
FOCOM-Enabled Automation and Closed-Loop
Control for Multi-Cloud O-Cloud Deployments

Tse-Han Wang∗†, Yi-Fan Li∗, Li-Hsing Yen∗, and Chien-Chao Tseng∗
∗Department of Computer Science, College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.

Email: {wangth, liyf0404, lhyen, cctseng}@cs.nycu.edu.tw
†Network Management Laboratory, Chunghwa Telecom Laboratories, Taoyuan, Taiwan.

Abstract—The O-RAN Alliance introduces the O2 interface
to support interoperable infrastructure management across het-
erogeneous O-Cloud environments. However, achieving unified
and scalable lifecycle management remains challenging due to
the diversity of cloud platforms. This paper proposes a generic,
O-RAN-compliant Infrastructure Management Services (IMS)
framework that integrates an abstraction-layer-based design with
automation tools to support seamless multi-cloud interoperability.
A FOCOM-enabled mechanism is developed to automate the
initialization of both O-Cloud and IMS instances. Experimen-
tal evaluations demonstrate the effectiveness of the proposed
framework in three scenarios: (1) closed-loop control for energy-
efficient node management, (2) automated IMS and O-Cloud
deployment, and (3) large-scale IMS performance under emu-
lated O-Cloud topologies. Results show successful node scaling
in response to workload thresholds, efficient IMS initialization
within 306 seconds, and scalable IMS operation across 2500 simu-
lated nodes. These findings validate the framework’s applicability
to real-world O-RAN deployments and its potential for AI/ML-
driven, cross-domain resource optimization.

Index Terms—Open RAN, O-Cloud, Infrastructure Manage-
ment, Closed-loop Control, Automation, Interoperability

I. INTRODUCTION

Traditional telecommunications networks are often hindered
by vendor lock-in, limited flexibility, and high operational
expenses. To overcome these limitations, the O-RAN Alliance
has spearheaded the development of Open Radio Access
Networks (Open RAN), which advocate for interoperability
through standardized open interfaces and leverage virtualiza-
tion technologies to enhance network scalability and adapt-
ability. A cornerstone of this architectural evolution is the dis-
aggregation of base station functionalities into three modular
network elements: Radio Unit (RU), Distributed Unit (DU),
and Centralized Unit (CU). These elements are interconnected
through well-defined, open interfaces, enabling multi-vendor
deployments and fostering innovation.

The O-RAN architecture is fundamentally based on the NG-
RAN architecture [1] defined by 3GPP, inheriting its functional
split between CU and DU. However, O-RAN extends this
baseline by introducing additional open interfaces (e.g., A1,
E2, O1, O2) and service management entities, such as the
Near-Real-Time RAN Intelligent Controller (Near-RT RIC)
and Non-Real-Time RIC [2]. This design preserves backward
compatibility with existing 3GPP systems while promoting

openness, programmability, and end-to-end automation in
RAN deployments.

By incorporating Network Function Virtualization (NFV),
O-RAN enables RAN elements to be instantiated as Virtual
Network Functions (VNFs) or Containerized Network Func-
tions (CNFs), which can operate across heterogeneous cloud
environments. When these environments are compliant with
O-RAN specifications, they are referred to as O-Clouds. The
Service Management and Orchestration (SMO) framework
is responsible for orchestrating and managing the lifecycle
of these network functions. To ensure seamless interaction
between SMO and O-Cloud platforms, the O-RAN Alliance
has defined the O2 interface, which comprises two subinter-
faces: O2 Infrastructure Management Services (O2ims) for
infrastructure-level monitoring and resource management, and
O2 Deployment Management Services (O2dms) to orchestrate
the deployment of O-RAN network functions [3].

