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Abstract— Ethernet Virtual Private Network (EVPN), 

together with Virtual Extensible Local Area Network (VXLAN), 
allows us to interconnect multiple Ethernet segments across the 
Internet to form a single, private Ethernet network. This paper 
adopts software-defined networking (SDN) technology to 
implement an EVPN-VXLAN architecture. Prior works either 
targeted data center networks (instead of geo-distributed sites) 
or used low-throughput virtualized switches. By contrast, the 
proposed approach targets geo-dispersed sites and uses P4 
switches to accelerate data-plane performance. The approach 
integrates SDN host detection and EVPN host learning 
mechanisms for efficient host tracking and ARP suppression. It 
also supports Multi-Tenancy and Distributed Anycast Gateway 
(DAG). Experimental results demonstrate enhanced User Plane 
efficiency and reduced host communication latency. 
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I. INTRODUCTION 

Technologies that provide Layer-Two (L2) connectivity 
over a Layer-Three (L3) network are collectively known as 
Layer-Two Virtual Private Network (L2VPN). Particularly, 
Virtual Extensible Local Area Network (VXLAN) [1], an 
extension to Virtual Local Area Network (VLAN), uses an 
overlay technology to provide L2 connectivity across 
geographically-dispersed sites. It creates tunnels between geo-
dispersed VXLAN Tunnel End Point (VTEPs), encapsulates 
Ethernet frames in UDP datagrams, and identifies and isolates 
L2 user traffic using VNIs (VXLAN Network Identifiers). 
However, VXLAN alone is merely a data-plane solution, 
where the learning and forwarding of host Media Access 
Control (MAC) addresses among diverse sites mainly rely on 
the flood-and-learn approach. This leads to substantial 
unnecessary ARP flooding, causing a waste of network 
bandwidth, a problem particularly serious when sites are 
separated by a wide area network (WAN). In large-scale 
networks, this imposes capacity constraints of MAC 
forwarding tables on Provider Edge (PE) routers, thereby 
limiting the scale of the networks. As a remedy, Ethernet 
Virtual Private Network (EVPN) [2] provides a control-plane 
solution for geo-dispersed sites by advertising MAC and IP 
addresses, routes, and other attributes using Multi-Protocol 
Border Gateway Protocol (MP-BGP). The integrated 
architecture, known as EVPN-VXLAN, exercises Control and 
User Plane Separation (CUPS).  

A straightforward way to implement EVPN-VXLAN is to 
let each VTEP run MP-BGP to exchange MAC/IP routing 
information. This is most commonly used in production 
networks such as leaf-spine data center fabrics. Vendors also 
offer fabric managers or controllers to abstract and automate 
EVPN-VXLAN deployments. By contrast, we consider 
implementing EVPN-VXLAN with Software-defined 
networking (SDN) [3]. SDN offers a new paradigm by 
decoupling the control and user planes, centralizing network 
intelligence, providing programmability, simplifying network 
management, and accelerating new service deployments. 
SDN controllers, such as the Open Network Operating System 

(ONOS) [4], manage the network from a central point, 
enabling automation, efficient resource allocation, and 
improved network visibility. These features make SDN an 
attractive choice to implement the EVPN-VXLAN 
architecture. There have been several EVPN-VXLAN 
implementations based on SDN [5] [6] [7], but they primarily 
target EVPN-VXLAN deployments in data centers rather than 
geo-distributed WAN sites. Huang [8] proposed an  EVPN-
VXLAN implementation based on SDN and Network 
Function Virtualization (NFV)  for distributed sites. However, 
this approach cannot meet high-throughput demands as it 
adopts Open vSwitch (OVS) [9]  as the virtual switch on nodes, 
which restricts the user-plane throughput performance and 
causes additional consumption of CPU computing resources. 

