals ita and itb are bit vectors of size nb. If nbus
is true then itc is also a bit vector of size nb and the size of the cnux bit vector is 2. If

44

nbus is false there is no itc terminal and the size of the cnux bit vector is 1. If any of
the parameter - terminals combination in the actual function does not satisfies these type

restrictions then nux-inp returns false'

Problem 3 is solved by also using an association list for the outputs. In addition we will
prove a lemma stating what the iype of the outputs is. Obviously we can only prove this

lemma after we have defined the function describing the actual nux FBB, For the case of

the multiplexor this lemma looks like:

(prove-Ieuma rnux-outp o
(inplies (nux-inp nb nbus inPuts)

(Iet ((cp (rnux nb nbus inputs)))
(nvtype (tern 'ot cp) nb))))

The lemma tnux-outp states that the terminal ot of the mux FBB is a bit vector of size

nb under condition that the parameters and input terminals of the FBB meet their type

restrictions. This corresponds to the information concerning the output terminals which

can be found in the interface block of the HILARICS description.
Finally problem 4 can easily be solved by requiring that any component declaration is

assigned a name by means of the LET construct. If a certain component is intentionally
duplicated it will occur in two different LET statements.

All this results in the following definition for the multiplexor:

I 2.7
(defn nux (nb nbus inPuts)
(if (nux-inp nb nbus inputs)

(Iet ((Cpl (if nbus
(a-rnux3
(net 'i0 (BVbit (tern 'ita inPuts))
(net 'i1 (BVbit (term 'itb inPuts))
(net 'i2 (SVUit (tern 'itc inPuts))
(net 'cmuxl (BVbit (tern 'cnux inputs))
(net 'cnux6 (gVbit (gVvec (terrn ,cnux inputs))) O))))))

(a-mux2
(net 'i0 (BVbit (term 'ita inPuts))
(net 'il (BVbit (terrn 'itb inputs))
(net 'cmuxo (Bvbit (terrn 'crnux inputs)) O)))))))

(if (equa1 nb 1)
(net 'ot (gv (terra 'o cp1) (Bvni1)) O)
(let ((Cpr (rnux (sub1 nb) nbus

(net 'ita (BVvec (terrn 'ita inPuts))
(net 'itb (BVvec (tern 'itb inputs))
(net tcmux (terrn 'cnux inputs)
(if nbus

(net 'itc (BVvec (tern 'itc inputs)) O)
o)))))))

(net 'ot (BV (tern 'o Cpl) (tern 'ot cpr)) O))))
o))

45

For the definition of more complex structures than this simple multiplexor, more pow-
erful constructor and destructor functions than BV, BVbit and BVvec are required. These
functions can be defined in terms of the basic BV shell and its destructor functions and
v/e will come back to them in section 3 when we discuss the implications of the descrip-
tion style for the correctness proofs in the theorem prover. The mechanically generated
HILARICS description corresponding to this Boyer-Moore definition can be found in the
appendix.

2.3 Hierarchical description of sequential systerns

When describing sequential circuits in the Boyer-Moore logic as recursive functions oper-
ating on streams of values it is impossible to describe circuits hierarchically. To illustrate
this point we will make several alternative descriptions of some sequential circuits. For
the sake of clarity these functions will operate on natural numbers rather than bit vectors
and type checking will be reduced to a minimum. First we define a purely combinatorial
function hadder and a multiplexor nux.

(defn hadder (input) (addl input))

(defn nux (cnux inT inF) (if cmux inT inF))

The hadder function has only one input and always increments its input. The function
nux has a control line cmux which determines whether the inT or inF input is returned
at the output. We also define a conditional register regis as

(defn regis (input write reg)
(if (listp input)

(cons reg
(rêgis (cDR input)

(CDR writo)
(if (CAR irrite) (CAR input) reg)))

o))

The function regis is a simple sequential block where input is a list representing the
input value as it evolves over time, write is a list representing the value of the control line
as it evolves over time and reg is the current value of the register. The function returns
a list representing the output of the register as it varies over time. In each recursive call
the register reg is updated: if the current value of the control line (CAR write) is true
then the new value for reg is the current value of the external input, otherwise, we keep
the current contents of the register.

