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Abstract—Unmanned aerial vehicles (UAVs) have been used to
provide wireless access service to a specific area. However, the
service is subject to the limited energy capacity of UAVs. One
possible treatment is to arrange a serving/charging schedule for
UAVs that balances the serving and charging activities to maxi-
mize the service coverage. In this study, we seek a decentralized
approach where each UAV autonomously decides its action based
on partial observation of the environment. Prior works either
demanded complete information, which may not be feasible, or
performed worse than those exploiting complete information.
This paper proposes a deep reinforcement learning approach
empowered by the advantage actor-critic (A2C) algorithm and
long short-term memory technique (LSTM). This approach is not
sensitive to the number of serving UAVs. Simulation results show
that the proposed approach generally achieved higher coverage
ratios compared to the counterparts.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been finding appli-
cations in diverse fields ranging from surveillance and recon-
naissance to target localization and area coverage. In particular,
UAVs have evolved as dependable aerial base stations (BSs)
for delivering network services in inaccessible areas. This
ability is valuable when traditional infrastructure is overloaded
or impaired due to natural disasters or military activities.
However, the limited energy capacity of UAVs confines their
service duration.

Overlooking the limited energy capacity of UAVs when
deploying them as aerial BSs is impractical for real-world
scenarios. To provide sustainable service, UAVs should return
to a charging station for energy replenishment. Serving and
charging activities are conflicting and complementary at the
same time. On the one hand, a UAV needs adequate energy
to serve for a long time. On the other hand, a UAV has
less time to serve if it wastes too much time on charging
or flying back and forth. It is non-trivial for a UAV to find
an optimal schedule for serving and charging. The problem
gets complicated when a swarm of UAVs is involved in the
decision process because UAVs may have conflicting interests
due to contending service rewards and limited supplies of
charging facilities. It becomes more challenging when these
UAVs do not communicate with each other and have limited
observability, i.e., they cannot perceive complete information
about the environment (serving targets and other UAVs).

Some researchers have targeted the coverage path planning
(CPP) problem [1] [2], aiming at finding the most energy-
efficient paths for a UAV swarm to fully cover a set of targets
or a field. They typically formulated it as an optimization

problem with centralized solutions. These approaches are
susceptible to a single point of failure and do not adapt to
evolving service demands or emerging hotspots. We thus focus
on a decentralized approach where each UAV autonomously
makes scheduling decisions. We model the problem as a de-
centralized partially observable Markov decision process (dec-
POMDP) with a goal for a UAV to maximize its accumulated
service reward. Our work was inspired by [3], which used
a deep recurrent Q-network (DRQN) algorithm to maximize
coverage in a target area. Unfortunately, their results were
inferior to a prior game-theoretic work [4] regarding service
coverage ratio. Therefore, we propose replacing DRQN with
an Advantage Actor-Critic (A2C) algorithm for performance
improvement. Like [3], we use the long short-term memory
(LSTM) [5] technique in our neural network to effectively
handle and understand sequential data, which is valuable in our
scenario as our UAVs have limited observations. Our approach
incorporates two advanced techniques. The first technique
involves storing recurrent states, while the second involves
reserving a portion of the training sequences for a burn-in
period [5].

The contributions of this paper follow:

• We propose a decentralized method based on deep rein-
forcement learning (DRL) for individual UAV with partial
observation to autonomously determine its charging and
serving schedule.

• The method enhances the resilience of UAV service as
each UAV’s behavior and performance is resistant to
the variation of the system (e.g., the size of the UAV
swarm). This feature provides us the flexibility to adjust
the number of on-duty UAVs dynamically to adapt to
time-varying service demands.

• Simulation results indicate that our method yields a
higher coverage ratio compared to prior work [4, 3] under
different numbers of on-duty UAVs.

The rest of the paper is organized as follows. Sec. II
reviews related work. Sec. III presents our system model.
Then, Sec. IV formulates the UAV scheduling problem. In
Sec. V, we introduce our algorithm and some design details.
Sec. VI demonstrates the simulation results compared to other
methods. We conclude this paper in Sec. VII.

