
Linux Kernel Network Subsystem

Chih-che Lin

04/10/2006

Course Material Information

http://www.csie.nctu.edu.tw/~jclin/nsd/
Mini Project Deadline
Final Examination
Final Project

Implementing a packet filtering mechanism

http://www.csie.nctu.edu.tw/~jclin/nsd/

Outline

General Concept
Operating System
Device
Networking

Linux Implementation
Socket Layer
Transport Layer
Network Layer
Device Layer

General Concept

Operating System Kernel

Role
Resource manager
service provider

Monolithic program vs. micro-kernel approach
Dynamic loadable kernel module

Component
Machine-independent
Machine-dependent

System Entry

Machine-independent Part (80%)
Basic kernel facility

Timer
Clock handling
Process management
Descriptor (file, socket, I/O, etc.) management

Memory-management support
Paging
Swapping

Generic system interface on descriptors
I/O (read/write)
Control (ioctl)
Multiplexing (select)

File system
Files
Directories

Machine-independent Part .1
Terminal Handling

Terminal interface driver (baud rate, cooked vs. raw mode, etc.)

Interprocess communication
Socket
Pipe
FIFO

Network communication
TCP/IP Protocol
Routing

Accounting
CPU and I/O usage

Machine-dependent (20%)

Low-level system startup actions

Trap and fault handling
Specific processor instructions
Specific Interrupt mechanism

Low-level manipulation of the run-time context of a process
Specific register set layout

Configuration and initialization of hardware devices

Run-Time support for I/O device
(open/read/write/close or send/receive)

User interface

system call
A system call is identified by system call number

Various specific system calls
sys_read(), sys_write(), etc.

Generic system call:
Ioctl()

Socket interface
Netlink socket (provided by Linux 2.6)

The global errno variable stores the status of the system call

System Entry

Hardware interrupt
Example: from a network interface card

Occurs asynchronously

May not relate to the context of currently running process

Have to do a context switching

Stack used
The kernel stack of some running process, or
A system-wide interrupt stack

Nested interrupt is allowed in Linux.

In 4BSD, can not sleep (where to save the context?) , must run to
completion

Hardware Exception And Trap

Example: divide by zero

May occur synchronously or asynchronously

Related to the current executing process

System call

May be blocked to wait for an event (e.g., disk I/O)

May be interrupted by a signal when blocking
Can be aborted and return an error, or
Can be restarted

Return from a system call
Check for a posted signal and execute its signal handler
Check for a higher priority process

Do a context switch if there is one
Later, return from the system call to the user process

Software interrupt
Called as softirq in Linux

Used by the system to force the scheduling of an event as soon as possible when
the priority is lowered

A high priority hardware interrupt creates a work of queue to be done at a lower
priority level

Triggered when the priority is dropped below the lower priority

Can be implemented as
Hardware-generated interrupt or
A flag checked whenever the priority level drops

Case study: The BSD and Linux network subsystem design
Advantage:

Absorb a burst of packets without losing any

Disadvantage:
At sustained high load, effective throughput drops considerably (receive livelock problem)

Clock interrupt

Hardclock
Triggered 100 or 1000 times per second
The HZ variable controlling the frequency (100 or 1000)
The jiffies variable storing the ticks since system booted. (In Linux)
A kind of Hardware interrupt
Performed at a high priority
should be simple and fast

Softclock
Issued when necessary
Implemented as software interrupt
Performed at a lower priority when returning from a hard clock
Can be longer and more complex
Used to provide timer functionality to user-level processes and other kernel
components
Example

TCP Timeout

Run-Time Organization

Top half
Bottom half

Top Half

Provide services to processes in response to system calls

Can be thought of as a library of routines shared by all processes

Execute in privileged execution mode

Run on per-process kernel stack

Has access to both kernel data structure and the context of user-
level processes

Top Half .1

Never preempted (single-threaded kernel)

May block and give up the processor voluntarily if must wait for an event

Multiple processes can thus be in the kernel simultaneously (one running, all
others sleep).

Execution may be interrupted by interrupts from the bottom half.

Can block interrupts from the bottom half by raising the processor priority to
ensure the consistency of the work queues and other data structures shared
between the top and bottom halves

work for only a single-processor system, does not work well for a multi-processor
system)

The protection of shared data in a multi-processor system is accomplished by
coherence protocols.

Bottom Half

Contain routines invoked to handle hardware interrupts

Run on kernel stack in kernel address space

Can not be blocked

Activities occurs asynchronously, software can not depend on
having a process running when an interrupt occurs

When there is no running process, the system is idle and the
kernel is executing an idle busy loop.

The state information of the process that initiated the activity is
not available

Communications Between The Half and
Bottom Halves

Work queue

Managed by software interrupt

Example:
A user process issues a READ system call.

The top half initializes an I/O operation and put the request descriptor to the
appropriate work queue.

The requesting process sleeps. (The issued system is blocked)

A hardware interrupt occurs reporting the completion of the READ operation.

wake up the requesting process. (The system call resume its execution and is going to
return.)

The requesting process resumes execution.

Shared Data Protection – Synchorization
Primitives

Per-CPU Variable
Atomic operation (need support of Processor
instruction)
Memory barrier
Spin lock
Semaphore
Local interrupt disabling
Local software interrupt disabling

Read-copy-update (RCU)

Get the pointer to the data structure that is to be read or written.

Call Rcu_read_lock() equivalent to Preempt_disable()
Rcu_read_unlock() equivalent to Preempt_enable()

Read operation is fast

Write operation:
Take a copy of the whole data structure first
Modify the copy of the data
Change the pointer of the old copy to the new one after finishing modification.

A reader thread is not allowed to sleep until it calls rcu_read_unlock().

RCU is introduced in Linux 2.6 and used in networking subsystem.

UNIX Kernel Properties
Re-entrant

Several processes may be in the kernel at the same time.

Only one can be running, all others must be blocked.

Non-preemptive
A system call has to run to completion, or block voluntarily, but not be preempted in the middle.

