
CNN Inference Workload Distribution Considering
Accumulative Effect of Receptive Fields

I-Ting Ho, Li-Hsing Yen, and Yan-Wei Chen
Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

Abstract—Operating an artificial intelligence and machine
learning (AI/ML) model requires significant computing power,
posing a substantial challenge for edge devices with limited
resources. A potential way to accelerate the operations is to
distribute the workload to multiple collaborative devices. For
the inference using a convolutional neural network (CNN), the
workload distributed is complicated by the overlapping input
tensors among workers due to the accumulative effect of receptive
fields (AERF). This factor incurs extra communication time,
which was overlooked by prior studies. In this paper, we propose
an approach to CNN inference time minimization by aggregating
the inference workload distributed to multiple heterogeneous
computing devices. Our result shows a 10% speed-up against
the benchmark.

I. INTRODUCTION

Integrating AI/ML models with edge computing has given
rise to a novel research topic known as edge intelligence [1].
Edge intelligence may refer to the intelligent edge, which uses
AI/ML to assist resource management on the network edge, or
edge intelligence, which supports the training and inference of
AI/ML models on the network edge [2]. In particular, the latter
direction involves aspects such as data collection and model
offloading and is challenged by increasingly complex AI/ML
models and resource-constrained edge devices. The trend of
increasing model complexity demands more computing power,
which causes longer computation time for lightweight edge
devices. For this reason, many research efforts have been on
accelerating AI/ML execution by distributing the workload to
multiple servers on the network edge [1, 2, 3].

Edge servers can play an active role in various scenarios.
This paper assumes the cloud-assisted, edge-hosted AI sce-
nario [4], where cloud servers assist in training AI models
while edge servers perform inference. Use cases of this sce-
nario include automated driving and mobile virtual reality. We
focus on accelerating techniques for inference with convolu-
tional neural networks (CNNs) [5, 6]. Existing approaches to
CNN inference acceleration root in three main concepts: model
compression, early exiting, and model parallelism. Model
compression trades model accuracy for inference speedup.
Early exiting allows certain inference requests to stop infer-
ence midway to output results. Model parallelism overlaps the
inference process among several computing devices, which is
the main theme of this study.

The main idea of model parallelism is to allocate multiple
computing devices to perform the inference process in parallel
and merge the outputs for the final inference results. It consists
of two parts: model partition and workload distribution. The

former decomposes the inference model into multiple com-
ponents, while the latter distributes the inference workload to
computing devices. Although model parallelism reduces infer-
ence time, it also causes additional communication and waiting
time due to inherent component dependency. An optimal
solution should jointly consider computation, communication,
and waiting time.

For CNNs, convolutional layers (CLs) are associated with
massive floating-point operations, thus dominating overall
computation time [7, 8]. Layer-wise parallelism distributes the
inference workload of each individual CL into multiple parts to
shorten the inference time [9] or improve energy consumption
[10]. Block-wise parallelism fuse one or more CLs into a
fused block [11]) and distribute the inference workload of the
block to multiple devices to reduce the memory footprint [8]
or the inference time [12, 11]. A critical issue of block-wise
parallelism is layer fusing, i.e., to determine the set of CLs
fused into each block.

In each CL, kernel operation gets the value of each entry in
the output tensor via a dot product of a particular tensor called
kernel and a patch of the same size in the input tensor. Since
the output tensor of a CL is also the input tensor of the next
CL, an entry in the input tensor of a CL depends on the values
of a patch of the input tensor of the previous CL (known as
a receptive field (RF) [13]). The scope of an RF amplifies
when we trace back to an even earlier CL, meaning that the
overlapping area of RFs expands as a fused block gets longer.
This effect, referred to as accumulative effect of RF (AERF),
increases the amount of a block’s output tensors that a device
needs to pull from other devices for its input and thus introduce
additional communication and waiting time. However, prior
studies [11, 12] did not specifically address this issue.

