

VISUALIZING OUT-OF-SIGHT REGIONS-OF-INTEREST IN A 360 VIDEO USING SPATIAL PICTURE-IN-PICTURE PREVIEWS

Yung-Ta Lin, Yi-Chi Liao, Shan Yuan Teng, Yi-Ju Chung, Light Chan, Bing

http://www.dailymail.co.uk/sciencetech/article-3011279/F8-app-hints-key-Facebook-plans.html

"Wow, Italy is so beautiful!"

is the new trend for sharing f 🔰 🖗 < 🖉 🐶 🇱 📕

360 panoramic video

http://www.techspot.com/images2/news/bigir

~= experience

gimage/2015/03/2015-03-13-image-13.jpg

Limited FOV

For naturally visual experience, only fraction of world is visible

com/uploads/chor set/file/4089708/20150 ebook-360-video-hands-on-3.0.jpg In1.vox-

http://goo.gl/Q7VhTk

Out-of-sight ROIs

ROI

Invisible ROIs leads to search problems

Viewing Window

ROI

Pokèmon 360 - CATCH 'EM ALL in VR!

While watching 360 videos

Notivation WATCH'EM ALL!! ⇒ CATCH'EM ALL!!

ROI

Viewing Window

ROI

Pokèmon 360 - CATCH 'EM ALL in VR!

Related Work

EdgeRadar Halo CHI '07 Gustafson et al. CHI '03 Bausch et al. Arc > Arrow Dynamic targets

Wedge CHI '08 Gustafson et al. **Avoid Mutual Occlusion**

However, in 360 videos,

preview of ROI is crucially necessary

Mobile Devices

CHI '03 Bausch et al. CHI '07 Gustafson et al. CHI '08 Gustafson et al.

Multi-camera Surveillance

Spatial Multi-Video Player CHI '07 Girgensohn et al. **Spatial Alignment of Multiple Videos**

Contextualized Video VIS '07 Wang et al. Embed Videos with 3D Models

12

Multi-camera Surveillance

Spatial Multi-Video Player CHI '07 Girgensohn et al. **Spatial Alignment of Multiple Videos**

Videos on 3D planes proposed in Contexualized Video inspires the design of Outside-In

Contextualized Video VIS '07 Wang et al. Embed Videos with 3D Models

Navigating Panorama with Limited FOV

Expand a user's FOV

FlyVIZ VRST '12

Tell Me Where to Look CHI '16

SwiVRChair CHI '15

Shot Orientation Controls UIST '17

15

Navigating Panorama with Limited FOV

Expand a user's FOV

FlyVIZ VRST '12

SparseLightVR/AR CHI '16

Provide Hint to Target

Tell Me Where to Look CHI '16

SwiVRChair CHI '15

Shot Orientation Controls UIST '17

16

Navigating Panorama with Limited FOV

Expand a user's FOV

Limitation FlyVIZ VRST '12

Extra Hardware Limit User's Freedom Limited Applicable Scenarios

SparseLightVR/AR CHI '16

Tell Me Where to Look CHI '16

SwiVRChair CHI '15

Shot Orientation Controls UIST '17

Design

Notivation WATCH'EM ALL!! \Rightarrow CATCH'EM ALL!!

ROI

Viewing Window

ROI

Pokèmon 360 - CATCH 'EM ALL in VR!

Design Considerations

1. Minimizing the impact to the main content

2. Effectively guiding users to reach off-screen targets 3. Providing detailed information of off-screen content

1. Minimizing the impact to the main content

2. Effectively guiding users to reach off-screen targets

Spatial Guidance

Where are ROIs? #1 Direction #2 Distance

Turn left~ It's close to you actually!

https://goo.gl/oZKZZq

ROIs?

3. Providing detailed information of off-screen content

Picture-in-Picture Ro

Shot in UIST '16 Welcome Reception

In 360 videos, ROIs are different, and can even expire

We propose Outside-In

PIP as Directional Guidance PIP as Distance Guidance

[PIP as Directional Guidance] PIP as Distance Guidance

The rabbit is in the left

ROI Direction

In which direction should the user navigate to

How do we calculate the direction?