Can ensure data consistency

Time quantum may expire (not good for real-time applications)

For data consistency, still need to worry about three things

Blocking operation
Use locks to ensure data consistency across blocked system calls

Interrupts
Raise priority level to block interrupts temporarily

Multiprocessor
Two processes may execute in the kernel mode on different processors
Must use locks everywhere and anytime

resolved by coherence protocol
Performance may degrade substantially

Device Driver

Driver Task

Used to control a device

Know the details of a device

Provide a uniform interface to the kernel and
users to control the device

Three Main Components

Auto-configuration and initialization routines

Routine for servicing I/O requests (the top
half)

Interrupt service routine (ISR) (the bottom
half)

Auto-configuration and Initialization
Routines

Probing the existence of a controller or a
device

If found, attach the controller/device by:
Allocating resources for it

Initialize the data structures

Routine for servicing I/O Requests -- The
Top Half

Invoked by system calls (e.g., read and write)
or the virtual memory system
Execute synchronously in the calling
process’s context
Is permitted to block by calling sleep()

Main entry points -- Character Device

Open()
Make sure that the device is found during the auto-configuration phase
Make sure the media is present right now (for removable media such as
floppy disk, CD-ROM, etc.)
May reset or bring the device on-line (power saving mode)
If the device can not be shared by multiple users, set an exclusive flag
(e.g., a printer)

Read()
Read data from the device

Write()
Write data to the device

Ioctl()
Do an operation other than read or write
E.g., get or set a device’s control parameters

Main entry points -- Character Device .1

Poll() (in BSD: Select())
Check the device to see whether there are data available
for reading, or space available for writing (e.g., socket-
related system calls such as sendto() and recvfrom()).
Used by the select, poll, epoll system call
Meaningless for a raw device because it is always true
(e.g., a hard disk)

Release() (in BSD: Close())
Called after the final users interested in the device
terminates
The exclusive flag should be cleared.

Main entry points -- Block Device

Media_changed()
Checking whether the removable media has been
changed. (e.g. a floopy disk)

Revalidate_disk():
Checking whether the block device holds valid
data().

Strategy() Routine (FreeBSD Version)

Called by the file system bread() or bwrite(), not
directly called by the users
Do the work in “I/O request queue”
So named because requests in the queue may be
scheduled strategically to improve the I/O
performance
Disksort() uses two queues to implement the
elevator scheduling algorithm

Strategy() Routine (Linux Version)

Work on a request_queue structure and a bio discriptor.

Invoked by the request_fn function pointer in the request_queue
structure.

The initialization of a request_queue is accomplished by
blk_init_queue().

The strategy() routine performs and optimizes IO operations
based on the feature of the device.

e.g.
scsi_request_fn() for scsi devices
Scatter-gather DMA mode

IO Scheduler in Linux

The optimization for read/write requests to a disk is
performed by IO Scheduler (elevator).

Four types of elevators in Linux
No operation (NOOP)
Complete Fairness Queuing (CFQ)
Deadline
Anticipatory (AS)

The functions of an elevator is invoked via the
make_request_fn function pointer in the
request_queue structure.

Networking

Socket Interface

A socket is an endpoint of a communication channel.

Properties of a communication channel:
In-order delivery of data?
Unduplicated delivery of data?
Reliable delivery of data?
Preserve message boundary?
Support for out-of-band data?
Connection-oriented or connectionless?

Socket System Call

Socket (int domain, int type, int protocol)

Used to create a socket

Commonly used domains:
AF_UNIX
AF_INET
AF_ROUTE (in FreeBSD)
AF_NETLINK (in Linux 2.6)

Netlink is a new interface for communication
between user-level program and kernel.

Commonly Used Types:

Datagram
Unreliable, connectionless, preserve message boundary

Stream
Reliable, connection-based, in-sequence delivery, byte stream

Sequenced packet
Reliable, unduplicated, sequenced, preserve message boundary
This type is seldom used.

User applications prefer to achieve the service on top of UDP on their own.

Raw socket
Used by some privileged programs such as “ping” and “route”.

Route
o s=socket(AF_ROUTE, SOCK_RAW, 0)
o Used to manipulate the routing table

Ping
o s = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP);
o Can build (forge!) your own IP header for a packet.

Protocol Field

Valid protocol identifiers are defined in the
/etc/protocols file.

If protocol is specified as 0, the system will
choose an appropriate one.

Datagram: UDP
Stream: TCP

Bind System Call
Bind (int socket, const struct sockaddr *address, size_t address_len)

Give a name (address) to a socket

The address includes:
An IP address such as 140.113.17.1.
A port number such as 80.

Usually needed only for a server.
A server need not specify an IP address number when binding its socket.

The system will accept all arriving packets for the server.

The server may not know the IP address(es) of the host.

If a host has multiple IP addresses and the server binds its socket to a particular IP address,
the system will accept only those packets with the particular IP address as their destination
addresses.

A server must choose a port to bind so that the system can deliver a client packets to it
correctly.

Bind System Call .1

Usually not needed for a client
A client need not call bind() at all.

A client need not know its own IP address and port
number.

One host IP address and a random port number are
chosen for the client socket.
The server uses these address information in a client’s
packet to send back its reply.

Of course, a client must know the IP address and port
number of the server.

Listen System Call

listen(int s, int backlog)
Sys_listen() is finally handled by tcp_listen_start()

Express the willingness to start accepting incoming
connection requests.

Used by a server
A listening socket has two queues:

Partially-established request queue
Hold the requests whose TCP 3-way handshaking have not
finished yet.

Fully-established request queue
Hold the requests whose TCP 3-way handshaking have finished.

Listen System Call .1

A request will first stay in the partially-established queue and
then be moved to the fully-established queue when it becomes
ready.
Backlog specifies the maximum number of complete requests in
the fully-established queue.

Why setting an upper bound?
Avoid two kinds of attack:

An attacker can keep sending connection requests to exhaust
the system’s memory.
Also, a connection lookup operation will become slower and
slower when the queue length becomes larger and larger.

Why not setting backlog to a small number such as 1?
When a burst of connection requests come in, many of them will be
unnecessarily dropped

Listen System Call .2
The partially-established queue is the source of TCP denial-of-
service attack

If there is an upper bound on the partially-established queue:
TCP connection setup needs 3-way handshaking.