This paper proposes a block-wise CNN partition and work-
load distribution approach that considers communication and
waiting time due to AERF to minimize the overall inference
time. The main contributions of our work follow:

1) We revise the inference time formula to incorporate the
impact of AERF.

2) We propose an algorithm that distributes the inference
workload of a block to multiple heterogeneous devices
to minimize the inference time of the block.

3) We propose a layer-fusing algorithm based on dynamic
programming to minimize the inference time of a whole
CNN.

We conducted experiments on multiple CNN models. The
experimental results show that the proposed solution outper-



Height 𝐻 = 6

Width 𝑊 = 6

4 channels
𝐷 = 4 Pedding 𝑝 = 1

Figure 1: A CL with four feature maps (channels), each of which is a 6× 6
tensor.

formed the previous work in [11] when devices differ signif-
icantly in computing power. In other scenarios, we achieved
the same acceleration result.

The remainder of the paper is organized as follows. Sec. II
provides background and an overview of related work. Sec. III
formulates the problem. Sec. IV details the proposed algo-
rithms for workload distribution and block-wise parallelism.
Sec. V shows the experimental results. The last section con-
cludes this paper.

II. BACKGROUND AND RELATED WORK

A. CNN Model

A CNN model typically comprises a stack of interleaved
convolutional layers (CLs) and pooling layers, with fully
connected layers connected at the end. Let CLl represent
the l-th CL. The data input to CLl consists of Dl equal-
sized channels. Each channel is a feature map, i.e., a two-
dimensional tensor with width Wl and height Hl. Hereafter,
we assume a square feature map so Wl = Hl. A feature map
is surrounded by a thin layer of padding pixels with width
pl, which are needed when performing kernel operations for
data pixels. Fig. 1 shows an example of a CL with four 6× 6
feature maps.

A kernel (also known as a filter or feature detector) for a
single channel is a two-dimensional (width × height) tensor
with values determined by training. We assume a kl × kl
kernel for the input feature map of CLl. A kernel for a
CL becomes three dimensional when all kernels of each
channel are combined. Kernel operations are fundamental to
the functioning of CLs, which involve sliding a kernel over
the input feature map and performing pixel-wise multiplication
followed by summation to produce a single value in the output
feature map. Another parameter called stride (sl for CLl)
determines the step size (in pixels) when sliding the kernel.
Kernel operations may reduce the dimension of each channel
but do not change the number of channels in that layer. Since
the output tensor of CLl is the input tensor of CLl+1, each
output feature map of CLl is of size Wl+1 × Hl+1. Fig. 2
shows an example of kernel operations in CLl.

The relationship between Hl+1 and Hl can be expressed as

Hl+1 =
(Hl − kl + 2pl)

sl
+ 1. (1)

𝐻 = 6

𝑘 = 3

𝑊ାଵ = 6
𝑝 = 1

Input Feature Map Output Feature Map

𝑠 = 1

𝐻ାଵ = 6

dot product 
with

the result

Kernel (3 × 3)

𝑊 = 6

𝑝 = 1

Figure 2: An example of kernel operations in CLl.

For each entry (i.e., pixel) in the output tensor of CLl,
the number of scalar multiplications performed by the kernel
operation is exactly the number of pixels in the kernel, which
is k2l ×Dl. Since there are Dl+1 output channels, the number
of floating-point multiplication operations (FLOPs) required
for CLl is [8], [11]:

k2l ·Dl ·Dl+1 ·Wl+1 ·Hl+1. (2)

B. Model Parallelism

A block-wise model parallelism fuses CLs into disjoint
blocks for workload distribution. Each device is designated
to produce a part of the output tensor of a block. For each
output entry in CLl that a device is supposed to produce, the
device must get the contents of the corresponding RF. Let fl
be the width of the RF for any output entry in CLl. We have
the following equation for fl [14]

fl =

{
kl, if l = 1,

fl−1 + (kl − 1)jl−1, otherwise,
(3)

where jl represents the jump (the cumulative stride) in CLl

given by

jl =

{
sl, if l = 1,

jl−1sl, otherwise.
(4)

C. Related Work

Table I lists existing research on accelerating CNN infer-
ence by model parallelism. Some approaches were designed
for layer-wise parallelism [9, 10]. Previous studies [12, 11]
reported that when computation resource was the bottleneck,
layer-wise parallelism reduced more computing time than
block-wise parallelism. By contrast, when communication
resource was the bottleneck, block-wise parallelism outper-
formed layer-wise parallelism.