II. RELATED WORK

The issue of UAV deployment has recently been the subject
of widespread scholarly attention. A range of solutions has



been suggested for diverse scenarios and settings. This section
provides an overview of these studies.

A. Service Coverage Optimization

Several studies assumed that ground users are all under
the signal coverage of UAVs [6, 7], overlooking the fact that
complete coverage may not always be achievable in real-world
scenarios. Some other studies attempted to maximize the ratio
of the target field that UAVs cover [8] [9].

Many studies [1] [10] have explored UAV missions that
provide complete services or surveillance coverage over target
areas. Some studies [11, 6] considered UAV energy capacity in
providing seamless coverage over a target area. However, these
methods assumed uniform network demands across the target
area. By contrast, we consider maximizing service coverage
over a target area with non-uniform service demands and a
fixed number of UAVs (each with a limited energy supply).
Our approach can provide seamless coverage when sufficiently
many UAVs are involved.

B. Energy Efficient UAV Control and Charging Strategies

Some studies (e.g., [12]) considered UAV energy constraints
in delivering network services to a specific area or set of
users. However, energy-efficient designs may not guarantee
sustainable network service if the designs do not consider UAV
energy replenishment by battery replacement or recharging.
The concept of recharging scheduling has been demonstrated
in numerous studies [3] [13]. Liu et al. [14] coordinated
UAVs to execute recharging and service delivery to maximize
data collected by the UAVs. Han et al. [15] planned a UAV
recharging schedule to ensure extended area monitoring. Sun
et al. [16] proposed a charging and service strategy to provide
agricultural plant protection.

C. Deep Reinforcement Learning

Several researchers have designed centralized algorithms to
direct UAV missions [16, 8]. Many researchers have shifted
towards a decentralized approach for a more practical and
robust design. One direction of the distributed method is game-
theoretic designs [10, 17, 4]. However, these designs typically
require complete information for the game process, which may
not always be feasible in real-world situations.

In response, some researchers have proposed alternative
methods grounded in DRL [11, 12, 6, 18]. In particular,
Chen and Yen [3] proposed a DRL-based approach for the
game-theoretic design in [4] to eliminate the requirement for
complete information. Unfortunately, their solution exhibited
inferior service coverage radios compared to [4]. Our work is
a follow-up design of [3] that takes the same system model
and problem formulation but uses an alternative approach.

III. SYSTEM MODEL

We modified the system model in [3]. We assume a set of U
UAVs U = {1, 2, . . . , u, . . . , U}. We divide the service time
into consecutive time slots T = {1, 2, . . . , t, . . . }. A UAV
can choose one of four possible actions in each time slot.

Serving to deliver service to the current area. Recharging is to
recharge the battery at a charging station. Flying is to fly to
a different area for serving or charging. Resting is to standby
at the current location. These actions account for associated
micro-actions such as landing or taking-off needed for possible
transitions between actions.

The target area is equally divided into subareas A. Each
subarea a ∈ A requests da UAVs to fulfill its service demand.
Charging stations are set up in some subareasM⊆ A. We use
C(a) to indicate where a charging station is located in subarea
a ∈ A. There are lm charging slots in each charging station m,
which permits at most lm UAVs to recharge simultaneously.

We denote the location of UAV u at time slot t as Lt
u ∈ A.

We denote the sets of subareas that UAV u can observe and
serve at time t as Ot

u and Stu, respectively. When UAV u is
in subarea a, the set of subareas that UAV u can relocate in
the next time slot is denoted by Ru(a).

The energy capacity and the remaining energy of each UAV
u at time t are bmax

u and btu joules (J), respectively, with 0 ≤
btu ≤ bmax

u . The energy charging rate of UAV u is ku J per
time slot. The energy consumption of a UAV depends on its
actions. We denote the energy consumption of serving and
flying for a time slot as eser

u and efly
u J, respectively.

IV. PROBLEM FORMULATION

We formulate the coverage maximization problem and
present the decentralized partially observable Markov decision
process (dec-POMDP).