We will now describe a simple sequential circuit, sinple-seq, using the blocks we just
defined. Its structure is shown in figure 2 and its definition is given below:

46

write

input

Figure 2: A simple sequential circuit

6
F

áIt
o

t
á

I 2.10
(defn sirnple-seq (input write reg)
(if (listp input)

(cons (hadder reg)
(sinple-seq (CDR inPut)

(CDR srite)
(if (cAn i,rite) (hadder (CAR input)) reg)))

o))
In a true hieraichical description style one would like to describe sinple-seq without any

knowledge of the internal structure of regis. This is not possible given the definitions

used above. One has to be aware of the (conditional) next state function of regis to
correctly describe simple-seq. In addition it is not obvious from the above definition
what the exact structure of simple-seq is: the register does not occur as a component

in the body of sirnple-seq.
A first correction in the description style consists of describing sequential systems by

a function which takes a current value of the input, a current value of the register and

returns a current value of the output and a next value for the register. Actually this is

the way a sequential system is described in a register transfer language. This results in

the following definitions for regis and simple-seq:

| 2.11
(defn regis (input write reg)
(list reg (if write inPut reg)))

(defn sinple-seq (input write reg)
(cons (hadder (CAR (regis (hadder input) write reg)))

(CADR (rêgis (hadder inPut) write reg))))

In contrast to the previous definition 2.9 of regis this definition gives a "static" view

of the register. The formal parameters of the function are now natural numbers and not

lists of natural numbers as in definition 2.9. The function returns a list consisting of the

output value of the register (given by the current contents of the register reg) and a new

value for the register which is either the external input or the current state depending

on the control line write. In addition the internal structure of simple-seq is clear from

the body of the definition: the external output of sirnple-seq is connected to the output
of hadder which has as input the output of regis which in turn has the external input
lrrite and the output of the first hadder as inputs.

47

cmux

write

Figure 3: A sequential system with feedback

With this description style it is no longer necessary to open up the definition of regis
to describe the sirnple-seq function. It is sufficient to know (1) that the register is in
the block regis and (2) that the next state value is the CDR of the result of a sequential
function. Compared with the description of sinple-seqin 2.10 this new definition only
describes the behavior of the circuit from one clock cycle to the next clock cycle. Conse-
quently such a definition can only be used to reason about the correctness of the circuit
from one clock cycle to the next (just as in register transfer languages). If at any time it
is necessary to reason about the behavior of the circuit over more than one clock cycle a
function has to be defined which maps the simple-seq function of 2.11 on a list of inputs
while updating the registers appropriately. For a given sequential function seq, such a
function a/r'ays looks like

(defn seq-in-tirne (in-1 .. . in-n reg-1 . . . reg-n)
(if (and (Iistp in-1) ... (ristp in-m))

(Iet ((RT (seq (cAR in-l) ... (cAR in-m) reg-1 ... reg-n)))
(cons (CAR RT)

(ceq-in-time (CDn in-1) ... (CDn in-D)
(nth 1 (cDR Rr)) ... (nth n (cDR RT)))))

o))

input

loop

C
N

In the above template 2.L2 the function seq is called once in every recursion step with
as inputs the current value of the input terminals (CAR in-i) and the current contents
of the registers. In the recursive call the registers are updated appropriately by selecting
the correct next-state value from (COn nf).

The next example shows the description of a small system with feedback depicted in
figure 3. To describe this circuit in a purely functional language as the Boyer-Moore logic
one needs to cut the loop. Therefore we introduce an extra "state" in the circuit labeled
1oop.