This work is a follow-up of Ref. [8] with an aim to enhance 
network performance, reduce latency, and improve scalability 
by leveraging programmable Programming Protocol-
Independent Packet Processor (P4) [10] switches. Besides the 
hardware acceleration part, we also extend the original work 
by supporting multi-tenancy, i.e., multiple enterprise users or 
organizations share the network infrastructure. In the multi-
tenancy environment of EVPN, the Distributed Anycast 
Gateway (DAG) plays a pivotal role. It offers unified network 
egress services, enabling tenants’ traffic to share the same 
egress IP address. When properly integrated with intelligent 
control mechanisms, DAG is able to dynamically route traffic 
to the most suitable gateways based on network conditions 
and gateway loads. This efficiently balances the load across 
gateways, prevents overloading due to tenants’ bursty traffic, 
optimizes resource utilization, and maintains stable network 
service quality. In case of gateway failures, DAG’s fail-over 
mechanism ensures seamless traffic redirection to functioning 
gateways, guaranteeing service continuity for all tenants. 
Moreover, by providing a single shared anycast IP for network 
egress, DAG simplifies tenant-side network configuration, 
reducing the complexity of multi-tenant network management 
and facilitating more efficient network connection 
management by administrators. 

The key contributions of the proposed architecture are 

• Utilizing P4 hardware switches for user-plane 
acceleration while providing interoperability with standard 
EVPN-VXLAN networks. 

• Implementing SDN-assisted efficient host tracking and 
ARP suppression that reduces overall ARP traffic and 
communication latency. 

• Supporting multi-tenancy and DAG [11] with efficient 
Internet connectivity. 

The remainder of this paper is organized as follows. Sec. 
II reviews some related works. Sec. III presents the design of 
the proposed architecture. Sec. IV describes the method of 
implementation. Sec. V reports the experimental results, and 
the last section concludes this paper. 



II. RELATED WORK 

In [5], the authors proposed an SDN-based framework for 
automating EVPN deployment in SDN-based data centers 
(DCs). While effective, it assumes VM environments within 
each DC, requires OpenStack for VM deployment, and uses 
SDN only for the overlay network, leaving the underlying 
network traditional. PE routers do not implement CUPS, 
limiting SDN benefits. Using OVS as the virtual switch for the 
overlay network may hinder user-plane performance and 
consume node computing resources. 

Ref.  [6] introduced an SDN-based architecture to improve 
EVPN performance, particularly focusing on the Designated 
Forwarder (DF) selection process. An SDN controller 
dynamically manages DF roles across VTEPs. This work 
maintains EVPN as a baseline, but introduces SDN logic to 
dynamically control and enhance EVPN functions, making it 
a hybrid controller-based EVPN system. Furthermore, this 
work is for interconnecting multiple close, clustered data 
centers. 

Zhao et al.  [7] proposed a three-layer SDN framework to 
optimize VXLAN-based overlay networks. It uses an SDN 
controller to replace traditional BGP-based MAC/IP learning. 
This non-standardized design limits its interoperability, so it 
is best suited for private clouds and does not support multi-
tenancy. 

The work [8] proposed an architecture to enable SDN to 
participate in traditional EVPN-VXLAN networks. The 
architecture leverages Network Function Virtualization (NFV) 
[12] technology by using a software router as the MP-BGP 
speaker to exchange EVPN routes with external networks for 
host learning and advertisement. Such a design maintains 
interoperability with standard EVPN PEs. On the other hand, 
the SDN controller installs flow rules on the underlying SDN 
switches based on the routes received by the speaker. 
Additionally, an OVS edge switch is deployed at the boundary 
between the SDN and external networks, acting as a VTEP 
and traffic classifier on the user plane. However, due to the 
implementation principles of OVS, this architecture requires 
splitting the edge switch into two OVS instances to handle 
both traffic classification and VTEP functions. 

This paper adopts a similar approach by using an existing 
and mature software router as the MP-BGP speaker in SDN to 
exchange EVPN routes with external PEs. Specifically, our 
approach extends this concept by incorporating P4-based 
user-plane acceleration. 

III. DESIGN OF SDN-ENABLED EVPN-VXLAN WITH P4 

A. Design Goal 

We want to design an SDN-based EVPN-VXLAN 
architecture that can interoperate with standard EVPN sites 
(interoperable with other PEs). SDN controller should be 
responsible for control-plane traffic and minimize 
unnecessary ARP flooding. SDN switches (specifically, P4 
switches) should accelerate user-plane traffic and, together 
with the SDN controller, implement CUPS. More specifically, 
we aim to achieve the following goals and features: 

 Interoperability: The design should be interoperable 
with traditional EVPN-VXLAN networks. 