The attacker can issue numerous connection requests. For each
connection request, the attacker just sends the first SYN packet, then
stop sending the other 2 packets.

The partially-established queue will be full of incomplete TCP
connection requests.

When the number of partially-established requests exceeds the
upper bound, no more TCP connection will be accepted.

All incoming requests are dropped, including those initiated by good
users.

Listen System Call .3

If there is no upper bound on the partially-established queue:
The number of requests in the partially-established queue will keep growing.

Eventually all of the system’s memory will be exhausted.

One approach to mitigate the problem:
Shorten the TCP 3-way handshaking timeout from 30 seconds to a shorter
time such as 3 second

Reduce the number of requests in the partially-established queue from 30 (second)
* attack_rate (SYN/second) to 3 * attack_rate.
Problem solved?
No! Why does not an attacker use a higher SYN rate?

So, let’s further reduce the timeout from 3 to 1 second, or even 0.1 second.
The same problem is still there.
Worse yet! All normal wide-area TCP connection requests will be rejected because
their RTT is larger than 0.1 second.

Listen System Call .4

Linux 2.6 uses a hash table to store the SYN
requests

fast searching
Alleviating the search overhead when network
load is high

The accept queue is a linked list
a fully-established queue need not be searched
quickly.

Accept System Call

accept(int s, struct sockaddr *addr, int *addrlen)

Take the first complete connection request from the
request queue and return a new socket.
The listening socket is still used for accepting future
incoming requests.
The address of the client that made the connection
request is also returned.

The server then has a chance to decide whether to serve
the client’s request or not.

Connect System Call

connect(int socket, const struct sockaddr
*address, size_t address_len)

Used by a client to initiate a point-to-point
connection to a server.
Even if a socket is a datagram socket, it can still
use connect() to fix the server’s address.

Future sendto() calls then do not need to provide the
server address any more.

Sendto and Send System Calls

sendto(int s, const void *msg, size_t len, int
flags, const struct sockaddr *to, int tolen)

Send a packet to the specified receiver.
The socket is a datagram (connectionless) socket.

send(int s, const void *msg, size_t len, int
flags)

Send some number of bytes to the receiver
The peer address has been bound in connect().

Recvfrom and Recv System Calls

recvfrom(int s, void *buf, size_t len, int flags,
struct sockaddr *from, int *fromlen)

Receive a datagram packet. The packet sender’s
address is returned.
fromlen must be initialized to the size of struct
sockaddr, otherwise “from” will not be filled in with
the sender’s address correctly!

recv(int s, void *buf, size_t len, int flags)
Receive some number of bytes

Manipulate Socket Options

getsockopt(int s, int level, int optname, void *optval,
int *optlen)

Check the value of the socket option
Level can be TCP, IP, interface, etc.

setsockopt(int s, int level, int optname, const void
*optval, int optlen)

Set the value of a socket option.
Example:

Set the size of a socket’s receive buffer
setsockopt(s, SOL_SOCKET, SO_RCVBUF, &bufsize,
sizeof(bufsize))

A Socket Has a Send and a Receive Buffer

Send buffer:
If the network interface is slow in sending data and the
application program sends data too fast, data will be
queued in the send buffer.
When the send buffer is full, the application program
cannot send any more data to the socket.
The send buffer is only used for a stream (TCP) socket.
The send buffer is not used for a datagram (UDP) socket.
UDP packets go all the way to the network interface. They
may be dropped at the network interface.

A Socket Has a Send and a Receive Buffer
.1

Receive buffer
If the network interface is fast in receiving data
and the application program receives data too
slowly, data will be queued in the receive buffer.
When the receive buffer is full, TCP data will no
longer come in. However, UDP data may keep
coming in and get lost.

A TCP connection’s maximum possible throughput
is limited by the minimum of the sender’s socket
send buffer size and the receiver’s socket receive
buffer size.

The socket receive buffer size physically limits a TCP
connection’s maximum window size.

Do not want to overflow the receiver’s receive buffer
The socket send buffer size effectively limits a TCP
connection’s maximum number of outstanding bytes per its
RTT.

Do not want to overflow the sender’s send buffer.
Although the two reasons are different, their effects are the
same!

Network Flow Overview

Sending Side:

Data sent through a TCP socket will be queued in the socket send
buffer first.

Compared to UDP:
Data sent through a UDP socket will go all the way down to the network interface.
The socket send buffer will not be used.

So, the UDP socket send buffer will never overflow.
Instead, the network interface’s output queue may overflow. A UDP packet may be
dropped at the interface.

The returned value of write() or sendto() will be -1 to immediately tell you about
this.

Why?
Unlike UDP, TCP implements flow control.

Data to be sent thus may need a place to wait for its turn.
Unlike UDP, TCP provides a reliable delivery service.

Sent data may get lost, corrupted in a network. In this case, they need to be resent.
So even if a piece of data has been sent to the network, it still cannot be
removed from the socket send buffer.
Only when the corresponding ACK has been received, will the sent data be
removed.

When the socket buffer is already full, the sending process is put to
sleep.

A write(socket, buf, n) system call may not always copy N bytes to the send
buffer.

You better check the returned value!
So data will not be dropped in a TCP socket send buffer.

However, data may still get dropped at the network interface.
Some reasons:

When a TCP connection’s throughput exceeds the link speed
Common when a 56 Kbps modem is used
Uncommon when a 100 Mbps Fast Ethernet is used.

When a TCP connection’s slow start generates a long burst of packets
May happen

When there are many TCP connections on the system and their aggregate output
throughput exceeds the link’s speed

Common on a busy web server

When a TCP packet is dropped at the network interface, tcp_quench() will be
called to reduce the TCP window size to only one packet.

When some data is removed from the send
buffer, the sleeping process will be waked up.

So that it can continue to dump more data to the
socket.
To avoid waking up the process too frequently
and unnecessarily, a low watermark is used.

Do not wake up the process if only a few bytes of buffer
space become available.
Wakeup the process only when the buffer occupancy
drops below the low watermark.