48

t_w_
(defn feedback (input cnux ïrite loop reg)
(let ((cS (sinple-seq loop rrite reg)))
(f€t ((CH (roux cnux input (cAR CS))))

(Iist CM

(cons Cl{
(CADR (sinple-seq Ct'Í write reg)))))))

curr€nt output valu€
next-stat€ for 'loop
next-8tats for 'r€g

The function feedback returns a list of the current output value and of the new values

for the state variables. The output of the circuit consists of the multiplexor nux which

has one input connected to the sirnple-seq sequential block which in turn has as input
the virtual state loop. The next state for loop is simply the output of the circuit and the

next state for reg, the internal register of sirnple-seq, is obtained from the next-state of

sinple-seq but with as input the current output. The part of feedback dealing with the

output allows to determine the structure of the cell except for the input of sinple-seq.
This is a special case because it takes as input loop - a state variable - which has no

structural meaning. To find the actual connection for the input of sinple-seq one has

to look at the next-state function for loop and this turns out to be nux whose output is

indeed connected to sirnple-seq in the real circuit.
Using the template 2.12 we can construct the function sirnfeedback to observe the

behavior of this system in time.

(defn sinfeedback (inPut crnux ltrite loop reg)
(if (and (listp input) (listp cDux) (1istp nrite))

(1et ((RT (feedback (cAR input) (cAR cnux) (cAR slite) Ioop reg)))
(cons (cAR RT)

(sinfeedback (CDR input) (CDR cnux) (CDR erite)
(CAÀDR RT) (CDADR RT))))

o))

I z.tA

Using the builtin evaluation environment (r-loop) of the Boyer-Moore system one ob-

serves the following behavior:

I 2.15
*(sinfeedback (1ist 7 2 3 4 5 6 7 I 9)

(IiStFFFFTTTTF)
(IistFTFTFTFTF)
91 101)

,(102 102 104 104 5 6 7 I 10)

We will now apply all the above to the sequential serial-parallel register FBB. We will
also use an association list instead of a linear list to describe the registers. Therefore we

define the functions ns and reg in analogy with net and tern:

49

shifr

mode

ot

Figure 4: The structure of the serial-parallel register

(defn ns (reg1 reg2 states)
(cons (cons regl reg2) states))

(defn reg (nane states)
(CDR (assoc nane states)))

The theorem prover normalizes the body of a function before storing it in its data base.
The description style we have proposed above makes frequent ,,r" of lnr statements
and due to the parameterization of the FBBs deeply nested if-then-else constructs also
occur frequently. All this makes that, the theorem prover often spends a lot of time in
normalizing the body of the definition. we have experienced that splitting the output
and next state functions of the FBB speeds up the acceptance of the firnction considerably
and we therefore systematically use two functions to describe a sequential FBB: one has
extension -o and describes the output function, the other one has extension -NS and
dcscribcs the next state func.tit-rn.

The definition of the serial-parallel register of figure 4 then consists of three functions
in the Boyer-Moore logic. The first one is the traditional type prescription function for
parameters, inputs and internal registers. The second and third one describe the actual
structure.

50

| 2.17
(defn epreg-inP (nb inPuts Etatês)
(if (and (unrb"tp nb) (l"essp 0 nb) (listP inputs) (listp states))

(and (Boo1p (term 'init inPuts))
(BoolP (terrn 'shift inPuts))
(BVtYPe (term 'node inPuts) 2)
(Bvtype (reg 'r states) nb)
(uVtype (reg 'looP states) nb))

F))

| 2.18

(defn spreg-O (nb inPuts states)
(if (spreg-inP nb inPuts states)

(ret i(uutter (buffer nb (net 'cin (têrm 'init inputs) O))))
(1et ((mux (rnux nb T

(net 'ita (term 'ot buffer)
(net 'itb (reg 'looP states)
(net 'itc (BVappend (BVvec (reg 'loop statês))

(Bv (term 'shift inPuts) (Bvnit)))
(net 'cmux (term 'mode inputs) O)))))))

(1et ((regis-0 (regis-O nb
(net 'it (teru 'ot rnux) O)
(ns 'reg (reg 'r states) O))))

(net 'ot (term 'ot regis-0) O))))
o))

| 2.19

(defn spreg-NS (nb inPuts states)
(if (spreg-inP nb inPuts states)

(t"t i(untt"r (buffer nb (net 'cin (terrn 'init inputs) O))))
(1et ((nux (mux nb T

