
Joint Carbon-Latency Optimization for Online
Service Function Chain Deployment

Yung-Lun Yang, Yan-Wei Chen, and Li-Hsing Yen
Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

Abstract—Service function chain (SFC) deployment is to em-
bed virtualized network function (VNF) instances into a cloud-
based infrastructure and chain them in sequence to provide a
specific network service. Many approaches have been proposed
for SFC deployments with diverse objectives. However, no SFC
deployment approach factors in the embodied and operational
carbon emissions, which are complicated by location- and time-
varying carbon intensity (CI) and the amortization of carbon
footprint among SFCs when they share VNF instances and com-
munication links. Moreover, prioritizing lower carbon emissions
for an SFC might degrade its end-to-end latency and vice versa.
This work aims to jointly minimize carbon emissions and latency
in SFC deployment, factoring in 1) SFC lifetime, traffic rates,
and resource usage, 2) amortized embodied and operational
carbon emissions, and 3) processing and propagation delay.
We propose a rule to amortize the carbon footprint to SFCs
and an SFC deployment algorithm based on Monte Carlo Tree
Search (MCTS) with a time-series forecasting method to predict
spatial and temporal fluctuations of CIs. Simulations based on
real-world historical CI data and dynamic SFC arrivals and
departures confirm the effectiveness of the proposed approach.

Keywords—carbon footprint analysis, service function chain
deployment, Monte Carlo Tree Search, time series forecasting,
virtual network function placement

I. INTRODUCTION

Traditional networks usually provide services via propri-
etary hardware, which ensures performance but also incurs
high capital and operating costs [1]. As a way to enhance
the flexibility and scalability of service provisioning, Network
Function Virtualization (NFV) decouples network functions
from proprietary hardware and turns them into software-based
Virtual Network Functions (VNFs). VNFs are able to run on
commercial off-the-shelf (COTS) servers, which enables more
agile and efficient service provisioning solutions for network
operators and enterprises.

A prominent use case of NFV is the service function chain
(SFC), which provides specific network services by chaining
VNFs in particular sequences to meet users’ service demands.
SFC deployment is to embed VNF instances into an NFV
infrastructure (NFVI) and chain them in sequence. We may
reduce the cost of SFC deployment by sharing a VNF instance
or a server connection among multiple SFCs, but doing so may
potentially increase the SFC end-to-end latency or other costs.
Many studies on SFC deployment emphasized optimizing
VNF placement for diverse goals, including latency [2, 3],
quality of service [4], and so on. Study [5] aimed to optimize
cost and enhance security, while [6] minimized response time
and resource usage through heuristics. Meanwhile, energy-
aware VNF placement is also a key concern. Study [7]

Figure 1: Daily Carbon Intensity (CI) in 2023 (Source: [16])

employed lifecycle management to optimize energy efficiency,
while others [8, 9] adopted dynamic scaling of VNF instances
to reduce congestion and energy costs.

Despite the existence of these studies, carbon emissions
in SFC deployment remain largely overlooked. As global
emissions reached 37.15 billion tonnes in 2022 [10], and
global temperatures have risen over 0.80◦C during 1961–1990
[11], there is growing urgency toward net-zero targets and
sustainable consideration. Following this, the carbon footprint,
a key metric in sustainability analysis, typically measures
total greenhouse gas emissions, encompassing daily opera-
tional and lifetime embodied carbon footprint [12]. Carbon
intensity (CI), representing the carbon dioxide (CO2) output
per unit of energy or economic value, is commonly used
in literature to quantify carbon footprint emissions. Yet, few
studies considered carbon emissions in SFC deployments.
The research [13] minimized energy and traffic-aware costs,
and [14] briefly mentioned that the electricity cost increases
as the carbon footprint grows. The study [15] highlighted
the trade-off between profit and carbon emissions in SFC
deployment but used static CI and overlooked embodied and
shared emissions.