 ARP Suppression: The design should suppress 
unnecessary ARP flooding (stemming from host 
learning). 

 Packet Forwarding and User Plane Acceleration: 
The design should accelerate the processing of 
VXLAN packets by an efficient user-plane traffic 
classification and forwarding.  This is crucial for high 
traffic loads. 

 Multi-Tenant Internet Connectivity: The design 
should provide tenant hosts with efficient and low-
latency network connections and maintain the same 
network connections when they roam between 
different networks. 

B. System Components 

Our architecture of EVPN-VXLAN consists of an SDN 
Controller, EVPN Control Plane, and User Plane, as shown in 
Fig. 1. 

 

Fig. 1: System Architecture 

SDN Controller: An SDN controller that runs essential 
APPs and provides services, including 1) P4 EVPN APP, 
which is responsible for EVPN’s deployment and 
management in the SDN domain, MP-BGP Speaker’s initial 
connection settings, synchronization of host routing info, 
route advertisement and reception, host learning and tracking 
in the EVPN network, and traffic engineering in the SDN 
network; 2) the ONOS Host Store, which is a database for host 
information in the SDN; and 3) the EVPN Route Store, which 
stores EVPN routes.  

EVPN Control Plane: The MP-BGP Speaker is a 
software router deployed on a general server or in a container  
[13]. It is mainly responsible for exchanging EVPN routes 
with external PE devices and synchronizing routing 
information with the SDN controller. 

User Plane: The P4 Edge Switch receives traffic from the 
SDN, MP-BGP Speaker, and external networks. It is 
responsible for classifying and handling different types of 
traffic and forwarding them to their destinations accordingly. 
It also acts as a VTEP that encapsulates and decapsulates 
VXLAN tunnel packets between sites. 

IV. IMPLEMENTATION DETAILS 

A. SDN-enabled EVPN-VXLAN Functionalities 

SDN-assisted Host Tracking: We leverage SDN to 
achieve efficient host tracking. 

MP-BGP Speaker Setup: Initially, the administrator 
uploads a network configuration file for automated EVPN 
deployment in the SDN domain. The SDN controller, per the 
file's specifications, sets up a gRPC connection with the MP-
BGP speaker and registers an EVPN route listener with it via 
the GoBGP-provided mechanism, ensuring that external 
EVPN routes received by the speaker are promptly notified 
and forwarded to the SDN controller for real-time route 
information synchronization. 



Local Host Learning and Advertisement: Since ONOS 
acquires local SDN host info via packet-in ARP and the MP-
BGP speaker can handle EVPN route advertisements, the 
SDN controller, upon learning a local host, sends the host info 
to the MP-BGP speaker for timely local host advertisement. 
As depicted in Fig. 2, the process is as follows: (0) A host 
sends an ARP packet. (1) The SDN switch receiving the ARP 
packet sends a packet-in message to the ONOS controller. (2) 
The SDN controller learns the host and stores its info in the 
ONOS Host Store. (3) The controller then sends the host info 
to the speaker, instructing it to generate and advertise the 
EVPN route for this host. (4) The speaker generates the 
corresponding EVPN type-2 route advertisement.  

 

Fig. 2: Local Host Learning and Advertisement 

Remote Host Learning: The SDN relies on the MP-BGP 
speaker to automatically push remote host EVPN routes 
received from external PEs to the SDN controller, achieving 
real-time learning of remote host information. As shown in 
Fig. 3, the overall process is as follows: (0) Assume a remote 
host sends an ARP packet to a remote PE. (1) The remote PE 
learns the host locally. (2) The remote PE advertises the EVPN 
type-2 route for the host. (3) The MP-BGP speaker receives 
the route, and the pre-registered EVPN Route Listener 
immediately pushes this route information to the SDN 
controller. (4) The SDN controller analyzes and converts the 
host route information, storing it in the EVPN Route Store, 
thus completing the learning of the remote host. 