(net 'ita (tern 'ot buffer)
(net 'itb (reg 'looP states)
(net 'itc (BVappend (BVvec (reg 'loop states))

(BV (term 'shift inputs) (Bvnil)))
(net 'cmux (tern 'mode inputs) O)))))))

(1et ((regis-0 (regis-0 nb
(net 'it (têrn 'ot rnux) O)
(ns'reg (reg'r states) O)))

(regis-NS (regis-NS nb
(net 'it (tern 'ot nux) O)
(ns 'reg (reg 'r states) O))))

(ns 'r (reg 'reg regis-NS)
(ns '1oop (term 'ot regis-O) O)))))

o))

And again we can prove that the type of the output of spreg is a bit vector of size nb

as is stated in the lemma sPreg-outP.

5l

(prove-lenna spreg-outp o
(inplies (spreg-inp nb inputs states)

(let ((Cp-O (spreg-O nb inputs statee)))
(BVtype (t€rn 'ot (CAR Cp-O)) nb))))

The HILARICS description of this FBB is also included in the appendix.

3 Description and correctness proofs
In this section we will discuss the functions which are available for the description of the
FBBs and the implications of the description style for the correctness proofs of the FBBs.

The definitions for net, têrn, ns and reg are non-recursive and the theorem prover will
always open up these definitions. We do not want this because the correctness lemmas
of the FBBs, which have these functions in their body, would be made useless. Therefore
we disable these definitions. Of course this makes it impossible for the theorem prover to
findoutsomebasicfactsas (equal (tern ,ita (net ,itb B (net ,ita A O))) A).
We therefore prove the lemma tern-of -net which allows the theorem prover to reduce
nests of term and net calls.

(prove-lenrna têrm-of -net (rewrite)
(equal (tern nanel (net nane2 term norenets))

(if (equaI narnel name2) term (tern nanel norenets))))

This lemma will be applied repetitively on nests of term and net until a net call is found
with namel as its first argument. A similar lemma can be stated and proved for the ns
and reg definitions.

The basic data type used to describe the structure (and the behavior) of the FBBs is
axiomatized by an invocation of the shell principie as shown in 2.2. This provides us with
one constructor function BV and two destructor functions BVbit and BVvec. In order to
easily describc ltule cortrplex sLruclures, a number of more power{ul accessor functions has
been defined ofwhich the effect is illustrated in figure 5. Any application ofafunction from
figure 5 to a bit vector can be translated into IIILARICS. In some cases the translation tool
needs to determine the size of the bit vector to which the function is applied in order to
correctly describe the selection operation in HILARICS. For example (BVfirstn 4 abv)
corresponds to abv[size-4 .. 1] in HILARICS when the word length of abv is size.
The size of the bit vectors can usually be determined using the information found in the
type restriction function for the FBB.

The functions of figure 5 are divided in two groups. The first one contains BVbit,
BVvec, BVfirstn and BVnvec and we call it the MSB group because it starts with the
selection of bits at the most significant bit (MSB) side of the bit vector. The second group
contains BVlast, BVbutlast, BVlastn and BVnbutlast and is called the LSB group. of
course all these functions are ultimately defined (recursively) using the basic accessor and
constructor functions introduced rvith the shell principle. Functions in the LSB group are
mostly used to describe arithmetic functions or circuits such as adders. Functions of the

52

msb lsb

Ub"= EEEEEEEEE

(Bvbitabv)= EEnffiEftïA blïAd-'t17llf'?E] =(Bvlastabv)

(BVvecabv)= EEEEEEEEEI lSilï?ftfí?kftm =(BVbutrastabv)

(Bvfirsm3abv)= lllÏFl?lsfillrrril lerE"]-?r6|il;[iir2]ll =(BVrash3abv)

(Bvnvec3abv)= a-ilïErír4rjÏzril rem76rsEET2ril =(BVnbutlast3abv)