In this paper, we address carbon emissions and end-to-end
latency for SFC deployments in geo-distributed clouds. On
one hand, we may exploit the spatial and temporal variations
of CIs (Fig. 1) to minimize the carbon footprint for SFC
deployments. We may also reuse existing VNF instances as
much as possible to amortize the associated carbon footprint.
On the other hand, doing so may increase the end-to-end
latency due to extra processing and propagation delays. How
to strike a balance between these two goals becomes an issue.
We formulate an online SFC deployment (OSD) problem for

such a balance. The problem is challenged by the location- and
time-varying CIs, and also calls for an accurate and fair way
to allocate the carbon footprint (including both operational
and embodied carbon emissions) due to the deployments to
SFCs when SFCs share VNF instances and communication
links.

The key contributions of this paper are summarized below.
• We show how to amortize carbon emissions to SFCs,

factoring in SFC lifetime, traffic rates, and resource
usage.

• We formulate an OSD problem for optimal SFC de-
ployment, using FB Prophet for forecasting spatial and
temporal CI values and MCTS for joint optimization of
carbon emissions and end-to-end latency.

• Experimental results show that the proposed approach
achieved the lowest cost compared to other methods.

The rest of the paper is organized as follows. Sec. II
delivers the network architecture, analysis model, and problem
definition, Sec. III details the algorithm, and Sec. IV presents
performance evaluations. Finally, we conclude the paper in
Sec. V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Substrate Network Model

The substrate network from ETSI [17] is modeled as
an undirected weighted graph, G = (V, E), where V =
{v1, v2, . . . , v|V|} represents servers and E = {ei,j | vi, vj ∈
V} denotes physical links connecting two servers. Every
server v ∈ V has limited computational Rcpu

v and memory
resource Rmem

v , while each link ei,j ∈ E has a maximum
bandwidth Be.

B. SFC Deployment and VNF Placement Model

We consider a fixed set of VNF types denoted as F =
{f1, f2, · · · , f|F|}. Each VNF type f ∈ F is described by
(rcpu

f , rmem
f , ρf , σf), which specifies in sequence the CPU

demand, the memory demand, the processing latency per unit
traffic rate, and traffic scaling factor. The traffic scaling factor
specifies the impact of a VNF type on traffic rates. The egress
traffic rate of a VNF instance of type f will be σfx if the
instance’s ingress traffic rate is x.

We use S = {1, 2, · · · , |S|} to denote the set of SFC
deployment requests. Each request s ∈ S designates 1) a
sequence of VNFs Fs = (fs1, fs2, . . . , fsKs), where Ks is
the length of s, 2) a starting date tstart

s and an ending date
tend
s of s, 3) an ingress node vin

s and an egress node vex
s ,

and 4) the traffic rate λs generated by vin
s toward the first

VNF. Let bsk be the egress traffic rate of VNF fsk (also the
ingress traffic rate of fsk+1 if k < Ks). Accordingly, we
have bsk = bsk−1σfsk = λs

∏k
j=1 σfsj , ∀k, 1 ≤ k ≤ Ks,

where bs0 = λs.
We use ws = (ws1, . . . , wsKs) to represent a deployment

of SFC s, where wsk ∈ V is the server where the type-fsk
instance runs. We use Nf

v (τ) to indicate whether a type-f
VNF instance is active on server v at time slot τ . Our model

allows different VNF instances to run on the same server
and different SFCs to share the same VNF instance. To track
which SFC s uses VNF f on server v in time slot τ , we
define P f

v (τ) = {(i, j) | fij = f, wij = v, tstart
i ≤ τ ≤ tend

i ,
∀i ∈ S, 1 ≤ j ≤ Ki}.

C. Carbon Footprint Model

The carbon footprint of substrate networks originates from
servers and links, and is categorized into operational and em-
bodied emissions [12]. We discuss these two parts separately
in the following.