Stahl et al. [8] considered block-wise parallelism and ana-
lyzed the impact of model partition on memory usage. How-
ever, they did not consider heterogeneous computing devices.
Hou et al. [12] proposed a greedy layer-fusing algorithm
together with a Deep Reinforcement Learning (DRL) approach
to workload distribution for block-wise parallelism.



Table I: Related Work

Work Heterogeneous
devices

Layer
fusing

Workload
Distribution AERF

[9] Yes No Proportional No
[10] Yes No LP-solver No
[8] No Yes Equal No

[12] Yes Greedy DRL No
[11] Yes DP Proportional No

This Work Yes DP Greedy Yes

Our work is mostly close to DPFP [11], which uses dynamic
programming for layer fusing and an iterative algorithm for
workload distribution. When allocating computing devices,
DPFP picks up the one with the highest computational capacity
first. It then checks to see if more devices should be allocated
to reduce the inference time further. This process continues
until no more devices are needed. Our work differs from [11]
in considering AERF in inference time calculation.

III. PROBLEM FORMULATION

We assume a set of N edge devices N = {1, 2, ..., N} with
uniform link rate γ between each pair. Each device has enough
memory capacity to execute a CNN model.

We assume a CNN model consisting of L CLs. Layer
fusing in prior work [12, 11] fuses CLs into blocks. Such
treatment does not prevent shortcuts across blocks, which
demands extra inter-block data exchange. Our work redefines
a block as the smallest possible set of consecutive CLs such
that no shortcut between two CLs crosses a block boundary.
Let B = {1, 2, · · · , B} be the set of such blocks. We assume
that each device has all the input data for the first block. We
then perform block grouping to fuse blocks into groups. We
use G = {1, 2, ..., G} to represent a set of G groups. Each
group is non-empty and consists of one or more consecutive
blocks. A possible block grouping for G can be characterized
by a vector β⃗ = (β1, β2, ..., βG), where βg is the index of the
ending block of group g for all g ∈ G.

We represent a workload distribution for group g by α⃗g =
(αg,1, αg,2, ..., αg,N ),∀g ∈ G, where αg,n is the number of
rows (i.e., the height) of the output tensor in the last CL of
group g that are allocated to device n. A specific workload
distribution for G is represented by α⃗ = (α⃗1, α⃗2, ..., α⃗G),
where α⃗g = (αg,1, αg,2, ..., αg,N ).

Let the computation and communication time of device n
in group g be T comp

g,n and T comm
g,n , respectively. Our problem is

to determine the number of groups G, a block grouping β⃗,
and a workload distribution for each group α⃗ such that

min
G∈B,β⃗,α⃗

∑
g∈G

(
max
∀n∈N

{
T comp
g,n

}
+
∑

∀n∈N

T comm
g,n

)
(5)

subject to 1 ≤ β1, βg < βg+1,∀g ∈ G \ {G}, βG = B, and∑
n∈N

αg,n = Heg+1, ∀g ∈ G, (6)

where eg is the index of the last CL in group g. (6) demands
that all workload in each group should be fully distributed.

IV. PROPOSED APPROACH

We first show how to compute each device’s computation
and communication time for a given workload distribution in
a group. We then propose two algorithms for our problem.
Bottleneck-Improving Allocation (BIA) finds a workload dis-
tribution for a given group. It is time efficient but may end
up with a local optimum. The other algorithm uses dynamic
programming (DP) collaborating with BIA to find an optimal
block grouping.