(BVsel62abv)= ItlTltIUl3lTlJItlJl

Figure 5: Access functions for the BV bit vector data type

MSB can be used to easily describe shifter structures. Any function in the LSB group

could be replaced by one oI more functions from the MSB group. The reason we keep

these (redundant) functions around is that they often make it easier to describe particular

structures.
The library of these functions and their properties is set up in such a way that the

theorem prover can apply its elimination and generalization heuristics as well to functions

from the MSB group as the LSB group. To achieve t'his all lemmas which are added

automatically for the functions BV, BVbit and BVvec by the invocation of the shell principle

are added and proved separately for BVappend, BVlast and BVbutlast'
when in a correctness proof functions of both the LSB and the MSB group are used

we choose to rewrite all these functions into functions of one particular group. Normally

when only functions of one group occur in proofs, we do not switch to functions in the

other group because the theorem prover can apply its heuristics equally well to both

groups."
A hnal note about the combination of the description style with the association lists and

the above mentioned bit vector library. The theorem prover only carries out elimination

of destructors on terms which are a first level function application. Therefore terms as

(Bvvec abv) where abv is a variable are amenable for destructor elimination. However

terms as (Byvec (tern ,it inputs)) will never be subject to destructor elimination

under the theorem prover's heuristics. The few cases where this would pose problems

have to be solved by proving lemmas which deal explicitly with those cases.

4 Conclusion

We have presented a modeling method for describing digital synchronous circuits directly

in the Boyer-Moore logic. This modeling method allows to hierarchicallg describe both

combinatÀrial and sequential functions. Some syntactic sugaring functions were defined

in the Boyer-Moore logic so that descriptions have the flavor of traditional hardware de-

scription iunguug"r. The translation of descriptions following this style into a traditional

hu.à*a." description language is relatively easy. This description style is being used to

53

model the Cathedral II & III module library. A program which implements the trans-
lation from the Boyer-Moore descriptions of the modules to the equivalent HILARICS
description is implemented.

In this modeling method, the LET statements and the net statements are still nested
and thus there are only limited possibilities to share common parts of the description.
Consequently the HILÀRICS code generated from these descriptions will be less compact
than hand-written code. This is mainly due to the fact that the Boyer-Moore descrip-
tions of the modules are component oriented whereas the HILARICS descriptions are net
oriented. With ihe net oriented style it is much more easy to share the control structure
of the description.

The functions defining the parameterized FBBs often have deeply nested if-then-else
trees to deal with all the structural configurations in which the FBBs can occur. In
combination with the sometimes complex type restriction function FBB-inp for the struc-
tural parameters and external inputs, this causes the generation of a large number of
cases which have to be dealt with by the theorem prover. For non recursive definitions
this combinatorial explosion can be kept in hand by some standard techniques described
in chapter 13 of [3]. For recursive definitions we still need to find ways of keeping the
explosion of cases under control.

References

[1] H.De Man, J.Rabaey, P.Six and L.Claesen, "Cathedral-Il: A Silicon Compiler for
Digital Signal Processing" , IEEE Design and TesÍ, December 1986, pp.13-25

[2] S. Note, W.Geurts, F.Catthoor and H.De man, "Cathedral-Ill: Architecture driven
high-level synthesis for high throughput DSP applications", Proc. 28th ACM/IEEE
Design Automation Conference, San Francisco CA, June 1991.

[3] R.Boyer, J.Moore, "A Computational Logic Handbook", Acailem'i,c Press Inc., lg88

[a] P.lle Worm, R.Severyns, -F-.Willems, "HILARICS-2 User's Manual, v2.0",Internal Re-
port IMEC, March 26, 1991

[5] D.Verkest, L.Claesen, H.De Man, "On the use of the Boyer-Moore theorem prover
for correctness proofs of parameterized hardware modules", in Forrnal VLSI Specifica-
tion and, Sgnthesis, Ed. L.Claesen, Elsevier Science Publishers (North Holland), 1990,

pp.99-1 16

[6] D.Verkest, L.Claesen, H.De Man, "Correctness proofs of parameterized hardware mod-
ules in the Cathedral-Il synthesis environment" , Proc. of European Design Automation
Conference, Glasgow, Scotland March 1990, pp. 62-66