1) Operational Carbon Emissions
Operation carbon emissions stem from energy consumed in

computation and communications. For the computation part,
let pbv and pmv be server v’s energy consumptions in idle
and full-load modes, respectively. We assume that v’s actual
energy consumption during a time slot τ is proportional to
the actual CPU resource usage in that slot [18]. Formally, v’s
energy consumption in time slot τ is

E(v, τ) = pbv + (pmv − pbv) ·
∑

f∈F (N
f
v (τ) ·r

cpu
f)

Rcpu
v

. (1)

Let CI(v, τ) be the CI value for powering server v in time
slot τ , measured in gCO2eq/kWh. The operational carbon
emission of v in τ is OCES(v, τ) = E(v, τ) · CI(v, τ).

When multiple VNF instances share server v’s CPU and
memory resources, these instances share OCES(v, τ) in pro-
portion to their resource usages. The sharing ratio of a VNF
instance f is

F(v, f, τ) =
β ·Nf

v (τ) ·r
cpu
f + γ ·Nf

v (τ) ·rmem
f

β
∑

f ′∈F (N
f ′
v (τ) ·rcpu

f ′) + γ
∑

f ′∈F (N
f ′
v (τ) ·rmem

f ′)
, (2)

where β and γ are weighting factors of CPU and memory
usages, respectively. Furthermore, when a single VNF instance
serves multiple SFCs, we distribute the instance’s carbon
footprint among these SFCs in proportion to their traffic rates
processed by the instance. The ratio of SFC s’s traffic rate
processed by fsk is given by

B(v, fsk, τ) =
bsk−1∑

(i,j)∈P
fsk
v (τ)

bij−1
. (3)

Therefore, the total operational carbon footprint in computa-
tion associated with deployment ws is

Cop
sr (ws) =

tend
s∑

τ=tstart
s

Ks∑
k=1

[OCES(wsk, τ) · F(wsk, fsk, τ) · B(wsk, fsk, τ)].

(4)
The operational carbon emission in communications needs

special treatment because the two ends of a link may have
different CI values due to spatial variation. A simple treatment
is to take the average value as the link CI. We define
CID(u, v, τ) to be the CI of the link from servers u to v in time
slot τ . The total traffic rate passing through link (u, v) in time
slot τ is T(u, v, τ) =

∑
i∈S

∑Ki

j=1 Iu=wij−1
Iv=wij

·bij−1.
Letting Ė(x) be the energy consumption associated with traffic
rate x, the amount of operational carbon emissions for link
(u, v) in time slot τ is OCEL(u, v, τ) = Ė(T(u, v, τ)) ·

CID(u, v, τ). Since a link bears traffic for multiple SFCs, the
emissions are proportionally allocated to these SFCs based on
their traffic rate contributions. Therefore, the total operational
carbon footprint in communications associated with ws is

Cop
lk (ws) =

tend
s∑

τ=tstart
s

Ks∑
k=1

Iwsk−1 ̸=wsk
OCEL(wsk−1, wsk, τ) ·

bsk−1

T(wsk−1, wsk, τ)
,

(5)
where the condition wsk−1 ̸= wsk is to rule out scenarios
where fsk−1 and fsk are on the same server (which makes
(wsk−1, wsk) a virtaul link).

2) Embodied Carbon Emissions
Embodied carbon emissions stem from production, trans-

port, and manufacturing to disposal throughout products’ life-
cycle. For computation part, we denote server v’s embodied
carbon footprint (ECF) by ECF(v), and its daily contribution
is ECF(v)/Lv , where Lv is the server’s lifetime in days. We
use (2) to distribute server v’s daily ECF to all VNF instances
running on v. We further distribute a particular instance’s ECF
equally to all SFCs that use it, which means, unlike (3), each
SFC’s share ratio is N(v, f, τ) = 1/|P f

v (τ)|. Each SFC that
uses VNF f on server v in time slot τ thus receives an ECF
given by ECES(v, f, τ) = (ECF(v)/Lv)·F(v, f, τ)·N(v, f, τ).

