Game Theory and Its Applications Syllabus

Dept. of Computer Science, NCTU

Li-Hsing Yen

What is Game Theory?

- the study of mathematical models of strategic interaction in between rational decision-makers.
- Which are in the field of game theory?

chess playing? bidding? trade war? buying a lottery? solving a puzzle? bargaining? playing Sudoku? forming an alliance?

What's the difference?

- Whether your choice is good or not depends on other people's choice(s).
 - and vice versa

What are the issues anyway?

- 'I can select a best choice considering all other people's possible choices.'--- a belief
- Sometimes you have no knowledge of other people's choices.
- Sometimes there are just too many possible choices to be considered
- Sometimes everyone's best choice (despite thoughtful) is not the best as a whole

Why should a CS major learn this?

- Traditionally, computer scientists play the role of God, controlling and manipulating everything
- "Objects" do not have their own interests

Game-Theoretic Approach

- design rules for game players (software agents)
- Players act in their own self-interest, as an indirect way to achieve society's economic goals
- For scenarios like
 - Task allocations among a fleet of robots, UAVs, or autonomous cars
 - Resource sharing among users, operators, or tenants
 - Clustering, grouping, or federation of a bunch of resource/task producers or consumers
 - Matching resource buyers with sellers or vice versa

Course Goals

- Game theory as an analytic model
- Game theory for mechanism design
- Learning some well-known mechanism designs
- Applications to CS or network problems

Prisoner's Dilemma

- Two gangsters (A and B) are arrested and imprisoned
- Each prisoner is in solitary confinement with no means of communicating with the other

https://en.wikipedia.org/wiki/Prisoner%27s_dilemma 8

If you were Prisoner A ...

• What would be your choice?

B A	B stays silent	B betrays
A stays silent	-1	0
A betrays	0 -3	-2

If you were Prisoner B ...

- What would be your choice?
- What will be the result of the game?
- Is there any better result?

• How can you get an improved result?

Course Goal One

- Game theory as an analytic model
 - To predict what will happen
 - To figure out what went wrong
 - To see how to make an improvement (if any)
 - primarily concerns of Economists

Example: Wireless Relay System

- Will a BS relay signal for the other?
- How to motivate cooperation?

Course Goal Two

• Game theory for mechanism design

- Design game rules for selfish yet rational players
- yet achieve system goal
- 'reverse game theory'
- main focus of computer scientist

Example: Sensor Coverage

- *n* sensors are densely deployed to monitor *m* targets
- Target *j* must be covered by *q_i* sensors
- How to motivate sensors to meet coverage requirement while turning off sensors as many as possible?

$$Q = (q_1, q_2, \dots, q_m)$$

$$p_1$$

$$f_1$$

$$f_1$$

$$f_2$$

$$f_2$$

$$p_3$$

$$f_4$$

$$f_2$$

$$f_3$$

$$f_3$$

$$f_4$$

$$f_3$$

$$f_4$$

$$f_3$$

$$f_4$$

$$f_3$$

$$f_4$$

Example: Channel Selection

- How to make radios select channels to
 - ensure connectivity
 - minimize co-channel interference

Course Goal Three

- Learn some well-known mechanism designs
 - Auction
 - Matching
 - Kidney exchange
- with system goals
 - Pareto optimality
 - stability
 - social welfare

Example: Combinatorial Auctions

- How to select the set of winning bids?
- How to enforce truthful bidding?
- What is the pricing rule?

		/,		()	
bidder	P1	P2	P3	P4	P5
bid	\$63	\$54	\$93	\$70	\$28
bundle	$\{A,C,D\}$	{A,B,C}	{B,D,E}	{D,E}	{A,C}
		(/		·/	

Example: Matching

How to match females with males so that
no pair wants to deviate from the result?
no pair can be better off without hurting any others?

Example: Coalition Game

- How to efficiently form coalitions to maximize profits?
- How to distribute profits to coalition members?

	$\{P_1\}$	$\{P_2\}$	$\{P_3\}$	$\{P_1, P_2\}$	$\{P_1, P_3\}$	$\{P_2, P_3\}$	$\{P_1, P_2, P_3\}$
$v(\cdot)$	2	6	12	9	15	21	24

- Suppose $(x_1, x_2, x_3) = (5, 6, 13)$
- Can $\{P_1, P_2\}$ block (x_1, x_2, x_3) ?
- Can $\{P_2, P_3\}$ block (x_1, x_2, x_3) ?
- What are the results if $(x_1, x_2, x_3) = (3, 7, 14)$?

Course Goal Four: Application

- Able to apply what you have learned to a specific problem in CS or networks
- Understand how game theory could help people solve a CS/network problem

Text Book: None

Reference books

Schedule (tentative)

week	contents	week	contents
1	Introduction (mid-autumn festival)	10	Matching: Resource allocations/computation offloading in IoT/D2D/edge
2	Non-cooperative games:	11	Matching with (money) Report & presentation
3	Non-cooperative games: Channel selection, file sharing in P2P	12	cooperative game
4	Coordination game: MAC, power control, cognitive radio	13	federation of cloud and edge systems
5	Potential game and congestion game: routing, network/AP selection, self- stabilizing algorithm	14	Report & presentation
6	mixed-strategy: spectrum access	15	Report & presentation
7	Auctions: Robot task allocations	16	Report & presentation
8	Combinatorial auction: Resource allocation in cloud and edge	17	Report & presentation
9	Review and Mid-term Exam.	18	Final Exam.

Scoring Policy

- (30+%) Quizzes
 - 4 quizzes
- (40%) Mid-term exam.
- (30%) Final report

Course Materials

- Slides are placed in new e3 system: https://dcpc.nctu.edu.tw/
- All announcements are available in e3 system: https://dcpc.nctu.edu.tw/
- Instructor's e-mail: lhyen@nctu.edu.tw