[7] P.Six, L.Claesen, J,Rabaey, H.De Man, "An intelligent Module Generation Environ-
ment", Proceed,ings of the 29rd, Desi,gn Automation Conference, Las Vegas, June 1986,
pp.730-735

54

[8] D.Lanneeretal.,"Open-endedsystemforhigh-levelsynthesisofflexiblesignalprocee-
sorsn, Proc, European Design Automation Conference, Glasgow, Scotland, April 1990,
pp.272-276

[9] J.Vandenbergh, "Correct Library Development for High Level Application Oriented
Synthesis in the Cathedral Environment", accepted for presentation at IFIP Intema-
tional Workshop on Application Oriented Synthesis, Dresden, March 23 - 25, L992.

[10] W.Hunt, "FM8501: A Verified Microprocessor", Ph.D.Thesis, University of Texas at
Austin, 1985

[11] B.Brock, W.Hunt, "The Formalization of a Simple Hardware Desciption Language",
in Formal VLSI Speci.f.cation and Synthesis, Ed. L.Claesen, Elsevier Science Publishers
(North Holland), 1990, pp.83-98

55

Appendix: HILARICS description of multiplexor FBB

ceII nux (nb, nbus)

int nb;
(0,1) nbus;

if (nb < 1) nEssage("paramêtêr nb hae loser liroit 1\n");

input ita[nb..lJ;
input itb [nb. .1J ;

if (nbus) {
i.nput itclnb..lJ;
input ctoux [2 . . 1] ;

) elee {
input cnux[lJ;

)

output ot [nb. . 1] ;

end nux;

atructur€ of nrux

conponent {
if (nbus) {

cpl : a-nux3 O;
) else {

cpl : a-nux2 O;

(nb l= 1) {
cpr: rnux ((nb --), nbus);

connection {
if (nbus) {

italnb] : net cpt.i0;
itb[nb] : net cp1.il;
itc[nb] : net cp1.i2;
cnux[2] : net cp1.cnuxO;
cnux[1] : net cpl.cnuxl;

) else {
italnb] : nêt cpl.io;
itb[nb] : net cpl.i1;
cnux[l] : net cpl.crnuxO;

)
if (nb == 1) {

ot[nb] : net cpl.o;

)
if

)
)

56

) else {
ital(nb - 1)..1] : n€t cpr.ita[(nb - 1)..1];
itbl(nb - 1)..1] : nêt cpr.itb[(nb - 1)..1];
if (l nbug) {

cnux[l] : net cpr.cnuxhl;
)
if (nbus) {

cnux [2 . . 1] : net cpr. cnux [2. . lJ ;

)
if (nbus) {

itc[(nb - 1)..1] I nêt cPr.itc[(nb - 1)..1];
)
ot[nb] : nêt cpl.o;
otl(nb - 1)..1] : nêt cpr.ot[(nb - 1)''1];

)

ênd structure nux;

)

57

Appendix: HILARICS description of serial-parallel register FBB

cell apreg (nb)

int nb;

if (nb < 1) nessage("param€t€r nb haE loeer linit 1\n");

input init;
input shift;
input nodê[2. .1] ;

output otlnb. ,1J ;

ênd spreg;

atructur€ of epreg

conponênt {
buffer : buffer (nb);
tlur : rtrux (nb, 1) ;

regis : regis (nb);
]
signal {

toop [nb . . lJ ;
nux-4lnb. .1] ;

buffer-3[nb. .1] ;

)

connection {
init : net buffer,cin;
buffer-3[nb..1] : net nux.italnb..1], buffer.ot[nb..1] ;

toop lnb . . 1] : net rnux . itb lnb . . 1] ;

loop[(nb - 1)..1] : not mux.itc[nb..2]l
shift : net nux.itc[l];
node[2..1] : net nux.cnux[2..1];
roux-4[nb. . 1] : net regis. it [nb. . 1], nux. ot [nb. . 1] ;

ot lnb . . 1] : net regis-o , ot lnb . . 1] ;

loop [nb . . 1] : net regis-o . ot [nb. . 1] ;

)

end structurê spr€g;