A. Maximizing Accumulated Service Satisfaction Level

We use ctu, xt
u, and f t

u to indicate whether UAV u is
charging, serving, and flying, respectively, in time slot t. We
use Lt

u,a ∈ {0, 1} to denote whether UAV u is in subarea a
at time t. The mission and charging scheduling problem is to
determine the values of ctu, xt

u, f t
u, and Lt

u,a, for each UAV u
in each time slot t to maximize the total accumulated service
satisfaction level (SSL) across the entire target area A over
time interval T :

max
ctu,x

t
u,f

t
u,Lt

u,a

∑
t∈T

∑
a∈A

zta, (1)

where zta is the SSL in subarea a ∈ A at time t. The value
of zta is da if at least da UAVs serve a at time t. It is zero
otherwise. This definition gives a subarea an SSL proportional
to its service demand if the demand is satisfied.

The objective is subject to the following constraints:

∑
a∈A
Lt
u,a = 1 ∀u ∈ U ,∀t ∈ T , (2)∑

u∈U
(ctu × Lt

u,a) ≤ lm, ∀a ∈M,∀t ∈ T , (3)

xt
u × eser

u ≤ bt−1
u , ∀u ∈ U ,∀t ∈ T , (4)

f t
u × efly

u ≤ bt−1
u , ∀u ∈ U ,∀t ∈ T , (5)



ctu + xt
u + f t

u ≤ 1, ∀u ∈ U ,∀t ∈ T , (6)
ctu ≤ C(Lt

u), ∀u ∈ U ,∀t ∈ T , (7)

Lt+1
u ∈ Ru(Lt

u), ∀u ∈ U ,∀t ∈ T , (8)

Eq. (2) asserts that a UAV can only be located in a single
subarea. Eq. (3) ensures that the number of UAVs concurrently
charging at one station cannot exceed the number of available
charging slots. The residual energy of UAV u at the end of
time t can be calculated by

btu = bt−1
u + ctu × ku − xt

u × eseru − f t
u × eflyu , (9)

where bt−1
u represents the remaining battery level of UAV u

at time t− 1, and the other terms express the energy regained
from charging, consumed while serving, and expended dur-
ing movement, respectively. Eq. (4) and (5) impose energy
constraints on the UAVs, prohibiting them from running out
of energy by serving and flying, respectively. Since a UAV
can perform only one action at a time, we have the constraint
ctu + xt

u + f t
u ≤ 1 as shown in (6). When ctu, x

t
u, and f t

u are
all zeros, the UAV chooses to rest. Eq. (7) specifies that UAVs
can only recharge at designated charging stations. Finally, Eq.
(8) enforces that a UAV’s velocity cannot exceed its defined
limit.

B. Dec-POMDP

A UAV’s decision-making can be modeled as a Markov
decision process (MDP), where the UAV as an agent chooses
an action a based on the current state s of the system.
The action causes a state transitions to a new state s′ with
probabilities T (s, a, s′) and a corresponding reward R(s, a, s′)
for the agent. Because an agent’s reward depends on other
agents’ actions, this situation forms a stochastic game, and
the decision-making of all UAVs becomes a multi-agent MDP
(MMDP). We assume UAVs make decisions independently,
turning the problem into a decentralized MMDP. Solving
decentralized MMDP is challenging, as agents’ policies may
not converge to a stable yet optimal result. For stability, this
game has been proven an exact potential game (EPG) [4]. To
reduce possible state space, we assume homogeneous UAVs,
attempt training an MDP, and let each UAV use the same
MDP to make its own decision. The optimal MDP provides
an action for a general agent in each state to maximize the
agent’s expected reward over a potentially infinite horizon.

Since UAVs only have partial observation, we refer to
decentralized, partially observable MDP (dec-POMDP). In
a dec-POMDP, every agent i holds an individual policy
πi that maps the history of its observations and actions
Ht

i = o1i , a
1
i , o

2
i , a

2
i , . . . , o

t−1
i , at−1

i , oti into respective actions
ati. Here, oti and ati signify the observation received and the
action taken by agent i, respectively, at time t. The policy
space π = Πiπi collects all combinations of individual
policies. The goal is to identify the optimal joint policy π∗ ∈ π
that maximizes the cumulative reward as indicated in (1).