Taipei GPS Coordinates: Latitude: N 25° 1' 58.7'' Longitude: E 121° 33' 55.5''

格陵蘭 加拿大 North 美國 North Pacific Atlantic Ocean Ocean 墨西哥 THE SHORTEST, THE BEST? 玻利維亞、 地圖資料©2017 使用條款

Putting PIP on this path can guide viewers in the shortest path

Visual Cue

Instead

Longitude

Equirectangular Projection

Putting PIP on this path can guide viewers in the comfortable path

Outer Edge –

Inner Edge

Viewport Center

Outer Edge

Inner Edge

Viewport Center

PIP as Directional Guidance [PIP as Distance Guidance]

The rabbit is this away

ROI Distance

How many degrees should the user navigate to

How do we calculate the distance?

46

Longitude

Equirectangular Projection

47

How do we show the distance?

Perspective Projection

Herbert Bayer - ideas about the extended field of vision (1935)

We use **Tilt** to show the distance.

not tilt

The PIP tilts as the center of view approaches the off-screen ROI

It sounds perfect...

54

Limited space for PIPs

How do we resolve mutual occlusion?

When multiple off-screen ROIs come from same direction

User Study

Research Question

- Is Outside-In really helpful?
- Investigate the navigational behavior using Outside-In
 - in comparison to the traditional arrow guidance

64

360 Videos for Study

360 Videos for Study

66

360 Videos for Study

Type C. Concurrent multiple ROIs with static positions *Type D. Concurrent multiple ROIs with dynamic positions*

Type E. Concurrent multiple ROIs with dynamic & static positions

Type C. Pokémon Concurrent multiple ROIs with static positions

Type D. Help Concurrent multiple ROIs with dynamic positions

Interfaces in the Study

Outside-In

71

Participants & Apparatus

18 Users (8M/10F) iPhone 6s (4.7 inch)

Study Setting

72

Procedure

Q3. The awareness level of the storyline

Subjective Rating

likert scale 1 - 7

- **Q1.** The interference level of the interface
- Q2. The understanding level of the spatial relationship of ROIs
- Q4. The overall preference level of the interface

74

Estimated Marginal Means

Q1: Interference Level

7

75

Estimated Marginal Means

Q1: Interference Level

7

76

Estimated Marginal Means

Q2: Perceiving Spatial Relationship

77

Estimated Marginal Means

Q2: Perceiving Spatial Relationship

Estimated Marginal Means

Q3: Understanding Storyline

Estimated Marginal Means

Q3: Understanding Storyline

Estimated Marginal Means

Q4: Overall Preference

Estimated Marginal Means

Q4: Overall Preference

Q3. The awareness level of the storyline

Subjective Rating

likert scale 1 - 7

Q1. The interference level of the interface *Outside-In ~ Arrow*

Q2. The understanding level of the spatial relationship of ROIs *Outside-In* > *Arrow*

Outside-In > *Arrow*

Q4. The overall preference level of the interface *Outside-In* > *Arrow*

Qualitative Feedback

Using Arrow

Using Outside-In

606 quotes → coding → themes

Using Arrow

easier to search for interested targets

Using Arrow

easier to search for interested targets

not knowing what the arrows point to

easier to search for interested targets

not knowing what the arrows point to

distraction

easier to search for interested targets

not knowing what the arrows point to

distraction

l llsing

concentrate on the main screen more and waste less time looking around

making decisions about switching ROIs

concentrate on the main screen more and waste less time looking around

making decisions about switching ROIs

understand the spatial relationship between **characters**

concentrate on the main screen more and waste less time looking around

making decisions about switching ROIs

understand the spatial relationship between **characters**

concentrate on the main screen more and waste less time looking around

Using Outside-In

distraction

Conclusion:

in a 360 video

- 1. Traditional guidance is not enough
- 2. Especially when there are multiple ROIs
- 3. Even professional video need guidance

Applications

Application 360 Video Player on Touchscreen

Application Tele-Meet: Telepresence Interface

Discussion

Automatically Labeling ROIs?

Face Detection

Saliency

Suitable Video Types

Various using strategies

P12 - Follow the PIPs

P9 - Explore other parts

Inevitable Distraction

Conclusion
VISUALIZING OUT-OF-SIGHT REGIONS-OF-INTEREST IN A 360 VIDEO USING SPATIAL PICTURE-IN-PICTURE PREVIEWS

OUTSIDE

Contributions . We propose this novel visualization technique. 2. a user study shows it outperforms Arrow. 3. two applications are implemented.

Yung-Ta Lin, Yi-Chi Liao, Shan Yuan Teng, Yi-Ju Chung, Light Chan, Bing