 

Fig. 3: Remote Host Learning  

ARP Suppression: We implement Proxy ARP on the 
SDN controller, responding to all known host ARP via the 
packet-in/packet-out approach. This curtails unnecessary ARP 
flooding. In EVPN, upon learning local host info, PE routers 
advertise it to other PEs through EVPN type-2 routes, which 
include MAC/IP Advertisement and MAC-only 
Advertisement. However, when only a MAC-only 
Advertisement is received, Proxy ARP resorts to flooding for 
remote host ARP requests because of the absence of IP-MAC 

mapping in the EVPN Route Store, leading to superfluous 
flooding traffic within the site and across the provider’s 
backbone network, thus wasting bandwidth. We utilize SDN’s 
built-in packet-in mechanism to learn remote host information 
to tackle this. As illustrated in Fig. 4, by installing the 
appropriate flow rule on the P4 Edge Switch, ARP packets 
from remote hosts transmitted through the VXLAN tunnel are 
decapsulated and then packet-in to the SDN controller. This 
enables the SDN controller to automatically learn and store 
host information in the ONOS Host Store. Significantly, the 
ARP packets packet-in to ONOS are the original decapsulated 
host ARP packets, rendering the VXLAN tunnel transparent 
to ONOS. To ONOS, the remote host seems like a regular 
local host directly connected to the P4 Edge Switch’s WAN 
port. 

 

Fig. 4: Remote Host Learning on SDN User Plane 

The following outlines how our architecture acquires the 
IP-MAC mapping of remote hosts in the MAC-only 
Advertisement scenario to ensure Proxy ARP functionality. 
Remote host sites can be of two types: 

Traditional EVPN Site: Making the VXLAN tunnel 
transparent to the SDN controller, ARP packets from remote 
hosts are handled by packet-in messages. The controller learns 
remote host info and retrieves the IP-MAC mapping from the 
ONOS Host Store. This enables Proxy ARP to respond to 
ARP requests, avoiding ARP flooding directly. 

SDN Site: Theoretically, no ARP packets from remote 
hosts should exist in the SDN architecture with implemented 
Proxy ARP. By ensuring the SDN implementation 
consistently advertises MAC/IP Advertisement routes with 
full IP-MAC mappings, Proxy ARP can always retrieve the 
remote hosts’ IP-MAC mappings from the EVPN Route Store, 
effectively preventing needless ARP flooding. 

DAG: In EVPN, the PE handling inter-subnet routing of 
user traffic acts as the default gateway. Here, we implement a 
DAG to support tenant host mobility. This allows tenant hosts 
to access the internet efficiently via the nearest PE without 
making changes. As depicted in Fig. 5, the DAG concept 
makes all gateways in the EVPN network function as one, 
with all PEs (gateways) in the tenant EVPN network sharing 
the same gateway IP. The DAG’s gateway MAC can be 
configured in one of the following ways: 

Unified Gateway MAC: A unified gateway MAC lets 
network devices treat DAG as a single entity. In SDN-based 
DAGs, the controller assigns a unified MAC address, allowing 
external networks to communicate without knowing the 
internal topology, boosting scalability. Poor internal MAC 
management risks conflicts. 



MAC Aliasing: Gateway MAC aliases enable load 
balancing and failover. Mapping multiple aliases to one MAC 
address lets DAG distribute traffic to different nodes. Failover 
occurs by remapping aliases to healthy nodes [14]. In the SDN 
domain, we install relevant flow rules on the P4 Edge Switch 
for each received Default Gateway route to match the gateway 
MAC and offer routing services. 

The initial network configuration file can specify both 
DAG gateway MAC settings. Implementing DAG enables 
each PE to function as a default gateway. It offers optimal 
routing, supports host mobility, and provides efficient internet 
access for any connected tenant host. 

 

Fig. 5: Distributed Anycast Gateway 

B. P4 Switch Pipeline 

Our architecture uses hardware offloading by introducing 
a P4 Edge Switch for User Plane acceleration. This section 
introduces the Pipeline design implemented with P4. P4 is a 
domain-specific programming language that specifies how 
User Plane devices process packets. independence 
(programmers need not know underlying hardware specifics), 
and reconfigurability (programmers can redefine packet 
parsing and processing rules). 