We detail the components of our dec-POMDP model as
follows. The state space at time slot t consists of {Lt

u}u∈U ,
{btu}u∈U , {d′a}a∈A, and {l′m}m∈M, where d′a is the number
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Figure 1: Our training framework.

of UAVs still needed to fulfill the service demand in subarea
a and l′m is the number of available charging slots in charging
station m. The information that each UAV u can observe at
time slot t includes btu, {d′a}a∈Ot

u
, and {l′m}m∈Ot

u
, where Ot

u

is the set of subareas observable by u at time slot t. The action
space of each UAV is {Serving,Moving,Charging,Resting}.

V. PROPOSED APPROACHES

We take the centralized training distributed execution
(CTDE) framework, where a server oversees the learning
processes of all agents, and each agent independently executes
its policy within the environment. In the training phase, the
server compiles all agents’ experiences within a shared replay
buffer. These experiences are then used to update policies and
value functions across all agents. We decouple target values
from the updating parameters, which effectively addresses the
training instability caused by the shifting target problem. After
the training, each agent obtains the updated policy from the
server. The fact that the trained policy universally applies to
all agents makes UAV deployment flexible, as it facilitates the
addition of extra UAVs into the target area. Fig. 1 depicts our
training framework.

A. Model Architecture

We use two policies for UAVs: one for high energy levels
and the other for low energy levels. These policies are imple-
mented as two neural networks (NNs), which take {d′a}a∈Ot

u

and {l′m}m∈Ot
u

, respectively, as inputs. Each NN uses two
convolutional layers (CLs) to interpret the observations, fol-
lowed by an LSTM layer to facilitate decision-making using
historical data. Each NN concludes with a fully connected
(FC) layer at the end to produce the output.

We set up E episodes for the training procedure, each
comprising T discrete time slots. At the beginning of each
episode, we initialize relevant settings such as subareas’ ser-
vice demands da and charging station locations. The UAVs
are initially dispersed over the target field to provide training
diversity as each UAV u’s location determines its initial



observation oinit
u . UAVs then take turns to act, one at each time

slot. UAV u’s selection of its action atu in time slot t is based
on its observation otu while accounting for some random noise
N to promote exploration (i.e., not sticking to deterministic
actions). The action causes a state transition, and u receives
the corresponding reward rtu by the following rule.

• If atu is flying, u receives a high penalty if it moves out
of the target field and a small reward otherwise.

• If atu is serving and btu > eser
u , rtu sums up a reward rtu(a)

from each subarea a ∈ Stu. The value of rtu(a) is da if
zta ≥ da and u is among the first da UAVs that serve a.
The value is zero otherwise.

• rtu is a penalty if u chooses flying or serving but btu ≤ eser
u

or btu ≤ efly
u .

• If atu is charging, btu < bmax
u , and l′a ≥ 1, u receives a

reward according to btu. It receives a penalty if btu equals
bmax
u or l′a = 0.

• u receives no reward in all other cases.
The current observation, action, reward, the observation of

the following state ot+1
u , and LSTM’s hidden and cell states

(ht
u and ctu), are kept in the shared replay buffer D as a

transition (otu, a
t
u, r

t
u, o

t+1
u , ht

u, c
t
u). All T transitions in an

episode are collected as a full trajectory.
The replay buffer can hold C full trajectories. When the

replay buffer gets full (i.e., after C episodes), we use it to
perform experience replay to update our policy network.

B. Advantage Actor-Critic Algorithm (A2C)

In the advantage actor-critic (A2C) reinforcement learning
algorithm, the actor determines the action to take in each state,
while the critic estimates the advantage of the chosen action.
The ultimate goal is to find the optimal policy that maximizes
the agent’s total accumulated reward

∞∑
t=0

γtR(st, at), (10)

where R(st, at) is the reward of taking action at in state st
and γ ∈ [0, 1] is the discount factor.