For a particular deployment ws of SFC s, the lifetime ECF
of s in computation sums up the ECF shares s receives from
all its VNF instances, as

Cem
sr (ws) =

tend
s∑

τ=tstart
s

Ks∑
k=1

[
ECES(wsk, fsk, τ)

]
. (6)

For ECF in the communications part, let ECF(e) be the
ECF of link e and its daily ECF be ECF(e)/Le, where
Le is the product lifetime of link e in days. The daily
link ECF is equally shared by all the SFCs that use e at
the same time, so each SFC receives a share ECEL(e) =

(ECF(e)/Le)/(
∑

j∈S

∑Kj

l=1 IEl
j=e), where E lj is the link from

the l-th VNF to the (l + 1)-th VNF of SFC j.
For a particular deployment ws of SFC s, the lifetime ECF

of s in communications sums up the ECF shares it receives
from all links it uses:

Cem
lk (ws) =

tend
s∑

τ=tstart
s

Ks∑
k=0

ECEL(Eks). (7)

The total carbon emissions of an SFC deployment ws is
therefore

C(ws) = Cop
sr (ws) + Cop

lk (ws) + Cem
sr (ws) + Cem

lk (ws). (8)

D. End-to-End Latency

The end-to-end latency of an SFC consists of processing
time by VNFs and propagation delay between them. Assuming
that the processing time of a VNF instance is proportional to
its ingress traffic rate, the total processing time of SFC s sums
up all it’s VNF instances’ processing time:

Lproc(ws) =
tend
s∑

τ=tstart
s

Ks∑
k=1

(
ρfsk

∑
(j,l)∈P

fsk
wsk

(τ)

bjl−1

)
︸ ︷︷ ︸

processing latency of VNF fsk on server wsk

,
(9)

where ρfsk is the processing time per unit traffic rate of VNF
fsk.

The propagation delay through a link e depends on its
length di(e) and the constant signal speed c. The propagation
latency of SFC s is the sum of all link propagation delays:

Lprop(ws) =

tend
s∑

τ=tstart
s

Ks∑
k=0

di(Eks)
c

. (10)

Therefore, the end-to-end latency associated with a deploy-
ment ws is the sum of (9) and (10):

L(ws) = Lproc(ws) + Lprop(ws). (11)

E. Problem Formulation

The online SFC deployment (OSD) problem is to create or
reuse VNF instances for online SFC requests to minimize SFC
latency and carbon footprint with resource constraints and the
consideration of time- and location-varying CIs for servers and
communication links. We regard the OSD problem as an inte-
ger nonlinear programming problem [18] to minimize carbon
emissions and latency while meeting resource constraints.

We use a vector w = (w1, · · · ,w|S|) of decision variables
to denote an offline deployment for all SFCs in S. The offline
version is formally formulated as

min
w

E

[∑
i∈S

(ϕCC(wi) + ϕLL(wi))

]
(12)

subject to

∑
f∈F

(
Nf

v (τ) ·r
cpu
f

)
≤ Rcpu

v ,∀v ∈ V,∀τ ≥ 0, (13)

∑
f∈F

(
Nf

v (τ) ·rmem
f

)
≤ Rmem

v ,∀v ∈ V,∀τ ≥ 0, (14)

∑
s∈S

Ks∑
k=0

(
Ie∈Ek

s
·bsk

)
≤ Be,∀e ∈ E, (15)

wsk ∈ V,∀s ∈ S, 1 ≤ k ≤ Ks, (16)

0 ≤ ϕC, 0 ≤ ϕL. (17)

Equations (13), (14) and (15) are resources constrains,
while Eq. (16) ensures valid deployments.

III. PROPOSED APPROACHES

A. Time Series Forecasting

The study [19] finds FB Prophet effective for forecasting
energy consumption over five years, making it promising
for CI prediction within SFC lifetime due to its correlation
with energy generation and consumption. Since electricity
generation follows periodic patterns, we apply FB Prophet
to forecast CI values, leveraging its periodic patterns. Our
forecasting model follows an additive regression [20] as
CI(v, t) = fv(t) + gv(t) + ϵt, where the unit t is a day.