 

Fig. 6: P4 Switch Pipeline Overview 

The Pipeline in this paper is written using P4 based on the 
Tofino Native Architecture (TNA) [15]. The overall Pipeline 
design is shown in Fig. 6. The Pipeline is divided into the 
following three stages based on major functions: 

1) VXLAN-VLAN Stage . This stage primarily handles the 
initial VXLAN-VLAN conversion of incoming packets, 
ensuring that packets forwarded to the Forwarding Stage carry 
VLAN tags. It includes two tables. One is VXLAN 
Decapsulation Table, which determines whether to 
decapsulate based on VNI and VTEP IP. The VTEP IP must 
match the P4 Edge Switch’s VTEP IP for decapsulation. If 
decapsulation is needed, the VLAN tag is added to the packet 
based on the VNI. The other is VLAN Table, which adds the 
corresponding VLAN tag to packets that do not already have 
one, based on the In_port. For packets from the MP-BGP 
Speaker or remote PE that do not belong to any tenant, the 
default behavior is to add a Native VLAN tag of 1 for 
subsequent matching. 

 
Fig. 7: VXLAN-VLAN Mapping Stage 

2) Forwarding Stage. This stage handles packet 
classification and forwarding logic, and consists of L2 and L3 
forwarding tables. L2 Forwarding Table classifies and 
forwards packets based on VLAN ID, Ethernet Type, and 
destination MAC. If the destination is a Gateway MAC, the 
Routing Tag is set to 1, indicating L3 routing in the next step. 
For packets with a Routing Tag of 1, L3 Forwarding Table 
forwards the packets based on the destination IP and performs 
the corresponding hop-by-hop MAC replacement.  

Fig. 8: Forwarding Stage 

3) VXLAN Encapsulation Stage. This stage adds the 
VXLAN header to packets, which includes only one table: 
VXLAN Encapsulation Table. It calculates the inner packet 
length in the pipeline and encapsulates tenant user packets 
with the corresponding VXLAN header based on VLAN ID 
and destination MAC address before sending them out. 

 
Fig. 9: VXLAN Encapsulation Stage 

V. PERFORMANCE EVALUATION 

We performed functional verification and performance 
evaluation of the proposed architecture. TABLE I details the 
hardware specifications. Fig. 10 depicts the environmental 
setup, where our implementation is on the left-hand side. 
PE2/PE3 on the right-hand side with FRR [16] are remote 
traditional EVPN sites. A Next-hop router connects host Hi in 
the middle to emulate the Internet. 

The entire environment utilizes two servers and one P4 
switch. One ONOS server was responsible for running the 
SDN controller. Except for the SDN controller, P4 Edge 
Switch, and Hi, all other components were simulated and ran 
in Docker [17] containers on another Container Server. Hi was 
simulated by creating a namespace on the Container Server 
and binding it to a network card on the server. All ports 
connected to the P4 Edge Switch used 10GbE links. 



TABLE I: Hardware Specifications 

  

Fig. 10: Environment Setup 

A. VXLAN Tunneling Performance 

We verified the performance of the P4 Edge Switch as the 
VTEP in the proposed architecture and compared it with OVS. 

1) End-to-End Latency. We tested the latency of the P4 
Edge Switch to evaluate its efficiency concerning VXLAN 
encapsulation and decapsulation. Internet Control Message 
Protocol (ICMP) packets were sent from H1 to H2 using the 
PING command, encapsulated with a VXLAN header by the 
P4 Edge Switch, transmitted to PE2 for decapsulation, and 
returned. We recorded the Round Trip Time (RTT) to identify 
significant latency. As shown in TABLE II, the P4 Edge 
Switch maintained low latency and mean deviation, indicating 
stable and fast performance. The OVS, simulated on the same 
server, showed low delay due to the absence of physical link 
latency. 

TABLE I: Latency Test 

2) Throughput. We also measured the throughput of the 
P4 Edge Switch and compared it against OVS as a VTEP. H1 
generated UDP traffic with varying payload sizes using iPerf2 
[18], which the P4 Edge Switch encapsulated with VXLAN 
headers and sent to PE2. Fig. 11 shows the results. With 
smaller payloads, server limitations prevented full bandwidth 
utilization, but encapsulation increased the Tx throughput. As 
a software switch, OVS was limited by server hardware and 
could not handle high traffic volumes or achieve line-rate 
speeds. In contrast, the P4 Edge Switch consistently reached 
line-rate speeds with larger payloads, effectively utilizing the 
bandwidth. 