Through the O2 interface, SMO can gain visibility into
heterogeneous, multi-vendor cloud infrastructures and imple-
ment closed-loop automation for efficient resource utiliza-
tion [4], ultimately reducing operational and capital expendi-
tures (OPEX/CAPEX). However, managing such diverse en-
vironments, including public, private, and on-premise clouds,
introduces substantial complexity. Thus, a generalized and
cloud-agnostic Infrastructure Management Service (IMS) ar-
chitecture is necessary to abstract and unify the underlying
cloud platform heterogeneity. Furthermore, as the deployment
of O-RAN scales, the need for reliable and automated IMS ini-
tialization and provisioning mechanisms becomes increasingly
critical.

Another pivotal requirement involves enabling Federated
O-Cloud Orchestration and Management (FOCOM), which
allows the SMO to access real-time resource states and per-
formance data from distributed O-Cloud domains. Seamless
interoperation between FOCOM and other SMO components
is vital to achieving comprehensive system awareness and
coordination.

To address these challenges while adhering to O-RAN spec-
ifications, this paper makes the following key contributions:

• Generic IMS Architecture: A generalized IMS design
based on an abstraction-layer approach, facilitating seam-
less integration across heterogeneous O-Cloud platforms;



• FOCOM-enabled Automation Mechanism: An au-
tomated O-Cloud provisioning and IMS initialization
framework that leverages FOCOM to ensure consistent
deployment across diverse environments;

• FOCOM-SMO Interworking Mechanism: A validated
integration of FOCOM into the SMO framework, sup-
porting closed-loop infrastructure resource control via the
O2 interface.

The remainder of this paper is organized as follows: Sec. III
details the proposed architecture and methodology. Sec. IV
presents the experimental evaluation, and the last section
concludes this paper.

II. RELATED WORK

Numerous studies have investigated infrastructure manage-
ment across heterogeneous and hybrid cloud environments [5],
with several initiatives extending these concepts to the evolv-
ing O-RAN ecosystem.

Driver-based infrastructure management frameworks at-
tempt to unify the control of diverse cloud platforms, spanning
public clouds, private clouds, and on-premise data centers
via a centralized management plane. These solutions [6]–
[8] typically employ a driver-based architecture in which
platform-specific adaptors (drivers) are embedded within the
central manager to translate cloud-native APIs. While ef-
fective in achieving interoperability at a basic level, such
architectures encounter scalability and maintainability issues.
From the perspective of O-RAN, this approach contradicts
its core design philosophy, which emphasizes interoperability
through standardized, open interfaces such as O2. In particular,
tightly coupling the SMO to vendor-specific logic undermines
modularity and conflicts with O-RAN’s intent of pushing com-
pliance responsibility to the O-Cloud side, thereby promoting
vendor neutrality and architectural decoupling.

The O2 project within the O-RAN Software Community
(OSC) provides a reference implementation of the O2 interface
using StarlingX [9], an open-source cloud infrastructure stack
that supports compute, networking, and virtualization services.
As part of this effort, the pti-o2 module [10] implements
a prototype of the O2ims, deployed on Kubernetes clusters
managed by StarlingX. This implementation partially supports
the O2 specifications, including inventory and fault manage-
ment, and communicates with StarlingX through its native
APIs. However, the current prototype is limited in scope,
supporting only a subset of O2 features and remaining tightly
coupled to StarlingX, significantly reducing its portability and
applicability across other O-Cloud implementations.

Nephio, an open-source project led by LF Networking,
adopts a cloud-native approach to telecom infrastructure man-
agement using Kubernetes-native mechanisms such as Oper-
ators [11]. Nephio models infrastructure, CNFs, and configu-
rations as Kubernetes Custom Resources (CRs) [12]. Devel-
oped in collaboration with OSC and OpenAirInterface [13],
Nephio aspires to support integration with O-RAN compo-
nents, including O-Cloud, O2 interfaces, and network function
orchestration roles such as FOCOM and Network Function

Orchestrator (NFO). While the architectural vision is aligned
with O-RAN principles, Nephio remains in early development
stages and has yet to deliver concrete implementations for key
scenarios addressed in this paper, such as automated O-Cloud
provisioning and energy-aware infrastructure optimization.