Linux Networking
Implementation

Processing Flow Overview

Fundamental Data Structure – sk_buff

Defined in <include/linux/skbuff.h>

Changed, reorganized, and expanded with new
fields version by version

Four categories of its fields
Layout
Socket Information
General purpose
Network feature specific
Management function

Layout Field
Sk_buff_head

Global variable as the list head
Qlen denotes the number of sk_buff instances
Lock guarantees that only no users can access the list
simultaneously.

List maintenance fields
next
prev
list

Socket Information – “struct sock”
Field in sk_buff: struct sock* sk

a pointer to a sock data structure of the socket that owns this
buffer.

The control block for a socket

A huge data structure

needed when data is either locally generated or being received
by a local process

User data and socket-related information is used by L4 (TCP or
UDP) and by the user application.
Points to NULL if the sk_buff contains a forwarded pkt. (neither
the source nor the destination is on the local machine)

The “proto” Structure in “sock”
Stores function pointers used by various socket operations

Provides the entry points from socket layer to next layers

Important fields
close
bind
connect
disconnect
accept
ioctl
init
setsockopt
getsockopt
sendmsg
recvmsg
backlog_rcv

Socket Buffer Layer

unsigned char *head
unsigned char *end
unsigned char *data
unsigned char *tail

Headroom reserved for pre-
pending headers of lower
layers

Tailroom reserved for error-
checking redundancy data

The Header-related Fields
union {

struct tcphdr *th;
struct udphdr *uh;
struct icmphdr *icmph;
struct igmphdr *igmph;
struct iphdr *ipiph;
struct ipv6hdr *ipv6h;
unsigned char *raw;

} h;

union {
struct iphdr *iph;
struct ipv6hdr *ipv6h;
struct arphdr *arph;
unsigned char *raw;

} nh;

union {
unsigned char *raw;

} mac;

Header Stripping

Carried out by only manipulating pointers.
Efficient than copying a header-stripped packet.

General Purpose Field
Timestamp

Network Device Structure
dev, input dev, real dev

Routing

Header Descriptor

Checksum

Share flag
Indicate if this sk_buff is a clone of another one or not.

Packet Type

Priority

Protocol security

The Field for Routing

Field: struct dst_entry dst
Used by routing subsystem
Determines the next-hop of the packet contained
in this socket buffer

Discussed later

The Control Block Field

Field: char cb[40]
Used to store private data needed by each layer
Example:

TCP use the cb field to store the seq number of a pacaket.

struct tcp_skb_cb {
...
_ _u32 seq; /* Starting sequence number */
_ _u32 end_seq; /* SEQ + FIN + SYN + datalen*/
_ _u32 when; /* used to compute rtt's */
_ _u8 flags;
/* TCP header flags. */
...

};

The Checksum Related Field

Fields: skb->csum and skb->ip_summed

Different meanings depending on whether skb points to a received packet or to
an outgoing packet

When a packet is received:

The skb->csum field may hold its L4 checksum.

The skb->ip_summed field keeps track of the status of the L4 checksum.
Required by interacting with NIC
Possible value

CHECKSUM_NONE
invalid checksum, need to recompute it at L4

CHECKSUM_HW
NIC’s computed partial checksum, L4 needs to add the checksum of the pseudo-header

CHECKSUM_UNNECESSARY
NIC has done all checksum checking, including pseudo-header

The Checksum Related Field .1

When a packet is to be transmitted:
csum represents an offset.

used only if the checksum is calculated in hardware.
not stores the checksum itself
describes the place inside the buffer where the hardware
card has to put the checksum it will compute

The proactive protection on pseudo-header may
make checksum checking failed.

For example, NAT manipulates the fields of the IP header
used by the L4 layer to compute the so-called checksum on
the pseudo-header would invalidate that data structure

The Packet Type Field
PACKET_HOST

The destination address of the received frame is that of the receiving interface
That is, the packet has reached its destination.

PACKET_MULTICAST
The destination address of the received frame is one of the multicast addresses to which the interface is registered.

PACKET_BROADCAST
The destination address of the received frame is the broadcast address of the receiving interface.

PACKET_OTHERHOST
The destination address of the received frame does not belong to the ones associated with the interface (unicast,
multicast, and broadcast); thus, the frame will have to be forwarded if forwarding is enabled, and dropped otherwise.

PACKET_OUTGOING
The packet is being sent out

PACKET_LOOPBACK
The packet is being sent out to the loopback device.
Thanks to this flag, when dealing with the loopback device, the kernel can skip some operations needed for real
devices.

PACKET_FASTROUTE
The packet is being routed using the Fastroute feature. Fastroute support is not available anymore in 2.6 kernels.

The Priority Field

indicates the QOS class of a packet being transmitted
or forwarded.

If the packet is generated locally, the socket layer
defines the priority value.

If the packet is being forwarded, the function
rt_tos2priority (called from the ip_forward function)
defines the value of the field according to the value of
the TOS field in the IP header.

DiffServ dose not use this field.

Protocol

Used by L2 to know which L3 protocol should
handle this packet

Typically, IP, IPv6, and ARP

A complete list is available in include/linux/if_ether.h.

Driver calls netif_rx to invoke the handler for the
upper network layer indicated by this field

Feature Specific Field

A variety of specific fields dedicated for
particular features.

Netfilter
Bridge
Traffic Control
IP Sec

Commonly Used Function
For “sk_buff”

sk_put and sk_push

Sk_pull and sk_reserve

An Example of sk_reserve

When driver receives a packet, it reserves 2 bytes
with sk_reserve() to make IP header is stored with
an alignment of 16-byte boundary.

Case Study 1 – The Processing
For Transmitting A Packet

Socket Buffer Usage

An Example of Sending Data

(1) send() sys_send() sys_sendto()
(2) sys_sendmsg():

copy data from user-space to a kernel buffer.

(3) sock_sendmsg() __sock_sendmsg()
(4) sock->ops->sendmsg()
(5) tcp_sendmsg() tcp_push()

(6) tcp_push_pending_frames()
(7) __tcp_push_pending_frames
(8) tcp_write_xmit()

Write a packet to the network layer

(9) tcp_cwnd_validate()
congestion control validation

The tcp_write_xmit() Function
Check tcp_state of the given sock structure sk:
If sk->sk_state != TCP_CLOSE, then

while ((there is a valid socket buffer) and (tcp_snd_test() returns
true) {

1. if (skb->len > mss_len) call tcp_fragment() to fragment user-level
data.
2. call tcp_transmit_skb() to send a packet down to the network layer.