For an agent’s policy π(a|s) that takes action a in state s
at time t, the expected return is

Qπ(s, a) = Eπ

[ ∞∑
k=0

γkR(st+k, at+k)

∣∣∣∣∣ st = s, at = a

]
(11)

while the average expected return starting from state s is

Vπ(s) = Eπ

[ ∞∑
k=0

γkR(st+k, at+k)

∣∣∣∣∣ st = s, π

]
. (12)

We use the advantage function Aπ(s, a) to capture the effect
of taking action a in comparison to the average return in the
current state s:

Aπ(s, a) = Qπ(s, a)− Vπ(s). (13)

The emphasis is to approximate solely the state value
function Vπ(s) rather than both Qπ(s, a) and Vπ(s).
Because Qπ(s, a) can be reformulated as Qπ(s, a) =

E [R(st, at) + γVπ(st+1) | st = s, at = a, π], we have the fol-
lowing equation:

Aπ(s, a) = Eπ [R(st, at) + γVπ(st+1) | st = s, at = a, π]− Vπ(s).
(14)

The training aims to enhance the policy πθ(a|s), with θ
representing the policy network parameters. We apply the
advantage function to update the policy parameters:

θ ← θ + αθ∇θJ(θ), (15)

where

∇θJ(θ) = Eπ

[∑
t

∇θlogπθ(at|st)Aπ(st, at)

]
(16)

and αθ is the learning rate of the policy network. We also
use the advantage function to be our critic network model.
Therefore, the loss of a critic network parameters ω is

L(ω) = Eπ [R(st, at) + γVπ(st+1 | ω)− Vπ(st | ω)]2 . (17)

Consequently, we update the critic parameters ω by

ω ← ω + αω∇ωL(ω), (18)

where αω represents the critic network’s learning rate.

C. The Training Algorithm

Our prior work [3] performs experience replay using com-
plete trajectories, which can cause some potential issues as
pinpointed in [19]. Therefore, we randomly select trajectory
segments for training. Specifically, we randomly sample a
batch of B trajectory segments from D. Each segment is a
sequence of P consecutive transitions. The first P ′ < P
transitions in the segment are reserved for a burn-in stage,
which is to unroll the network and generate a start state. The
rest are then used to train our policy network.

For a random segment ending at time slot t′, the transitions
starting from time slot t′ − P to t′ − P + P ′ are replayed
to derive the hidden state ht′−P+P ′

u and cell state ct
′−P+P ′

u

of the LSTM in the burn-in state. The newly updated states
ĥt′−P+P ′

u and ĉt
′−P+P ′

u are then used to update the actor and
critic networks with the rest of the segment.

Critic updates involve minimizing the mean squared er-
ror (MSE) loss, expressed as L(ω) = 1

|B|
∑

B(r
k +

γVπ(o
k+1|ω′) − Vπ(o

k|ω))2, where k iterates from the first
to the last transition in the rest of the segment. Meanwhile,
actor updates rely on sampled policy gradients: ∇θJ(θ) =
1
|B|

∑
B∇θlogπθ(a

k|ok)Aπ(o
k, ak). Following the sequential

updates, target network parameters are updated using the soft
update equation ω′ = ω+(1−τ)ω′, where τ is the soft update
parameter.

VI. SIMULATION RESULTS

We evaluate the performance of our algorithm using simula-
tions. Two main measurements were service coverage ratio and
average residual energy. The performance of our approach was
compared to those of two counterparts: one based on the EPG
[4] and the other based on DRQN [3]. For a comparison, we
augmented DRQN with state storing and burn-in techniques.



A. Simulation Setting

We considered a grid of 10×10 square subareas, with each
subarea measuring 25 meters on each side. Each subarea
demanded the service from two (uniformly) or zero to seven
(non-uniformly) UAVs by default. We deployed five charging
stations, each with 3 to 9 charging slots. We deployed a swarm
of 4 to 40 UAVs. Each UAV had a service radius of 62.5
meters and an observation range of 112.5 meters. Each UAV
could move to one of the 3×3 neighboring subareas for its
following location. The battery capacity of the UAV was set
to 200 kilojoules (kJ). It took a UAV of 1 kJ for service or
flying to a subarea within a time slot. The charging rate was
0.5 to 2 kJ per time slot.

Our model training encompassed 100 episodes, with each
episode comprising 1000 time slots. The replay buffer was
capable of storing 400 episodes. The batch size was 8, coupled
with sequence length P = 20 and burn-in sequence length
P ′ = 5. We updated the actor and the critic with learning rates
of 0.001 and 0.002, respectively. The soft update parameter
was τ = 0.005.

