

SDN-Enabled EVPN-VXLAN With P4 Accelerated
User Plane

Yu-Cheng Yang, Ze-Yu Jin, Li-Hsing Yen, Chien-Chao Tseng

Dept. of Computer Science, College of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
Abstract— Ethernet Virtual Private Network (EVPN),

together with Virtual Extensible Local Area Network (VXLAN),
allows us to interconnect multiple Ethernet segments across the
Internet to form a single, private Ethernet network. This paper
adopts software-defined networking (SDN) technology to
implement an EVPN-VXLAN architecture. Prior works either
targeted data center networks (instead of geo-distributed sites)
or used low-throughput virtualized switches. By contrast, the
proposed approach targets geo-dispersed sites and uses P4
switches to accelerate data-plane performance. The approach
integrates SDN host detection and EVPN host learning
mechanisms for efficient host tracking and ARP suppression. It
also supports Multi-Tenancy and Distributed Anycast Gateway
(DAG). Experimental results demonstrate enhanced User Plane
efficiency and reduced host communication latency.

Keywords—SDN, EVPN, VXLAN, P4

I. INTRODUCTION

Technologies that provide Layer-Two (L2) connectivity
over a Layer-Three (L3) network are collectively known as
Layer-Two Virtual Private Network (L2VPN). Particularly,
Virtual Extensible Local Area Network (VXLAN) [1], an
extension to Virtual Local Area Network (VLAN), uses an
overlay technology to provide L2 connectivity across
geographically-dispersed sites. It creates tunnels between geo-
dispersed VXLAN Tunnel End Point (VTEPs), encapsulates
Ethernet frames in UDP datagrams, and identifies and isolates
L2 user traffic using VNIs (VXLAN Network Identifiers).
However, VXLAN alone is merely a data-plane solution,
where the learning and forwarding of host Media Access
Control (MAC) addresses among diverse sites mainly rely on
the flood-and-learn approach. This leads to substantial
unnecessary ARP flooding, causing a waste of network
bandwidth, a problem particularly serious when sites are
separated by a wide area network (WAN). In large-scale
networks, this imposes capacity constraints of MAC
forwarding tables on Provider Edge (PE) routers, thereby
limiting the scale of the networks. As a remedy, Ethernet
Virtual Private Network (EVPN) [2] provides a control-plane
solution for geo-dispersed sites by advertising MAC and IP
addresses, routes, and other attributes using Multi-Protocol
Border Gateway Protocol (MP-BGP). The integrated
architecture, known as EVPN-VXLAN, exercises Control and
User Plane Separation (CUPS).

A straightforward way to implement EVPN-VXLAN is to
let each VTEP run MP-BGP to exchange MAC/IP routing
information. This is most commonly used in production
networks such as leaf-spine data center fabrics. Vendors also
offer fabric managers or controllers to abstract and automate
EVPN-VXLAN deployments. By contrast, we consider
implementing EVPN-VXLAN with Software-defined
networking (SDN) [3]. SDN offers a new paradigm by
decoupling the control and user planes, centralizing network
intelligence, providing programmability, simplifying network
management, and accelerating new service deployments.
SDN controllers, such as the Open Network Operating System

(ONOS) [4], manage the network from a central point,
enabling automation, efficient resource allocation, and
improved network visibility. These features make SDN an
attractive choice to implement the EVPN-VXLAN
architecture. There have been several EVPN-VXLAN
implementations based on SDN [5] [6] [7], but they primarily
target EVPN-VXLAN deployments in data centers rather than
geo-distributed WAN sites. Huang [8] proposed an EVPN-
VXLAN implementation based on SDN and Network
Function Virtualization (NFV) for distributed sites. However,
this approach cannot meet high-throughput demands as it
adopts Open vSwitch (OVS) [9] as the virtual switch on nodes,
which restricts the user-plane throughput performance and
causes additional consumption of CPU computing resources.