The logistic growth fv(t) captures the non-periodic trend
[20] of the CI value of server v. The Fourier series gv(t)
represents periodic fluctuations [19], like yearly seasonality.
The normally distributed error ϵt reflects any idiosyncratic
variations. The following equation computes the forecasting
CI of the rented server v within a lifetime of SFC Ls in
the network and updates before the deployment for precise
results.:

CIv =
∑
τ∈Ls

(CI(v, τ)). (18)

B. Greedy and A* Algorithm

We consider a greedy algorithm that iteratively selects the
best server for each VNF in an SFC. For each fsk ∈ Fs,
it checks each server v for resource constraints and estimates
deployment cost. The best candidate is chosen, and the process
repeats.

We also consider an A* algorithm that regards the deploy-
ment as the shortest path problem in a weighted graph through
a single objective merging carbon emissions and latency,
and designing an approximate heuristic for an immediately
identifiable goal. A greedy algorithm iteratively selects the
best VNF placement until reaching a terminal state, which
serves as the heuristic evaluation. The algorithm selects the
lowest-cost state, places the next VNF, updates the heuristic,
and repeats until completion.

C. Single-Player Monte-Carlo Tree Search (SP-MCTS)

We propose a Single-Player MCTS (SP-MCTS) [21] to
solve the OSD problem. SP-MCTS, a tree search algorithm
[22], incrementally builds a decision tree where each node
ni represents the optimal VNF-to-server mapping. A node
is defined as ni = (ri, Ni, np,wi), where ri is the node’s
reward, Ni the visit count, np the parent node, and wi the
current deployment state. SP-MCTS balances precise tree
search with random space sampling to evaluate potential
moves. SP-MCTS follows five key stages [21]: (1) Selection,
(2) Expansion, (3) Simulation, (4) Backpropagation, and (5)
Best Selection.

In the selection step, a target node is selected down from
the root using a modified Upper Confidence Bounds for
Trees (m-UCT) [21], balancing exploration and exploitation
by selecting the highest UCT value of each successive node
to guide the search. For expansion, if the selected leaf node
is not terminal, its children are generated, each representing a

Table I: Specification of VNF Types [23, 24, 25]

VNF CPU Memory ρf σf

NAT 1 core 1 GB 0.05 s/Mbps 1
FW 2 cores 3 GB 0.05 s/Mbps 1
TM 1 core 3 GB 0.05 s/Mbps 1

WOC 1 core 2 GB 0.05 s/Mbps 0.65
IDPS 2 cores 2 GB 0.05 s/Mbps 1.5
VOC 2 cores 2 GB 0.05 s/Mbps 0.65

Table II: SFC Types [25, 26]

Service Chained VNFs Data Rate Prob.

Web Service NAT-FW-TM-WOC-IDPS 0.1 Mbps 50%
Video Streaming NAT-FW-TM-VOC-IDPS 4 Mbps 20%
Cloud Gaming NAT-FW-VOC-WOC-IDPS 4 Mbps 20%
VoIP NAT-FW-TM-FW-NAT 0.064 Mbps 10%

possible deployment. The simulation step then uses a greedy
approach to explore deployment sequences until all VNFs
are placed and evaluates the deployment results. Finally, the
simulation reward is propagated back through the visited
nodes.

Algorithm 1 SP-MCTS Pseudo-Code

Require: n0: initial root
Ensure: optimal node in the tree

1: EstimateCI(n0) ▷ Updated carbon intensity
2: repeat
3: ni ← n0

4: Top-down select ni with maximum m-UCT value
5: if Constraints of ni are satisfied then
6: if ni has been visited then
7: Generate child nodes
8: Perform greedy method and evaluate deployment
9: Compute cost

10: Backpropagate the cost through the visited nodes
11: until Iteration budget is reached
12: return BESTCHILD(n0)

IV. PERFORMANCE EVALUATION

This section details the experimental setup, simulation, and
performance evaluation of carbon emissions and latency.

A. Environment Setting

Experiments were conducted on a 2.1 GHz Intel(R)
Core(TM) i7-14700 CPU with 128-GB RAM.