If an error occurs, break
3. call update_send_head() to update the head of send buffer.

}

Call tcp_cwnd_validate() to check the status of the
congestion window.

The tcp_transmit_skb() function

1. add TCP header for a packet
2. Update some fields for congestion control
mechanism and manipulate related timers.

call tcp_event_ack_sent() if the packet is an ACK packet.
call tcp_event_data_sent() if the packet is an DATA packet.

3. Call tp->af_specific->queue_xmit(skb) to indirectly
invoke ip_queue_xmit()

Tp is a pointer of struct tcp_sock
Af_specific is pointer to struct tcp_func

TCP Checksum

TCP/UDP and IP checksum routines are defined in include/asm-
xxx/checksum.h
TCP still computes checksum for pseudo-header.

Source IP address
Destination IP address
TCP protocol identifier in IP header
IP payload length

Checksum routines used by TCP
(1) tcp_v4_send_check()
(2) tcp_v4_check(csum_partial(th))
(3) csum_tcpudp_magic()
(4) csum_fold(csum_tcpudp_nofold())

Example -- tcp_v4_send_check
/* This routine computes an IPv4 TCP checksum. */
void tcp_v4_send_check(struct sock *sk, struct tcphdr *th, int len,

struct sk_buff *skb)
{

struct inet_sock *inet = inet_sk(sk);

if (skb->ip_summed == CHECKSUM_HW) {
th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
skb->csum = offsetof(struct tcphdr, check);

} else {
th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,

csum_partial((char *)th, th->doff << 2,skb->csum));
}

}

csum_partial is an assembly function that computes the checksum for a given
memory region, e.g., a TCP header.

Csum_fold and Csum_tcpudp_nofold
static inline unsigned int csum_fold(unsigned int sum)
{

__asm__(
"addl %1, %0 ;\n"
"adcl $0xffff, %0 ;\n"
: "=r" (sum)
: "r" (sum << 16), "0" (sum & 0xffff0000)

);
return (~sum) >> 16;

}

static inline unsigned long csum_tcpudp_nofold
(unsigned long saddr, unsigned long daddr, unsigned short len, unsigned short proto, unsigned int sum) {

__asm__(
"addl %1, %0 ;\n"
"adcl %2, %0 ;\n"
"adcl %3, %0 ;\n"
"adcl $0, %0 ;\n"
: "=r" (sum)
: "g" (daddr), "g"(saddr), "g"((ntohs(len)<<16)+proto*256), "0"(sum));

return sum;

}

The Struct tcp_func Structure

struct tcp_func ipv4_specific = {

.queue_xmit = ip_queue_xmit,

.send_check = tcp_v4_send_check,

.rebuild_header = tcp_v4_rebuild_header,

.conn_request = tcp_v4_conn_request,

.syn_recv_sock = tcp_v4_syn_recv_sock,

.remember_stamp = tcp_v4_remember_stamp,

.net_header_len = sizeof(struct iphdr),

.setsockopt = ip_setsockopt,

.getsockopt = ip_getsockopt,

.addr2sockaddr = v4_addr2sockaddr,

.sockaddr_len = sizeof(struct sockaddr_in),

};

http://lxr.linux.no/ident?i=tcp_func
http://lxr.linux.no/ident?i=ipv4_specific
http://lxr.linux.no/ident?i=ip_queue_xmit
http://lxr.linux.no/ident?i=tcp_v4_send_check
http://lxr.linux.no/ident?i=tcp_v4_rebuild_header
http://lxr.linux.no/ident?i=tcp_v4_conn_request
http://lxr.linux.no/ident?i=tcp_v4_syn_recv_sock
http://lxr.linux.no/ident?i=tcp_v4_remember_stamp
http://lxr.linux.no/ident?i=iphdr
http://lxr.linux.no/ident?i=ip_setsockopt
http://lxr.linux.no/ident?i=ip_getsockopt
http://lxr.linux.no/ident?i=v4_addr2sockaddr
http://lxr.linux.no/ident?i=sockaddr_in

TCP Vegas

31%~71% better throughputs and 20%~50%
less losses compared against to TCP Reno.
used by Linux

TCP Reno is used by BSD 4.4
Features

New retransmission mechanism
New congestion avoidance algorithm
Modified slow start algorithm

The Retransmission Mechanism in TCP
Vegas

In TCP Reno:

RTT and mean variance estimates are computed using a coarse-grained
timer (around 500ms).

The RTT estimate is not very accurate.

This granularity influence also how often TCP checks to see if it should
timeout on a segment.

An average of 1100ms from the time it sent a segment that was lost, until it
timed out and resent the segment, whereas less that 300ms would have
been the correct timeout interval had a more accurate clock been used.

TCP Vegas then fixes this problem using a finer coarse-grained timer.

The Retransmission Mechanism in TCP
Vegas .1

extended retransmission mechanism:
the system clock is read and recorded each
time a segment is sent;
when an ACK arrives, the clock is read again
and the RTT calculation is done using this
time and the timestamp recorded for the
relevant segment.
Using this more accurate RTT,
retransmission is decided as follows:

The Retransmission Mechanism in TCP
Vegas .2

a.- When a duplicated ACK is received, Vegas
checks to see if:

the new RTT (current time - timestamp recorded) is greater
than RTO.

If it's, Vegas retransmits the segment without having to wait
for the third duplicated ACK.

In many cases third duplicated ACK is never
received, and therefore, Reno would have to rely on
the coarse-grained timeout to catch the loss.

The Retransmission Mechanism in TCP
Vegas .3

b.- When a non-duplicated ACK is received:
if it is the first or second one after a retransmission, Vegas
checks again to see if RTT > RTO;
if so, then the segment is retransmitted.

This will catch any other segment that may have lost previous to
the retransmission without having to wait for a duplicated ACK.

In other words, Vegas treats the receipt of certain ACKs as a
trigger to check if a timeout should happen;

but still contains Reno's coarse-grained timeout code in case
these mechanism fail to recognize a lost segment.