A. Computation Time Formulation

The computation time of a device is proportional to the
number of FLOPs performed by the device [11, 8]. Let µn

be the number of FLOPs per second (FLOPS) device n can
perform. The computation time of device n in group g is

T comp
g,n =

Fg,n

µn
,∀n ∈ N ,∀g ∈ G, (7)

where Fg,n is the number of FLOPs performed by device n
in group g. The value of Fg,n is determined by the number
of consecutive rows in the output tensor of group g (more
explicitly, the last CL of group g) allocated to device n.

For any CL l in group g, let OSl
g,n and OEl

g,n denote the
indices of the starting and the ending rows, respectively, of
the output tensor allocated to device n. OSl

g,n and OEl
g,n

determine Hl+1,n, the height of the output tensor allocated
to device n in the CL, as

Hl+1,n =

{
0, if αg,n = 0,

OEl
g,n − OSl

g,n + 1, otherwise.
(8)

We compute OSl
g,n and OEl

g,n sequentially from the last
CL to the preceding CLs, progressing backward through the
group. For the last CL in group g denoted by eg , it is easy to
see that OSg,n =

∑n−1
k=1 αg,k + 1 and OEg,n =

∑n
k=1 αg,k.

We can follow the definition of the RFs to compute OSl
g,n and

OEl
g,n for other l ̸= eg . It turns out that OSl

g,n = max{1, 1−
pl+1+(OSl+1

g,n −1)·sl+1} and OEl
g,n = min(Hl+1, (1−pl+1+

⌊(kl+1 − 1)/2)⌋) + (OEl+1
g,n − 1) · sl+1 + ⌊(kl+1 − 1)/2)⌋).

By (2), we have

Fg,n =

eg∑
l=eg−1+1

k2l ·Dl ·Dl+1 ·Wl+1 ·Hl+1,n. (9)

B. Communication Time Formulation

Because of the model partition, each device may not have
all the required input data and must pull the missing input data
from other devices. This activity causes communication time,
which is equal to the number of bytes transmitted divided by
the transmission rate.

No communication time is needed for the first block because
each device has the entire input tensor. Therefore, T comm

1,n = 0
for all n ∈ N . For any other group g ̸= 1, each device only
receives a range of the input tensor. We can calculate the range
by tracing back the RF areas starting from the part of the
output tensor of the same group that is allocated to the device.



Let RDg,n be the number of rows in the input tensor of group
g but not in the output tensor of group g− 1 that is allocated
to device n. Assuming a 32-bit floating-point number for each
pixel, the communication time for device n in group g is

T comm
g,n =

4 ·Deg−1+1 ·Weg−1+1 · RDg,n

γ
, ∀n ∈ N . (10)

We derive the value of RDg,n as follows. Let ISg,n and IEg,n

denote the indices of the starting and ending rows, respectively,
of the input tensor allocated to device n in group g. The values
of ISg,n and IEg,n can be calculated by OSg,n, OEg,n and RF
[11]:

ISg,n = max(1, σeg +(OSg,n− 1)jeg −⌊(feg − 1)/2⌋), (11)

IEg,n = min(Heg−1+1, σeg + (OEg,n − 1)jeg + ⌊(feg − 1)/2⌋).
(12)

The definitions of fl and jl are the same as in (3) and (4)
except that fl = kl and jl = sl when l = eg−1 + 1 (i.e., the
first CL in group g). The value of σl is as follows.