In summary, existing approaches exhibit several critical
limitations: driver-based frameworks violate O-RAN’s open
interface principles; OSC’s O2 reference design is functionally
restricted and lacks cross-platform flexibility; Nephio shows
potential, yet remains undeveloped, and its effectiveness has
not been verified in practical O-RAN scenarios. These gaps
highlight the need for a more comprehensive solution. This
paper proposes a generic, extensible, and automation-ready O-
Cloud management framework that conforms to O-RAN archi-
tecture and supports operationally relevant features, including
cloud infrastructure initialization and closed-loop control for
energy efficiency.

III. O-CLOUD GENESIS AUTOMATION AND MANAGEMENT
FRAMEWORK

A. System Overview

This paper proposes an automated O-Cloud deployment and
management framework to address the growing complexity
and heterogeneity of public clouds, private clouds, and on-
premise environments in O-RAN systems. Aligned with the
O-RAN architecture, the framework realizes management and
orchestration functionalities of the O-Cloud as defined under
the SMO framework [14].

At its core, the framework integrates a generic IMS, an
automated initialization mechanism, and enhanced capabilities
within the FOCOM module. The IMS component is designed
in compliance with the O-RAN O2ims Interface Specification
v6.0 [15], ensuring standardized interoperability across multi-
vendor cloud environments. By enabling O2 interface-based
automation, the framework supports scalable, flexible, and
closed-loop orchestration of distributed O-Cloud resources,
enhancing operational efficiency and interoperability in cloud-
native RAN deployments.

B. Generic Infrastructure Management Service (IMS)

To facilitate unified infrastructure management, a generic
IMS architecture adheres to the O2 interface defined by the
O-RAN Alliance. A key design principle is incorporating an
abstraction layer between the IMS core and underlying infras-
tructure management platforms, allowing seamless adaptation
to heterogeneous environments and minimizing integration
complexity.

As shown in Fig. 1, the IMS architecture comprises three
main components. The IMS Core Services implement O2ims
functionality, exposing O2 APIs (HTTP/HTTPS) to SMO
components, particularly FOCOM. Internally, the core pro-
vides gRPC-based adaptor APIs to interact with infrastructure-
specific adaptor modules. It also handles service logic and
persistent data storage.

Three primary O2ims services are implemented:



Fig. 1. O-Cloud Genesis Automation and Management Framework

• Inventory Service: Collects and normalizes infrastruc-
ture resource inventory data via adaptors and stores it
in a MongoDB backend. It supports event-based O2ims
inventory change notifications.

• Performance Monitoring Service: Collects metrics such
as CPU and memory usage using Prometheus as the
collector and metric database.

• Power Management Service: An extension to the O2ims
specification, this module enables remote power control
through registered adaptors. It supports energy-efficient
closed-loop scenarios.

The IMS Adaptors serve as connectors between the core
and infrastructure platforms. Each adaptor translates gRPC
calls into native API interactions for infrastructure manage-
ment orchestrators. Adaptors collect telemetry and measure-
ment data, execute control commands, and deliver structured
responses to the core.

The Infrastructure Layer refers to the managed O-Cloud
resources, encompassing both physical and virtual elements
such as servers, VLANs, and IP address ranges.

C. FOCOM-enabled O-Cloud and IMS Initialization Automa-
tion

To streamline the deployment of O-Cloud environments
and IMS components, this work introduces an automated
initialization mechanism orchestrated by FOCOM. In view
of the expected scale of O-RAN deployments, automation is
essential to minimizing operational burden and deployment
time.

The framework utilizes Ansible along with AWX, a
Kubernetes-native automation frontend, to perform a three-
stage initialization process: (as depicted in Fig. 2)

1) Node Preparation: virtual machines (VMs) are provi-
sioned via cloud provider APIs, while bare-metal servers
are initialized using IPMI, PXE, and cloud-init [16].