The Retransmission Mechanism in TCP
Vegas .4

Finally, in Reno, it is possible to decrease the congestion window
more than once for losses occurring during one RTT interval.

In contrast, Vegas only decreases the congestion window if a
retransmitted segment was sent after the last decrease.

Any losses that happened before the last decrease are ignore,
and therefore, do not imply that it should be decreased again.

This change is needed because Vegas detects losses much
sooner than Reno.

The Congestion Avoidance Algorithm in
TCP Vegas

Reno's congestion detection uses the loss of
segments as a signal of congestion.

It has no mechanism to detect the incipient stages
of congestion - before losses occur - so they can be
prevented.

Reno is reactive, rather than proactive, in this
respect.

Reno needs to create losses to find the available
bandwidth of the connection.

The Congestion Avoidance Algorithm in
TCP Vegas .1

Vegas implementation uses the idea to measure and control the
amount of extra data that a connection has in transit,

extra data means data that would not have been sent if the
bandwidth used by the connection exactly matches that available
bandwidth of the link.

Vegas's goal is to maintain the "right" amount of extra data in the
network.

if a connection is sending too much extra data, it will cause
congestion;

if it's sending too little extra data, it cannot respond rapidly
enough to transient increase in the available bandwidth.

The Congestion Avoidance Algorithm in
TCP Vegas .2

Define a given connection's BaseRTT to be the RTT of a segment when the
connection is not congested;
in practice it sets BaseRTT to the minimum of all measured RTTs;
it is commonly the RTT of the first segment sent by the connection, before the
router queues increase due to traffic generated by this connection.
If we asume we are not overflowing the connection, the expected throughput
is given by:

Expected = WndowSize / BaseRTT, where WindowSize is the size of the current
congestion window, which we assume to be equal to the number of bytes
outstanding.

Calculate the current Actual sending rate recording how many bytes are
transmitted between the time that a segment is sent and its ack is received
and its RTT, and dividing the number of bytes transmitted by the sample RTT.
This calculation is done once per round-trip time.

The Congestion Avoidance Algorithm in
TCP Vegas .3

Then compare Actual to Expected and adjust the window accordingly.

Let Diff = Expected - Actual.

Diff is positive or zero by definition, since Actual > Expected implies that we
have to change BaseRTT to the latest sample RTT.

Define two thresholds a and b, such that, a < b, roughly corresponding to having
too little and too much extra data in the network, respectively.

When Diff < a, Vegas increases the congestion window linearly during the next
RTT
when Diff > b, Vegas decrease the congestion window linearly during the next
RTT.

The congestion window is left unchanged when a < Diff < b.

The overall goal is to keep between a and b extrabytes in the network

The Modified Slow Start Algorithm in
TCP Vegas

Reno's slow-start mechanism is very expensive in terms of losses

Double the size of the congestion window every RTT while there are no losses
equivalent to doubling the attempted throughput every RTT

when it finally overruns the connection bandwidth, we can expect losses in the order of half the
current congestion window, more if we encounter a burst from another connection.

Vegas tries to find a connection's available bandwidth that does not incur this kind of loss.
Toward this end, the congestion detection mechanism is incorporated into slow-start with
only minor modifications.

To be able to detect and avoid congestion during slow-start, Vegas allows exponential
growth only every other RTT.
In between, the congestion window stays fixed
a valid comparison of the expected and actual rates can be made.

When the actual rate falls below the expected rate by a certain amount - the γ threshold -
Vegas changes from slow-start mode to linear increase/decrease mode.

IP Layer

Sending Flow

The ip_queue_xmit Function – used by
TCP and SCTP

The TCP and SCTP protocol deals with
packet fragmentation by their own in advance.
Tasks performed in ip_queue_xmit is rarely
simple.

Setting the route for the packet.
Building the IP header

The ip_append_data Function

Take fragmentation into account
PMTU is obtained from routing subsystem

Consider the support of scatter/gather DMA
I/O
Only allocate buffers and fragment L4
segments
Not really transmit a packet out
The transmission is carried out by the
ip_push_pending_frames function

Step

(1) Set the context
Set the size of fragments as PMTU

(2) Get ready for fragment generation
(3) Buffer Allocation
(4) Copy data into the fragments

IP Packet with IP Sec Option Without
Having To Be Fragmented

IP Fragmentation Without Scatter-gather
I/O And MSG_MORE

IP Fragmentation With Scatter-gather I/O
And MSG_MORE

IP Packet Without Fragmentation using
Scatter-gather IO (a)

IP Packet Without Fragmentation using
Scatter-gather IO (b)

IP Packet Without Fragmentation using
Traditional DMA (a)

IP Packet Without Fragmentation using
Traditional DMA (b)

Fragments With Scatter-gather IO

Memory Pages Shared By Fragments
Using Scatter-gather IO

The ip_push_pending_frames Function

(1) dequeue from sk_write_buffe queue to
chain fragments belonging to the same
packet.
(2) build the IP header for the first fragment.
(3) Let Netfilter get a chance to decide the
fate of this packet
(4) Invoke dst_output() using NF_HOOK.

Dequeue from sk_write_queue queue

Example – udp_sendmsg

int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
size_t len) {

...
struct udp_opt *up = udp_sk(sk);
...
int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
...
err = ip_append_data (sk, ip_generic_getfrag, msg->msg_iov,

ulen, sizeof(struct udphdr),
&ipc, rt,
corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);

if (err)
udp_flush_pending_frames(sk);

else if (!corkreq)
err = udp_push_pending_frames(sk, up);

The Last Mile at IP Layer –
ip_finish_output and ip_finish_output2

int ip_finish_output(struct sk_buff *skb) {

struct net_device *dev = skb->dst->dev;
skb->dev = dev;
skb->protocol = _ _constant_htons(ETH_P_IP);

return NF_HOOK(PF_INET,
NF_IP_POST_ROUTING,
skb, NULL, dev,
ip_finish_output2);

}

ip_finish_output2() invokes routines of the ARP protocol

Problems of Fragmentation And
Defragmentation

Fragments are resolved and identified by three fields
in IP header

Identification field
DF/MF flags
Fragment Offset

Problems
Packet ID Generation

ID is 16-bit long and easy wrapped around.
Linux: associate IDs with different destination IP address

Network Address Translation

Problems Generated by NAT
Source IP address is modified by NAT gateway
No good solution for this problem
IPV6 only allows the fragmentation to the end hosts.