We evaluated up to 180 SFCs (|S| ∈ [1, 180]) and six VNF
types (|F | = 6): Network Address Translator (NAT), Firewall
(FW), Traffic Monitor (TM), WAN Optimization Controller
(WOC), Intrusion Detection Prevention System (IDPS), and
Video Optimization Controller (VOC), each with specific
parameters detailed in Table I. The electricity intensity was
0.06 kWh/GB [27]. There were four types of SFCs: web
service, video streaming, cloud gaming, and VoIP. Each type

Atlanta

Stockton

Boulder

Cheyenne

Washington DC

Fort Worth

Kansas City

New York

130.74
894.76

1453.32

871.88

1207.33

4028.77

3817.86

1948.26750.52

1517.77

328.47

Anaheim

Seattle

Chicago2788.7

2883

1145.8

550

1915

1076.2

663.6

Figure 2: Sprint Network Topology

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

35

40

45

50

P
e
rc

e
n

ta
g

e

Server 1

Server 2

Server 3

Server 4

Server 5

Server 6

Server 7

Server 8

Server 9

Server 10

Server 11

Figure 3: Percentage of VNF instances at each server

required a specific SFC and input data rate λ (see Table II).
SFC requests were generated by a Poisson process (mean rate:
0.2 to 0.033 requests per day) with the type of SFC determined
by the probability indicated in Table II. The lifetime of an SFC
was exponentially distributed with a mean ranging from 10 to
90 days. Results were averaged over 30 simulations, with a
simulation interval from March 1 to September 30.

B. Network Topology

We used the Sprint network topology from the Internet
Topology Zoo [28], which consists of 11 servers and 18 links
as shown in Fig. 2. The base and max energy consumptions of
servers were 0.17 kW and 0.5 kW, respectively. Each server
had 50 CPU cores and 50 GB of memory. Links were of 15
Mbps bandwidth and different lengths. Daily CI was gathered
from historical data in [16]. The weights for carbon emission
and latency were ϕC = 1 and ϕL = 100. For 80% of the
SFCs, the ingress and the egress nodes were the same due to
locality.

C. Tradeoff between Carbon Emission and Latency

Fig. 3 shows the percentage of VNF instance placements
in every server under different latency-to-carbon emission
weight ratios. Most VNFs were placed on low-carbon servers
and shared emissions. As the ratio increased, VNFs were
distributed more evenly since latency became the dominant
factor, reducing processing delays.

D. Carbon Emissions

Building on the previous setup, we wanted to observe the
impacts of arrival rate and SFC lifetime on carbon emissions.
Fig. 4(a) illustrates that higher arrival rates reduced average
carbon emissions as more SFCs shared emissions over the

0.05 0.1 0.15 0.2

Arrival rate

200

300

400

500

600

700

800

900

1000

A
v

e
ra

g
e

 c
a

rb
o

n
 e

m
is

s
io

n
 (

g
 C

O
2

) Greedy Only

Greedy + FB Prophet

A* Only

A* + FB Prophet

MCTS Only

MCTS + FB Prophet

20 40 60 80

Lifetime

200

300

400

500

600

700

A
v

e
ra

g
e

 c
a

rb
o

n
 e

m
is

s
io

n
 (

g
 C

O
2

) Greedy Only

Greedy + FB Prophet

A* Only

A* + FB Prophet

MCTS Only

MCTS + FB Prophet

Figure 4: Tendency of Carbon Emissions w.r.t. (a) Arrival Rate (b) Lifetime

0.05 0.1 0.15 0.2

Arrival rate

0

2

4

6

8

10

12

14

16

18

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

s
e
c
o

n
d

s
)

Greedy Only

Greedy + FB Prophet

A* Only

A* + FB Prophet

MCTS Only

MCTS + FB Prophet

20 40 60 80
Lifetime

1

2

3

4

5

6

7

8

9

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

s
e
c
o

n
d

s
)

Greedy Only

Greedy + FB Prophet

A* Only

A* + FB Prophet

MCTS Only

MCTS + FB Prophet

Figure 5: Results of Latency w.r.t. (a) Arrival Rate (b) Lifetime

same time interval. Conversely, Fig. 4(b) highlights emissions
rising with longer lifetimes due to extended service durations.
Meanwhile, both results confirm the effectiveness of the
FB Prophet model. Applying the FB Prophet model created
gaps between all three approaches, especially for longer SFC
lifetimes, since it enhanced SFC deployment by predicting
future CI within SFC’s lifetime.