2) Kubernetes Cluster Creation: Kubernetes clusters are
deployed using suitable distributions (e.g., Vanilla Ku-

Fig. 2. O-Cloud and IMS Initialization with Ansible

bernetes, K3s, Rancher Kubernetes Engine) based on
infrastructure constraints.

3) IMS Deployment: The IMS software stack is installed
using Helm, a Kubernetes package manager.

FOCOM manages this pipeline by generating enriched
Ansible inventories containing O-Cloud metadata (including
Global Cloud ID as O-Cloud identifier and IMS endpoint IP
address), configuring AWX credentials and workflows, and
triggering deployment tasks. Upon successful initialization,
the IMS instance self-registers with FOCOM, exposing its
managed resources to SMO through the O2 interface. This
modular, automation-centric approach enables reusable and
scalable provisioning across diverse infrastructure platforms.

D. Federated O-Cloud Management and Closed-loop Control

The framework supports federated management of multiple
O-Cloud instances through FOCOM, which acts as both the
termination point and proxy for O2ims interactions. FOCOM
maintains metadata (Global Cloud IDs, IMS endpoint IP
addresses) for each registered O-Cloud and exposes internal
HTTP APIs for SMO component integration.

When SMO components issue O2ims commands or sub-
scriptions, FOCOM resolves the corresponding IMS endpoint
using its registry and forwards the request. It also aggregates
event notifications from all IMS instances and redistributes
them to SMO consumers via an internal event bus, as illus-
trated in Fig. 3.

To validate closed-loop capabilities, this work implements
the O-Cloud Node Shutdown use case defined by O-RAN WG1
[17]. The Energy Saving App queries time-series metrics (e.g.,
memory usage) from InfluxDB. When underutilized nodes are
detected, a shutdown policy is triggered. The app then sends
a shutdown command through FOCOM, which relays the
request to the relevant IMS. The IMS then invokes its Power
Management Service to power off the selected nodes. This use
case demonstrates the complete awareness–analysis–decision-
execution cycle, achieving energy-efficient O-Cloud operations
through standardized O2 interfaces.



Fig. 3. Design of Federated O-Cloud Management and Closed-loop Control

IV. EVALUATION

This section presents the experimental validation of the
proposed framework. The evaluation is organized into three
subsections: (1) analysis of the energy-saving closed-loop con-
trol mechanism, (2) performance assessment of SMO during
O-Cloud and IMS initialization, and (3) scalability analysis of
the IMS under large-scale O-Cloud scenarios.

A. Environment Setup

All experiments were conducted on a single physical server
using VMs to emulate SMO and O-Cloud environments,
implementation architecture as shown in Fig. 4. The hardware
and software configurations are detailed below:

Server Specifications
• CPU: 24 × 12th Gen Intel® Core™ i9-12900
• RAM: 128 GB
• Host OS: Proxmox VE 7 (Kernel: 5.13.19-2-pve)
SMO Configuration
• Kubernetes: Single-node cluster (Vanilla Kubernetes

v1.27.5)
• OS: Ubuntu 22.04
• CPU: 8 Cores
• RAM: 32 GiB
O-Cloud Configuration
• Kubernetes: K3s-based cluster (v1.27.5+k3s1) with vari-

able node configurations
• OS: Ubuntu 22.04
• CPU per node: 4 Cores
• RAM:

– Single-node cluster: 8 GiB
– Multi-node cluster:

∗ Control plane node: 12 GiB
∗ Worker nodes: 4 GiB

System metrics, including CPU and memory utilization,
were collected from both SMO and O-Cloud nodes. For
the energy-saving closed-loop control experiment, O-Cloud

Fig. 4. Overview of Implementation Architecture

performance data were retrieved via the O2ims Performance
Monitoring Service and FOCOM, with InfluxDB as the data
store. For the SMO and IMS initialization evaluations, metrics
were obtained through custom scripts that directly accessed the
Kubernetes Metrics Server.