Intermediate router is not allowed to do fragmentation
May provide a way to map packet ID, too

Path MTU Discovery

Eliminate excessive fragmentation

Cannot be less than 68 byte defined in RFC 1191
IP header: 20 bytes
IP options: at most 40 bytes
Minimum fragment length: 8 bytes

Discovery Process
Try-and-error basis until receiving an ICMP FRAGMENT
NEEDED message

Receiving Flow at IP Layer

(1) ip_rcv
(2) ip_rcv_finish
(3) dst_input
(4) skb->dst_input

(5-a) ip_local_deliver
(6-a) ip_local_deliver_finish
(7-a) L4 receiving handler

(5-b) ip_forward
(6-b) ip_forward_finish
(7-b) ip_output

The ip_rcv function
Invoked by netif_receive_skb() at L2

Perform necessary sanity check
Packet type
Header size
Header fields: IP protocol version
Checksum examination

Invoke its second-stage routine ip_rcv_finish()

The ip_rcv_finish function

(1) find the destination of this packet:
if no routing entry for it: drop the packet
else set the dst->input routine propery

ip_local_deliver or ip_forward

(2)call ip_options_compile()
initialize necessary structures for ip options.

(3) Invoke dst_input
Call dst->input()
The function is either ip_local_deliver or ip_forward based on
the destination of the packet.

The ip_local_deliver Function

int ip_local_deliver (struct sk_buff *skb) {
/*
* Reassemble IP fragments.
*/

if (skb->nh.iph->frag_off & htons(IP_MF|IP_OFFSET)) {

skb = ip_defrag (skb, IP_DEFRAG_LOCAL_DELIVER);
if (!skb) return 0;

}

return NF_HOOK(PF_INET, NF_IP_LOCAL_IN, skb, skb->dev, NULL,
ip_local_deliver_finish);

}

http://lxr.linux.no/ident?i=ip_local_deliver
http://lxr.linux.no/ident?i=sk_buff
http://lxr.linux.no/ident?i=skb
http://lxr.linux.no/ident?i=skb
http://lxr.linux.no/ident?i=skb
http://lxr.linux.no/ident?i=skb
http://lxr.linux.no/ident?i=skb
http://lxr.linux.no/ident?i=skb
http://lxr.linux.no/ident?i=skb
http://lxr.linux.no/ident?i=htons
http://lxr.linux.no/ident?i=IP_MF
http://lxr.linux.no/ident?i=IP_OFFSET
http://lxr.linux.no/ident?i=ip_defrag
http://lxr.linux.no/ident?i=NF_HOOK
http://lxr.linux.no/ident?i=PF_INET
http://lxr.linux.no/ident?i=NF_IP_LOCAL_IN
http://lxr.linux.no/ident?i=dev
http://lxr.linux.no/ident?i=NULL
http://lxr.linux.no/ident?i=ip_local_deliver_finish

The ip_local_deliver_finish Function

The inet_protos table

used to reference the L4
protocol control block

The ip_forward function

The ip_forward_finish function

static inline int ip_forward_finish (struct sk_buff *skb) {

struct ip_options * opt = &(IPCB(skb)->opt);

IP_INC_STATS_BH (IPSTATS_MIB_OUTFORWDDATAGRAMS);

if (unlikely(opt->optlen)
ip_forward_options(skb);

return dst_output(skb);
}

The dst_output Function

static inline int dst_output (struct sk_buff *skb) {
int err;
for (;;) {

err = skb->dst->output(&skb);
if (likely(err = 0))

return err;
if (unlikely(err != NET_XMIT_BYPASS))

return err;
}

}

Routing

Goal
Determine if a packet reaches its destination or not.
Determine the next-hop if a packet has not reached its
destination host.

Efficiency
Routing lookup is a main bottleneck for Internet routers
several years ago
How to fast lookup a route?
Tree-based algorithm
Hash-based algorithm (currently used by Linux)

Dynamic change

Interaction With Other Components

IP layer
For routing decision

ARP layer
For sanity checking

Main Components

Route Cache
Each entry representing an IP address
Lookup method – complete matching

Cache hit or miss

Route Table
Various structures used for fast lookup
Lookup method -- Longest-prefix matching

Hash Table is highly used for both components

Routing Cache

dst_entry
Protocol-independent
information

Outgoing network device
structure
Metrics
Expiration time

Routing Table

fib_hash_table
First-level hash table

Fib_table
Contains 33 vectors,
each of which for routes
with netmasks of the
same length

Fn_zone
stores routes with
netmasks of the same
length
Organized routes with a
hash table

Routing Table .1

Fib_node
Associated with routes for a subnet
Fib_alias stores routes to the same subnet but with
different parameters.

Fib-info
Main routing entry
indexed by two hash tables

Fib_info_hash
Mainly used for route lookup

Fib_info_laddrhash
Mainly used for fast manipulating routing entries related to local
interfaces.

Dynamic Changes To Routes

Routes for remote hosts
The responsibility of routing protocols
Netlink socket is used to manipulate routing tables

Notification chain
Widely used in kernel
Used to notify kernel components of an
occurrence for a specific event
E.g.

an “UP” and “Down” of a local NIC
A link failure event

Notification Chain

Simplify the complexity of kernel codes handling various
asynchronous events

Registration
notifier_chain_register()

Unregistration
notifier_chain_unregister()

Notification
notifier_call_chain()

Wrapper functions
register_inetaddr_notifier, unregister_inetaddr_notifier
register_inet6addr_notifier, unregister_inet6addr_notifier
register_netdevice_notifier, unregister_netdevice_notifier

Registration
int notifier_chain_register(struct notifier_block **list, struct notifier_block
*n) {

write_lock(¬ifier_lock);

while(*list) {

if(n->priority > (*list)->priority) break;
list= &((*list)->next);

}

n->next = *list;
*list=n;
write_unlock(¬ifier_lock);
return 0;