σl =

{
1− pl + ⌊(kl − 1)/2⌋, if l = eg−1 + 1,

σl−1 + (⌊(kl − 1)/2⌋ − pl)jl−1, otherwise.
(13)

Let OSg,n and OEg,n represent the starting and ending rows,
respectively, of the output tensor of group g that are allocated
to device n. We have

RDg,n = max(OSg−1,n − ISg,n, 0) + max(IEg,n − OEg−1,n, 0).
(14)

C. Bottleneck Improving Allocation (BIA)
The workload for distribution in group g is the total number

of rows in the output tensor, Hβg+1. Workload distribution
determines the inference time of a device. The inference
time of device n in group g is the sum of (T comm

g,n ) and
(T comp

g,n ). A device with the largest inference time in group g
represents the bottleneck of the current allocation. BIA shown
in Algorithm 1 initially allocates all rows to the device with
the largest computation capacity. It then iteratively attempts
to improve the inference time by shifting one workload unit
(i.e., one row of the output tensor) from the bottleneck device
to the one with the shortest inference time. Time complexity
of BIA is O(Hβg+1 ·N ).

D. Block Grouping Algorithm
The block grouping algorithm determines whether each

block should be in the same group (as the previous block)
or start a new one. Therefore, there are 2B possible ways of
block grouping. In the case when every block is a group, the
solution space of workload distribution is

∏
i∈B

(Hei+1+N−1
N

)
[15].

As we were inspired by [11], an optimal grouping is the
optimal first group followed by the optimal grouping for the
remaining set of blocks. We use Algorithm 2 to decide a new
group from the remaining blocks. The newly created group
will invoke BIA to calculate an inference time. Algorithm 3
finds an optimal grouping by checking all possible grouping
solutions. It works like a variant of matrix chain multiplication.

Algorithm 1 Bottleneck-Improving Allocation (BIA)
Input: CNN model C, computation capacity {µn}n∈N , ending convo-

lution layer βg starting convolution layer βg−1 +1, workload distribution of
previous group α⃗g−1

Output: workload distribution α⃗g and bottleneck time
1: procedure BIA(βg−1 + 1, βg , α⃗g−1)
2: α⃗g ← (0, 0, · · · , 0)
3: n̄← argmaxn∈N {µn}
4: αg,n̄ ← Heβg+1

5: Calculate T
comp
g,n̄ by (7)

6: Calculate T comm
g,n̄ by (10)

7: repeat
8: Tmax

g ← T
comp
g,n̄ + T comm

g,n̄ .

9: T
opt
g ← Tmax

g
10: for each device n ∈ N \ {n̄} do
11: α⃗g

′ ← α⃗g with 1 row shifted from n̄ to n
12: Calculate T

comp
g,n according to α⃗g

′

13: Calculate T comm
g,n according to α⃗g

′, α⃗g−1

14: if T comp
g,n + T comm

g,n < T
opt
g then

15: T
opt
g ← T

comp
g,n + T comm

g,n
16: k ← n
17: end if
18: end for
19: if T opt

g < Tmax
g then

20: Update α⃗g by shifting 1 row from n̄ to k
21: Update T

comp
g,n and T comm

g,n for all n ∈ N
22: n̄← argmaxn∈N (T

comp
g,n + T comm

g,n )
23: end if
24: until T opt

g ≥ Tmax
g

25: return (α⃗g , T
comp
g,n̄ + T comm

g,n̄ )
26: end procedure

Algorithm 2 Best Partition Point (BPP)
Input: indices of starting and ending blocks: i and j; workload distribu-

tion of block i− 1: α⃗′

Output: inference time t∗

1: procedure BPP(i, j, α⃗′)
2: if ∃t such that ({i, j, α⃗′}, t) ∈ T then
3: return t
4: end if
5: t∗ ←∞.
6: β ← i
7: for each k in [i, j] do
8: (α⃗, ti,k)← BIA(i, k, α⃗′)

9: tk+1,j ←
{
0, if k + 1 > j,

BPP(k + 1, j, α⃗), otherwise.
10: if ti,k + tk+1,j < t∗ then
11: t∗ ← ti,k + tk+1,j

12: β ← k
13: end if
14: end for
15: add ({i, j, α⃗′}, β) to P
16: add ({i, j, α⃗′}, t∗) to T
17: return t∗