B. Results and Discussion

1) Energy Saving Closed-loop Control: To validate the
proposed closed-loop control functionality, a memory usage-
based node shutdown policy was tested in a simulated O-Cloud
environment composed of four worker nodes. The control
logic followed the O-Cloud Node Shutdown use case [17].
Specifically, a node was powered on if the average memory
usage across all active nodes exceeded 70%, and powered off
when it fell below 30%.

To emulate dynamic workload conditions, each fake net-
work function (NF) consumed 400 MiB of memory. NFs were
incrementally added (up to 30) and then removed, at 30-
second intervals. The Energy Saving App evaluated control
decisions every 20 seconds, with a 60-second cooldown to
avoid oscillations.

The results confirmed that nodes 2, 3, and 4 were sequen-
tially activated as usage increased and deactivated as the load
decreased. Fig. 5 presents a time-series plot of memory usage
and node status transitions, validating the effectiveness of the
closed-loop mechanism.

2) FOCOM-Enabled O-Cloud and IMS Initialization: The
automation framework for O-Cloud and IMS initialization was
evaluated using a prototype deployment. The SMO, including
FOCOM and AWX, was deployed on a single-node Kuber-
netes cluster. The target O-Cloud was instantiated as a K3s
single-node cluster on a VM hosted by Proxmox.

The initialization process was divided into two phases: (1)
SMO preparation and (2) O-Cloud setup and IMS deployment.
The total execution time was measured at 306 seconds. De-
ployment of AWX and upload of Ansible Playbooks were ex-
cluded from this measurement. During this time, the maximum
memory usage for the SMO node reached 3312 MiB. AWX
is a more complete and complex Ansible runtime system, so
it consumes more memory. Table I summarizes the timing of



Fig. 5. Experiment Result of Energy Saving Closed-loop Control

TABLE I
EXECUTION TIME OF O-CLOUD AND IMS INITIALIZATION

Target Details Time (Sec.)
SMO Initialization Phase

Deploy AWX Deploying AWX on the
SMO node.

168

Upload Ansible Playbook Downloading required
Ansible playbooks for
O-Cloud deployment to
AWX.

44

Deploy FOCOM Deploying FOCOM to the
SMO node.

46

O-Cloud Initialization Phase
FOCOM Handling FOCOM receives deploy-

ment request, uploads in-
ventory to AWX, and
completes pre-deployment
tasks.

38

Workflow Execution Time taken by AWX to
execute the deployment
workflow.

136

IMS Registration AWX triggers IMS instal-
lation on K3s; time from
start to IMS initialization
and registration with FO-
COM.

86

each phase, while Fig. 6 illustrates CPU and memory usage
throughout the procedure.

These results demonstrate the efficiency of the proposed
automation framework, suggesting its suitability for scalable,
production-level O-RAN environments.

Fig. 6. O-Cloud and IMS Initialization SMO Node CPU/Memory Usage

Fig. 7. IMS with Large Scale O-Cloud Experiment Architecture

Fig. 8. Experiment Result of IMS with Large Scale O-Cloud

3) IMS Performance with Large Scale O-Cloud: To assess
the scalability of IMS and identify potential performance
bottlenecks, an emulated O-Cloud testbed was created using
the KWOK [18] tool, which simulates Kubernetes clusters
with configurable size. The IMS, including IMS Core Services,
the Kubernetes adaptor, and MongoDB, was deployed on a
single-node Kubernetes cluster. The experiment architecture
is illustrated in Fig. 7.

The experiment varied both the number of clusters (1, 5, 10,
25) and the number of nodes in each cluster (10, 30, 50, 100).
The maximum scale reached was 2,500 worker nodes. In the
case of Kubernetes, this is a large-scale system [19]. The CPU
and memory usage of IMS components (IMS Core Services,
the Kubernetes adaptor, and MongoDB) were recorded.