}

Notification Call
int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
{

int ret = NOTIFY_DONE;
struct notifier_block *nb = *n;

while (nb) {

ret = nb->notifier_call(nb, val, v);
if (ret & NOTIFY_STOP_MASK) {

return ret;
}
nb = nb->next;

}

return ret;

}

Main Description Block – Notifier Block

struct notifier_block {

int (*notifier_call) (struct notifier_block *self, unsigned
long, void *);

struct notifier_block *next;
int priority;

};

An Example Used in Network Subsystem

static struct notifier_block fib_inetaddr_notifier = {
.notifier_call = fib_inetaddr_event,

};

static struct notifier_block fib_netdev_notifier = {
.notifier_call = fib_netdev_event,

};

void _ _init ip_fib_init(void) {
...
register_netdevice_notifier(&fib_netdev_notifier);
register_inetaddr_notifier(&fib_inetaddr_notifier);

}

Device Layer (Not Discussed Here)

Device I/O Method
Programmed I/O
DMA and Scatter-gather DMA

Notification Model
Polling vs. Interrupt

Notification Chain
Linux Driver Model
Netdevice structure

Reference

Benvenuti, “Understanding Linux Network Internal,” 2006.

Bovet and Cesati, “Understanding Linux Kernel,” 3rd edition.

Corbet, Rubini, and Kroah-Hartman, “Linux Device Drivers,” 3rd
edition.

Linux kernel source code 2.6.11

Prof. S.Y. Wang’s slides

	Linux Kernel Network Subsystem
	Course Material Information
	Outline
	General Concept
	Operating System Kernel
	Machine-independent Part (80%)
	Machine-independent Part .1
	Machine-dependent (20%)
	User interface
	System Entry
	Hardware interrupt�
	Hardware Exception And Trap
	System call �
	Software interrupt�
	Clock interrupt�
	Run-Time Organization�
	Top Half
	Top Half .1
	Bottom Half
	Communications Between The Half and Bottom Halves
	Shared Data Protection – Synchorization Primitives
	Read-copy-update (RCU)�
	UNIX Kernel Properties�
	Device Driver
	Driver Task
	Three Main Components
	Auto-configuration and Initialization Routines�
	Routine for servicing I/O Requests -- The Top Half
	Main entry points -- Character Device
	Main entry points -- Character Device .1
	Main entry points -- Block Device
	Strategy() Routine (FreeBSD Version)
	Strategy() Routine (Linux Version)
	IO Scheduler in Linux
	Networking
	Socket Interface
	Socket System Call
	Commonly Used Types: �
	Protocol Field
	Bind System Call
	Bind System Call .1
	Listen System Call
	Listen System Call .1
	Listen System Call .2
	Listen System Call .3
	Listen System Call .4
	Accept System Call
	Connect System Call
	Sendto and Send System Calls
	Recvfrom and Recv System Calls
	Manipulate Socket Options
	A Socket Has a Send and a Receive Buffer
	A Socket Has a Send and a Receive Buffer �.1
	Network Flow Overview
	Sending Side:
	Linux Networking Implementation
	Processing Flow Overview
	Fundamental Data Structure – sk_buff
	Layout Field
	Socket Information – “struct sock”
	The “proto” Structure in “sock”
	Socket Buffer Layer
	The Header-related Fields
	Header Stripping
	General Purpose Field
	The Field for Routing
	The Control Block Field
	The Checksum Related Field
	The Checksum Related Field .1
	The Packet Type Field
	The Priority Field
	Protocol
	Feature Specific Field
	Commonly Used Function For “sk_buff”
	sk_put and sk_push
	Sk_pull and sk_reserve
	An Example of sk_reserve
	Case Study 1 – The Processing For Transmitting A Packet
	Socket Buffer Usage
	An Example of Sending Data
	The tcp_write_xmit() Function
	The tcp_transmit_skb() function
	TCP Checksum
	Example -- tcp_v4_send_check
	Csum_fold and Csum_tcpudp_nofold
	The Struct tcp_func Structure
	TCP Vegas
	The Retransmission Mechanism in TCP Vegas
	The Retransmission Mechanism in TCP Vegas .1
	The Retransmission Mechanism in TCP Vegas .2
	The Retransmission Mechanism in TCP Vegas .3
	The Retransmission Mechanism in TCP Vegas .4
	The Congestion Avoidance Algorithm in TCP Vegas
	The Congestion Avoidance Algorithm in TCP Vegas .1
	The Congestion Avoidance Algorithm in TCP Vegas .2
	The Congestion Avoidance Algorithm in TCP Vegas .3
	The Modified Slow Start Algorithm in TCP Vegas�
	IP Layer
	Sending Flow
	The ip_queue_xmit Function – used by TCP and SCTP
	The ip_append_data Function
	Step
	IP Packet with IP Sec Option Without Having To Be Fragmented
	IP Fragmentation Without Scatter-gather I/O And MSG_MORE
	IP Fragmentation With Scatter-gather I/O And MSG_MORE
	IP Packet Without Fragmentation using Scatter-gather IO (a)
	IP Packet Without Fragmentation using Scatter-gather IO (b)
	IP Packet Without Fragmentation using Traditional DMA (a)
	IP Packet Without Fragmentation using Traditional DMA (b)
	Fragments With Scatter-gather IO
	Memory Pages Shared By Fragments Using Scatter-gather IO
	The ip_push_pending_frames Function
	Dequeue from sk_write_queue queue
	Example – udp_sendmsg
	The Last Mile at IP Layer – ip_finish_output and ip_finish_output2
	Problems of Fragmentation And Defragmentation
	Problems Generated by NAT
	Path MTU Discovery
	Receiving Flow at IP Layer
	The ip_rcv function
	The ip_rcv_finish function
	The ip_local_deliver Function�
	The ip_local_deliver_finish Function�
	The inet_protos table�
	The ip_forward function
	The ip_forward_finish function
	The dst_output Function
	Routing
	Interaction With Other Components
	Main Components
	Routing Cache
	Routing Table
	Routing Table .1
	Dynamic Changes To Routes
	Notification Chain
	Registration
	Notification Call
	Main Description Block – Notifier Block
	An Example Used in Network Subsystem
	Device Layer (Not Discussed Here)
	Reference