E. End-to-End Latency

We also analyzed the impacts of arrival rate and SFC
lifetime on end-to-end latency. Fig. 5(a) shows that as the
arrival rate increased, so did the average processing latency
as more SFCs were involved. Greedy approaches suffered
more from congestion, while MCTS maintained lower la-
tency. On the other hand, Fig. 5(b) shows that longer SFC
lifetimes also increased latency, particularly for 10- to 50-
day lifetimes. However, deploying VNF instances on high-CI
servers mitigated congestion when lifetimes reached 50 to 90
days, albeit at the cost of higher carbon emissions. This is
because our setting of ϕC and ϕL prioritized latency. Overall,
MCTS achieved lower latency by placing VNF instances on
less congested servers.

V. CONCLUSIONS

This paper explores SFC deployment to minimize carbon
emissions and end-to-end latency while meeting resource
constraints. We devise an accounting rule that amortizes oper-
ational and embodied carbon emissions to SFCs based on SFC
lifetime, traffic rate, and resource usage. We use FB Prophet
to predict spatiotemporally varying CI and propose MCTS for
SFC deployments. Simulation results confirmed the trade-off
under consideration. Moreover, intensive SFC arrivals reduced

average carbon emissions due to amortizations, while longer
lifetimes increased both emissions and latency. Results also
show that MCTS with FB Prophet outperformed the others.

For future work, we will explore the scalability and adapt-
ability of the proposed model and approach in more complex
scenarios, including larger network topologies and diverse
server types. We also plan to apply some advanced models,
such as Transformer-based architectures, for more accurate
and robust CI pattern capturing and forecasting. Additionally,
we may conduct further investigation into how prediction
uncertainty affects deployment decisions and overall system
performance. Finally, extensions to our analysis model should
consider more realistic assumptions, including non-linear re-
source usage-amortization models and highly dynamic varia-
tions in CI, to better reflect real-world conditions.

ACKNOWLEDGMENT

This work was supported in part by the National Science
and Technology Council of Taiwan under grant numbers 113-
2221-E-A49-180 and 114-2218-E-A49-018.

REFERENCES

[1] X. Han et al., “A service function chain deployment
method based on network flow theory for load balance
in operator networks,” IEEE Access, vol. 8, pp. 93 187–
93 199, 2020.

[2] L. Popokh et al., “Physical and virtual resources inven-
tory modeling for efficient VNF placement,” in IEEE
Int’l Conf. on Consumer Electronics, 2020, pp. 1–6.

[3] F. Tian et al., “Bidirectional service function chain
embedding for interactive applications in mobile edge
networks,” IEEE Trans. Mob. Comput., vol. 23, no. 5,
pp. 3964–3980, 2024.

[4] M. M. Tajiki et al., “Joint energy efficient and QoS-
aware path allocation and VNF placement for service
function chaining,” IEEE Trans. Netw. Serv. Manag.,
vol. 16, no. 1, pp. 374–388, 2019.

[5] D. Dwiardhika and T. Tachibana, “Cost efficient VNF
placement with optimization problem for security-aware
virtual networks,” in IEEE Int’l Conf. on Cloud Network-
ing, 2018, pp. 1–3.

[6] L. Dinh-Xuan et al., “Performance evaluation of service
functions chain placement algorithms in edge cloud,” in
Int’l Teletraffic Congress, vol. 01, 2018, pp. 227–235.