The results, shown in Fig. 8, indicate that MongoDB
was the dominant consumer of system resources, particularly
due to write-heavy inventory synchronization. Even at the
largest scale, overall system usage remained within acceptable
bounds, peaking at 82% CPU and 1.09 GiB RAM, demon-
strating the scalability of the proposed IMS design. These
findings highlight areas for future optimization, particularly
in data storage and synchronization mechanisms.

V. CONCLUSIONS

This paper presented a generic infrastructure management
framework for O-RAN-compliant O-Clouds to ensure inter-



operability across heterogeneous deployment environments,
including public, private, and on-premises infrastructures. The
proposed framework is designed in full compliance with O-
RAN specifications and integrates mature IT automation tech-
nologies to enable scalable, automated, and platform-agnostic
infrastructure management. It supports IMS and end-to-end
automation to initialize O-Cloud and IMS components.

The main contributions of this work are summarized as
follows:

• Generic IMS Architecture: An abstraction-layer-based
IMS design was proposed, enabling seamless integration
with diverse infrastructure management systems. This
design significantly reduces development overhead and
ensures compliance with O-RAN O2 interface standards.

• FOCOM-Enabled O-Cloud and IMS Initialization Au-
tomation: An automated provisioning mechanism lever-
aging AWX and FOCOM was implemented, enabling
rapid and reproducible deployment of O-Cloud environ-
ments and IMS instances across various infrastructures.

• Federated O-Cloud Management and Closed-Loop
Control: A closed-loop control use case, specifically O-
Cloud node shutdown, was implemented and validated
in accordance with O-RAN specifications. This demon-
strates the framework’s real-time infrastructure monitor-
ing, decision-making, and actuation capability.

Future efforts will focus on extending the current implemen-
tation to support additional O2 interface services, including the
Provision Service, which facilitates automated deployment and
lifecycle management of O-Cloud Deployment Management
Service (DMS) clusters. The framework will be enhanced by
incorporating the Non-RT RIC architecture, enabling more
comprehensive analytics and policy-driven decision-making
within the closed-loop control system.

To improve predictive resource scaling, the integration of
Artificial Intelligence and Machine Learning (AI/ML) tech-
niques is planned to enable proactive and adaptive cluster
resizing based on workload forecasts. Furthermore, future
development will explore inter-O-Cloud coordination mech-
anisms, involving collaboration among multiple clusters and
Network Function Orchestration components. This will fa-
cilitate cross-domain service deployment and enable holistic
resource optimization at a global scale.

REFERENCES

[1] “5G; NG-RAN; architecture description,” 3GPP, TS 38.401, V16.3.0,
Release 16, Nov. 2020.

[2] T.-H. Wang, Y.-C. Chen, S.-J. Huang, K.-S. Hsu, and C.-H. Hu,
“Design of a network management system for 5G Open RAN,” in 2021
22nd Asia-Pacific Network Operations and Management Symposium
(APNOMS), 2021, pp. 138–141.

[3] O-RAN WG6, “O-RAN O2 interface general aspects and principles 7.0,”
O-RAN Alliance, Tech. Rep., Jun. 2024.

[4] ——, “O-RAN cloud architecture and deployment scenarios for O-RAN
virtualized RAN 7.0,” O-RAN Alliance, Tech. Rep., Jun. 2024.

[5] P. Raj and A. Raman, “Multi-cloud management: Technologies, tools,
and techniques,” in Software-Defined Cloud Centers: Operational and
Management Technologies and Tools, P. Raj and A. Raman, Eds. Cham:
Springer International Publishing, 2018, pp. 219–240.

[6] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual
infrastructure management in private and hybrid clouds,” IEEE Internet
Computing, vol. 13, no. 5, pp. 14–22, Sep. 2009.

[7] S. Yan, B. S. Lee, G. Zhao, D. Ma, and P. Mohamed, “Infrastruc-
ture management of hybrid cloud for enterprise users,” in 2011 5th
International DMTF Academic Alliance Workshop on Systems and
Virtualization Management: Standards and the Cloud (SVM), 2011, pp.
1–6.
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