18: end procedure

V. NUMERICAL RESULTS

We performed experiments to evaluate the performance of
our approach in comparison with those of the following four
alternatives. a) DPFP [11]. b) BG-BW, a variant of BG-
FW that performs block grouping backward. c) Single-Block
Parallelism (SBP), a degraded version of DPFP that performs
workload distribution assuming all single-block groups. d) No
parallelism, which executes the entire CNN model on the most



Algorithm 3 Block Grouping: Forward (BG-FW)
Input: CNN model C; Computation capacity {µn}n∈N
Output: Grouping strategy β⃗

1: procedure BG-FW(C, {µn}n∈N )
2: T ← ∅ ▷ Hash table to keep inference time
3: P ← ∅ ▷ Hash table to keep grouping result
4: (α⃗, t1,1)← BIA(1, 1, α⃗′)
5: t← BPP(1, B, α⃗) ▷ get best time
6: i← 1; g ← 1
7: while i ≤ B do ▷ loop to collect grouping results
8: get ({i, B, α⃗}, y) from P
9: βg ← y

10: i← y + 1; g ← g + 1
11: end while
12: end procedure

10 20 30 40 50 60

Computation capacity of Device 1 (GFLOPS)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

In
fe

re
n

c
e

 t
im

e
 (

s
e

c
.)

BG-FW

BG-BW

DPFP

SBP

No Parallelism

(a) Effect of computation capacity

400 500 600 700 800

Data transmission rate (Mbps)

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

In
fe

re
n

c
e

 t
im

e
 (

s
e

c
.)

BG-FW

BG-BW

DFDP

SBP

No Parallelism

(b) Effect of transmission rate

Figure 3: Results with VGG16 (Default: γ = 560 Mbps, (µ1, µ2, µ3, µ4) =
(50, 10, 10, 10) GFLOPS)

powerful device. We assumed four computing devices, where
Device 1 had five times the computational capacity (in FLOPS)
of any others. The default transmission data rate γ is 560
Mbps. We tested three popular CNN models: (a) VGG16 [16]
(b) Resnet-34 [17] (c) Darknet-53 [18] in the experiments.

A. Scenario:VGG16

For VGG16, each block consists of only one CL since there
is no shortcut between CLs. Fig. 3a shows how the inference
time decreased as device computation capacities increased. No
Parallelism relied on the most powerful device (Device 1) to
perform the inference alone and thus had a longer inference
time than any other approach. However, the performance gap
shrank when Device 1 became powerful enough to perform the
inference alone. With 60 GFLOPS, No Parallelism performed
even better than SBP due to the extra communication time
between devices in SBP.

By contrast, all approaches, excluding No Parallelism, ben-
efited from increased transmission rate (Fig. 3b), but the
proposed approach outperformed all others due to the con-
sideration of waiting and communication time. DPFP had a
shorter inference time than SBP because DPFP additionally
considered layer fusing to further reduce communication time.

BG-FW outperforms BG-BW due to the inherent structure
of CNN. In CNNs, the early layers are more amenable to
parallelism, and the impact of AERF is relatively minimal.
Conversely, the later layers exhibit a reversed pattern. BG-BW
initially prioritizes parallel execution for the later layers, but
this approach overlooks the fact that excessive parallelism may

10 20 30 40 50 60

Computation capacity of Device 1 (GFLOPS)

0.5

1

1.5

2

2.5

3

3.5

4

In
fe

re
n

c
e

 t
im

e
 (

s
e

c
.)

BG-FW

BG-BW

DPFP

SBP

No Parallelism

(a) Effect of computation capacity

400 500 600 700 800

Data transmission rate (Mbps)

0.6

0.65

0.7

In
fe

re
n

c
e

 t
im

e
 (

s
e

c
.)