[7] M. Chen et al., “Energy-saving and resource-efficient
algorithm for virtual network function placement with
network scaling,” IEEE Trans. Green Commun. Netw.,
vol. 5, no. 1, pp. 29–40, 2021.

[8] A. Gember et al., “Stratos: A network-aware orches-
tration layer for virtual middleboxes in clouds,” 2014,
arXiv:1305.0209.

[9] X. Wang et al., “Online learning-assisted VNF service
chain scaling with network uncertainties,” in IEEE Int’l
Conf. on Cloud Computing, 2017, pp. 205–213.

[10] H. Ritchie and M. Roser, “CO2 emissions,” Our World
in Data, 2020, https://ourworldindata.org/co2-emissions.

[11] H. Ritchie et al., “CO2 and greenhouse
gas emissions,” Our World in Data, 2023,
https://ourworldindata.org/co2-and-greenhouse-gas-
emissions.

[12] T. Kennes, “Measuring IT carbon footprint: What is the
current status actually?” 2023, arXiv:2306.10049.

[13] C. Pham et al., “Traffic-aware and energy-efficient VNF
placement for service chaining: Joint sampling and
matching approach,” IEEE Trans. Serv. Comput., vol. 13,
no. 1, pp. 172–185, 2020.

[14] Y. Yue et al., “Energy-efficient and traffic-aware VNF
placement for vertical services in 5G networks,” in Proc.
IEEE TrustCom, 2022, pp. 1316–1322.

[15] T. Di Riccio et al., “Sustainable placement of VNF
chains in intent-based networking,” in Proc. IEEE/ACM
Int’l Conf. Utility and Cloud Computing, 2024.

[16] “Carbon intensity map,” accessed: Apr. 20, 2025.
[Online]. Available: https://app.electricitymaps.com

[17] “Network functions virtualisation (NFV); architectual
framework,” ETSI, GS NFV 002 v1.2.1, Dec 2014.

[18] J. Liang et al., “Sustainable virtual network function
placement and traffic routing for green mobile edge
networks,” IEEE Trans. Green Commun. Netw., vol. 8,
no. 4, pp. 1450–1465, Dec. 2024.

[19] S. Chaturvedi et al., “A comparative assessment of
SARIMA, LSTM RNN and FB prophet models to fore-
cast total and peak monthly energy demand for india,”
Energy Policy, vol. 168, p. 113097, 2022.

[20] S. J. Taylor and B. Letham, “Forecasting at scale,” Am.
Stat., vol. 72, no. 1, pp. 37–45, 2018.

[21] C. B. Browne et al., “A survey of Monte Carlo tree
search methods,” IEEE Trans. Comput. Intell. AI Games.,
vol. 4, no. 1, pp. 1–43, 2012.

[22] D. Perez et al., “Knowledge-based fast evolutionary
MCTS for general video game playing,” in IEEE Conf.
on Comput. Intell. and Games, 2014, pp. 1–8.

[23] D. Dietrich et al., “Multi-provider service chain em-
bedding with nestor,” IEEE Trans. Netw. Serv. Manag.,
vol. 14, no. 1, pp. 91–105, 2017.

[24] W. Rankothge et al., “On the scaling of virtualized
network functions,” in IFIP/IEEE Symp. on Integrated
Network and Service Management, 2019, pp. 125–133.

[25] L. Ruiz et al., “A genetic algorithm for VNF provi-
sioning in NFV-enabled cloud/MEC RAN architectures,”
Applied Sciences, vol. 8, no. 12, 2018.

[26] M. Savi et al., “Impact of processing-resource sharing
on the placement of chained virtual network functions,”
IEEE Trans. Cloud Comput., vol. 9, no. 4, pp. 1479–
1492, 2021.

[27] J. Aslan et al., “Electricity intensity of internet data
transmission: Untangling the estimates,” J. Ind. Ecol.,
vol. 22, no. 4, pp. 785–798, 2018.

[28] S. Knight et al., “The Internet topology Zoo,” IEEE J.
Sel. Areas Commun., vol. 29, no. 9, pp. 1765–1775, Oct.
2011.