 
Fig. 11: VXLAN Throughput  

 
Fig. 12: ARP Latency Measurement 

B. ARP Latency Measurement 

We compared the latency of ARP packets on the User 
Plane with and without Proxy ARP. The experiment used 
Mininet [19] to simulate varying numbers of switches between 
PE2 and H2, representing different network topologies. Each 
link between switches and routers was set with a 1 ms delay 
and 0.2 ms jitter. H1 sent ARP requests to H2 using ARPING, 
and the RTT of the packets was observed, assuming SDN had 
already learned H2’s information. Fig. 12 shows that without 
Proxy ARP, ARP requests traveled via VXLAN to the remote 
PE2 and then to H2, resulting in delays influenced by network 

Machine CPU Memory OS Note 
ONOS Server Intel i7-10700 32GB  Ubuntu 18.04.5 LTS  

(Kernel 5.4.0-150-generic) 
SDN controller 
 

Container Server Intel Xeon CPU E5-2630 v4 
@ 2.20GHz + 128G 

126GB Ubuntu 20.04.5 LTS  
(Kernel 5.4.0-144-generic) 

NIC:  Intel Ethernet 
Controller X540-AT2 10 
Gbps 

P4 Edge Switch Edgecore Wedge 100BF-32QS (Intel Tofino BFN-T10-032Q Switch, Xeon D-1548/48G), 10 Gbps QSFP28 links 
Barefoot SDE Version: 9.3.0 

 
Latency 

OVS P4 

MIN. 0.058 ms 0.093 ms 

AVG. 0.101 ms 0.138 ms 

MAX. 0.834 ms 0.186 ms 

MDEV. 0.168 ms 0.024 ms 



complexity and latency, along with increased ARP traffic. 
With Proxy ARP, ARP requests were handled directly by the 
SDN controller via packet-in/packet-out, resulting in more 
stable delays influenced only by the SDN controller’s capacity 
and the switch-to-controller latency. Proxy ARP also reduced 
unnecessary ARP traffic, saving network bandwidth.  

C. Default Gateway Performance 

We analyzed the performance of different default gateway 
scenarios with host mobility using Mininet to simulate varying 
numbers of routers between the Next-hop router and each site, 
respectively, as shown in Fig. 13. Each link had a 1 ms delay 
and 0.2 ms jitter. We compared H3’s RTT when sending 
ICMP packets to Hi in three scenarios: 

 Original Gateway (OG): H3 accessed the Internet 
through PE3 from its original location. 

 Remote Centralized Gateway (RCG): With the 
Default Gateway at PE2, H3 moved to the SDN 
domain. The P4 Edge Switch encapsulated H3’s 
traffic with a VXLAN header to PE2 and then routed 
the traffic to Hi. The return traffic followed the same 
path back. 

 DAG: H3 moved to the SDN domain and directly 
accessed the Internet through the nearest P4 Edge 
Switch. 

Fig. 14 shows the average RTT from H3 to Hi (P4 edge 
switch, PE2, PE3) for these scenarios. The x-axis represents 
the number of router hops, and the y-axis shows the average 
RTT. Despite equal hops to Hi, the RCG scenario shows 
increased RTT as the hop count between the P4 Edge Switch 
and PE2 increased, highlighting sub-optimal routing. In 
contrast, the DAG scenario maintained low and stable RTT by 
routing traffic through the nearest P4 Edge Switch. This 
demonstrates its efficiency in avoiding sub-optimal routing 
and providing better Internet connectivity for mobile hosts.  

 

Fig. 13: Environment Setup for Default Gateway Performance Test 

VI. CONCLUSIONS 

This paper presents an SDN-enabled EVPN-VXLAN 
architecture with a P4-accelerated User Plane. It can 
interoperate with traditional EVPN, using SDN for features 
like host tracking and faster convergence. Proxy ARP cuts 
ARP traffic and resolves IP-MAC mapping issues. 
Experiments show it has low, stable latency. P4 hardware 
switches on the User Plane speed up processing, handle 
VXLAN well, and outperform OVS in high-traffic scenarios. 
The DAG offers low-latency internet access for tenant hosts.  

 

 

Fig. 14: Environment Setup for Default Gateway Performance Test 
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