BG-FW

BG-BW

DPFP

SBP

No Parallelism

(b) Effect of transmission rate

Figure 4: Results with Resnet-34 (Default: γ = 560 Mbps, (µ1, µ2, µ3, µ4)=
(5, 1, 1, 1) GFLOPS)

0 5 10 15 20

Block Index

0

0.01

0.02

0.03

0.04

0.05

T
im

e
 (

s
e
c
.)

Device 1

Device 2

Device 3

Device 4

Comm. Time

(a) DPFP

0 5 10 15 20

Block Index

0

0.01

0.02

0.03

0.04

0.05

T
im

e
 (

s
e
c
.)

Device 1

Device 2

Device 3

Device 4

Comm. Time

(b) BG-FW

Figure 5: Computation time of each device and total communication time in
(a) DPFP and (b) BG-FW

not be ideal for these layers. As a result, BG-BW performed
worse than BG-FW.

B. Scenario:Resnet-34

For Resnet-34, a block might consist of more than one CL
due to shortcuts across CLs. Fig. 4a shows how the inference
time decreased with increased device computation capacities,
which repeats the same trend as shown in Fig. 3a. When the
computation capacities were lower, inference time benefited
from parallel inference.

Fig. 4b shows the impact of transmission rate on inference
time. The performance gap between BG-FW and DPFP was
larger than that shown in Fig. 3b. This is because a block
in Resnet-34 might contain multiple CLs, and thus, a device
generally needs to pull more data from other devices due
to the AERF. Because DPFP overlooked this communication
overhead, it distributed the workload to only two devices for
parallel inference (Fig. 5a). By contrast, BG-FW allocated four
devices for inference (Fig. 5b), resulting in an overall small
inference time at the cost of a slightly higher communication
time. BG-FW and BG-BW behaved similarly, which suggests
that the direction of block grouping did not matter for Resnet-
34.

C. Scenario:Darknet-53

Like Resnet-34, a block in Darknet-53 might consist of more
than one CLs due to shortcuts across CLs. Fig. 6a shows the
impact of computation capacility on inference time, which is
similar to the results of the other models.

Fig. 6b shows the impact of transmission rate on inference
time. When the transmission rates were low, No Parallelism
performed better than SBP because it incurred no communica-
tion time, and DPFP performed identically to No Parallelism



10 20 30 40 50 60

Computation capacity of Device 1 (GFLOPS)

0

0.2

0.4

0.6

0.8

1

In
fe

re
n

c
e

 T
im

e
 (

s
e

c
.)

BG-FW

BG-BW

DPFP

SBP

No Parallelism

(a) Effect of computation capacity

400 500 600 700 800

Data transmission rate (Mbps)

0.17

0.18

0.19

0.2

In
fe

re
n

c
e

 t
im

e
 (

s
e

c
.)

BG-FW

BG-BW

DPFP

SBP

No Parallelism

(b) Effect of transmission rate

Figure 6: Results with Darknet-53 (Default: γ = 560 Mbps,
(µ1, µ2, µ3, µ4)= (50, 10, 10, 10) GFLOPS)

because DPFP also incurred no communication time by strate-
gically placing all workloads on a single device. BG-FW and
BG-BW outperformed DPFP due to the consideration of the
AERF and the use of more devices. The performance gap was
smaller than that for Resnet-34 because Darknet-53 had fewer
channels and a smaller kernel size in the starting layer.

VI. CONCLUSIONS

We have proposed a block-wise CNN partition and work-
load distribution approach that considers AERF to minimize
the overall inference time. The approach uses dynamic pro-
gramming to fuse blocks into groups and attempts to improve
inference time in each group by iteratively adjusting one
unit of workload. Simulation results show that the proposed
approach performed better than its counterparts, particularly
when more devices with lower computing power were in-
volved. The improvement ratio depends on the CNN archi-
tecture. Further work is needed to optimize our algorithm for
more complex AI/ML models such as Transformer, which
is more intricate than CNN but still shares some common
properties such as AERF.