B. Uniform Service Demand Distribution

We first set the service demand to da = 2 for all a ∈ A.
Fig. 2a to Fig. 2c depict how the service coverage ratio
improved with the number of UAVs and charging rate ku,
where the ratio is defined as the accumulated SSL to the
total demands over the entire duration of the simulation. When
ku = 0.5, the EPG approach outperformed DRQN and A2C.
However, its superiority disappeared when 12 or more UAVs
were involved with ku ≥ 1.0.

Fig. 2d provides insights into the average residual energy
ratio, i.e., the average ratio of btu to bmax

u throughout the experi-
ment. The EPG approach differed significantly from the others.
With a small number of UAVs, UAVs in EPG tended to engage
in service provision or movement, leading to a higher coverage
ratio but lower residual energy compared to the others. When
UAVs using EPG did not observe service demands, which
occurred when a large number of UAVs were involved, they
tended to perform charging to gain a charging reward. By
contrast, both DRQN and A2C exhibited a consistent trend
in energy preservation, regardless of the number of UAVs in
the field. UAVs in these approaches continuously traversed
the target field, searching for demands independently of the
presence of other UAVs or the charging rate. This persistent
movement consumed individual UAV energy but increased the
overall coverage ratio.

C. Non-Uniform Service Demand Distribution

We also conducted experiments with a clustered service
demand distribution. Specifically, two demand clusters were
on the field, each centered around regions with the highest
demand, gradually decreasing with distance from the center.

Fig. 3a to Fig. 3c illustrate the average coverage ratio con-
cerning the charging rate and the number of UAVs. Compared
to the results shown in Fig. 2, the performance of EPG reduced
significantly while those of DRQN and A2C did not. In fact,

the latter two algorithms even had improved performance
when few UAVs were involved. This result can be justified
by UAV residual energy shown in Fig. 3d, where DRQN and
A2C exhibited a consistent energy level, similar to previous
observations. By contrast, UAVs in EPG took too much time
to charge while there were still service demands to explore,
resulting in a high residual energy level but a low coverage
ratio.

VII. CONCLUSIONS

We have proposed a decentralized method based on A2C
and LSTM for UAVs with partial observation to determine
its charging and serving schedule autonomously. Our experi-
mental results have demonstrated that the proposed approach
outperforms the DRQN-based approach regarding coverage
ratio. The proposed approach outperformed the EPG-based
approach in case of a high charging rate or non-uniform
service demand distribution.

It is worth noting that we have not explicitly addressed the
altitude factor for UAVs in our setting. Considering the altitude
factor would add realism to the challenges faced in real-world
applications, and it stands as our future work.
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Figure 2: (a) to (c): Average coverage ratio and (d): average residual energy with increasing number of UAVs. (da = 2)

10 20 30 40

Number of UAVs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra

g
e
 C

o
v
e
ra

g
e
 R

a
ti
o

EPG

DRQN

A2C

(a) ku = 0.5

10 20 30 40

Number of UAVs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra

g
e
 C

o
v
e
ra

g
e
 R

a
ti
o

EPG

DRQN

A2C

(b) ku = 1.0

10 20 30 40

Number of UAVs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
A

v
e
ra

g
e
 C

o
v
e
ra

g
e
 R

a
ti
o

EPG

DRQN

A2C

(c) ku = 2.0

5 10 15 20 25 30 35 40

Number of UAVs

0

0.2

0.4

0.6

0.8

1

A
v
e
ra

g
e
 R

e
s
id

u
a
l 
E

n
e
rg

y
 R

a
ti
o

EPG (k
u
 = 0.5) EPG (k

u
 = 1.0) EPG (k

u
 = 2.0)

DRQN (k
u
 = 0.5) DRQN (k

u
 = 1.0) DRQN (k

u
 = 2.0)

A2C (k
u
 = 0.5) A2C (k

u
 = 1.0) A2C (k

u
 = 2.0)

(d) All ku’s

Figure 3: (a) to (c): Average coverage ratio and (d): average residual energy with increasing number of UAVs. (da: clustered distributed)
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