ACKNOWLEDGMENT

This work was supported by the National Science and
Technology Council of Taiwan under grant number NSTC
113-2218-E-A49-027.

REFERENCES

[1] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and
A. Y. Zomaya, “Edge intelligence: The confluence of
edge computing and artificial intelligence,” IEEE Internet
Things J., vol. 7, pp. 7457–7469, Aug. 2020.

[2] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan,
and X. Chen, “Convergence of edge computing and
deep learning: A comprehensive survey,” IEEE Commun.
Surveys Tuts., vol. 22, pp. 869–904, Apr. 2020.

[3] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, T. Jiang,
J. Crowcroft, and P. Hui, “Edge intelligence: Empow-
ering intelligence to the edge of network,” Proc. IEEE,
vol. 109, pp. 1778–1837, Nov. 2021.

[4] M. Li, J. Gao, C. Zhou, X. Shen, and W. Zhuang,
“Slicing-based artificial intelligence service provisioning
on the network edge,” IEEE Veh. Technol. Mag., vol. 16,
no. 4, pp. 16–26, Dec. 2021.

[5] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili,
Y. Duan, O. Al-Shamma, J. Santamarı́a, M. A. Fadhel,
M. Al-Amidie, and L. Farhan, “Review of deep learning:
concepts, CNN architectures, challenges, applications,
future directions,” J. Big Data, vol. 8, pp. 1–74, Jun.
2021.

[6] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey
of convolutional neural networks: Analysis, applications,
and prospects,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, pp. 6999–7019, Dec. 2022.

[7] Z. Zhao, K. M. Barijough, and A. Gerstlauer,
“DeepThings: Distributed adaptive deep learning infer-
ence on resource-constrained IoT edge clusters,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 37,
pp. 2348–2359, Nov. 2018.

[8] R. Stahl, A. Hoffman, D. Mueller-Gritschneder, A. Ger-
stlauer, and U. Schlichtmann, “DeeperThings: Fully dis-
tributed CNN inference on resource-constrained edge
devices,” Int. J. Parallel Program., vol. 49, pp. 600–624,
Aug. 2021.

[9] T. Mohammed, C. Joe-Wong, R. Babbar, and M. D.
Francesco, “Distributed inference acceleration with adap-
tive DNN partitioning and offloading,” in Proc. IEEE
INFOCOM, 2020, pp. 854–863.

[10] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang,
“CoEdge: Cooperative DNN inference with adaptive
workload partitioning over heterogeneous edge devices,”
IEEE/ACM Trans. Netw., vol. 29, pp. 595–608, Apr.
2021.

[11] N. Li, A. Iosifidis, and Q. Zhang, “Collaborative edge
computing for distributed CNN inference acceleration us-
ing receptive field-based segmentation,” Comput. Netw.,
vol. 214, Sep. 2022.

[12] X. Hou, Y. Guan, T. Han, and N. Zhang, “DistrEdge:
Speeding up convolutional neural network inference on
distributed edge devices,” in Proc. IEEE IPDPS, May
2022, pp. 1097–1107.

[13] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding
the effective receptive field in deep convolutional neural
networks,” in Proc. NIPS’16, 2016, p. 4905–4913.

[14] “Receptive field calculations for convolutional neural
networks,” https://rubikscode.net/2021/11/15/receptive-
field-arithmetic-for-convolutional-neural-networks/,
accessed: 2024-05-8.

[15] L. H. Yen, C. Y. Cheng, and Y. Su, “State transition
reduction for sleep scheduling in IEEE 802.16e mobile
subscriber stations,” Telecommun. Syst., vol. 53, pp. 247–
261, Jun. 2013.

[16] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” 2014,
arXiv:1409.1556.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proc. IEEE/CVF
CVPR, 2016, pp. 770–778.

[18] J. Redmon and A. Farhadi, “Yolov3: An incremental
improvement,” 2018, arXiv:1804.02767.