This work is a follow-up of Ref. [8] with an aim to enhance
network performance, reduce latency, and improve scalability
by leveraging programmable Programming Protocol-
Independent Packet Processor (P4) [10] switches. Besides the
hardware acceleration part, we also extend the original work
by supporting multi-tenancy, i.e., multiple enterprise users or
organizations share the network infrastructure. In the multi-
tenancy environment of EVPN, the Distributed Anycast
Gateway (DAG) plays a pivotal role. It offers unified network
egress services, enabling tenants’ traffic to share the same
egress IP address. When properly integrated with intelligent
control mechanisms, DAG is able to dynamically route traffic
to the most suitable gateways based on network conditions
and gateway loads. This efficiently balances the load across
gateways, prevents overloading due to tenants’ bursty traffic,
optimizes resource utilization, and maintains stable network
service quality. In case of gateway failures, DAG’s fail-over
mechanism ensures seamless traffic redirection to functioning
gateways, guaranteeing service continuity for all tenants.
Moreover, by providing a single shared anycast IP for network
egress, DAG simplifies tenant-side network configuration,
reducing the complexity of multi-tenant network management
and facilitating more efficient network connection
management by administrators.

The key contributions of the proposed architecture are

• Utilizing P4 hardware switches for user-plane
acceleration while providing interoperability with standard
EVPN-VXLAN networks.

• Implementing SDN-assisted efficient host tracking and
ARP suppression that reduces overall ARP traffic and
communication latency.

• Supporting multi-tenancy and DAG [11] with efficient
Internet connectivity.

The remainder of this paper is organized as follows. Sec.
II reviews some related works. Sec. III presents the design of
the proposed architecture. Sec. IV describes the method of
implementation. Sec. V reports the experimental results, and
the last section concludes this paper.

II. RELATED WORK

In [5], the authors proposed an SDN-based framework for
automating EVPN deployment in SDN-based data centers
(DCs). While effective, it assumes VM environments within
each DC, requires OpenStack for VM deployment, and uses
SDN only for the overlay network, leaving the underlying
network traditional. PE routers do not implement CUPS,
limiting SDN benefits. Using OVS as the virtual switch for the
overlay network may hinder user-plane performance and
consume node computing resources.

Ref. [6] introduced an SDN-based architecture to improve
EVPN performance, particularly focusing on the Designated
Forwarder (DF) selection process. An SDN controller
dynamically manages DF roles across VTEPs. This work
maintains EVPN as a baseline, but introduces SDN logic to
dynamically control and enhance EVPN functions, making it
a hybrid controller-based EVPN system. Furthermore, this
work is for interconnecting multiple close, clustered data
centers.

Zhao et al. [7] proposed a three-layer SDN framework to
optimize VXLAN-based overlay networks. It uses an SDN
controller to replace traditional BGP-based MAC/IP learning.
This non-standardized design limits its interoperability, so it
is best suited for private clouds and does not support multi-
tenancy.

The work [8] proposed an architecture to enable SDN to
participate in traditional EVPN-VXLAN networks. The
architecture leverages Network Function Virtualization (NFV)
[12] technology by using a software router as the MP-BGP
speaker to exchange EVPN routes with external networks for
host learning and advertisement. Such a design maintains
interoperability with standard EVPN PEs. On the other hand,
the SDN controller installs flow rules on the underlying SDN
switches based on the routes received by the speaker.
Additionally, an OVS edge switch is deployed at the boundary
between the SDN and external networks, acting as a VTEP
and traffic classifier on the user plane. However, due to the
implementation principles of OVS, this architecture requires
splitting the edge switch into two OVS instances to handle
both traffic classification and VTEP functions.

This paper adopts a similar approach by using an existing
and mature software router as the MP-BGP speaker in SDN to
exchange EVPN routes with external PEs. Specifically, our
approach extends this concept by incorporating P4-based
user-plane acceleration.

III. DESIGN OF SDN-ENABLED EVPN-VXLAN WITH P4

A. Design Goal

We want to design an SDN-based EVPN-VXLAN
architecture that can interoperate with standard EVPN sites
(interoperable with other PEs). SDN controller should be
responsible for control-plane traffic and minimize
unnecessary ARP flooding. SDN switches (specifically, P4
switches) should accelerate user-plane traffic and, together
with the SDN controller, implement CUPS. More specifically,
we aim to achieve the following goals and features:

 Interoperability: The design should be interoperable
with traditional EVPN-VXLAN networks.

 ARP Suppression: The design should suppress
unnecessary ARP flooding (stemming from host
learning).

 Packet Forwarding and User Plane Acceleration:
The design should accelerate the processing of
VXLAN packets by an efficient user-plane traffic
classification and forwarding. This is crucial for high
traffic loads.

 Multi-Tenant Internet Connectivity: The design
should provide tenant hosts with efficient and low-
latency network connections and maintain the same
network connections when they roam between
different networks.

B. System Components

Our architecture of EVPN-VXLAN consists of an SDN
Controller, EVPN Control Plane, and User Plane, as shown in
Fig. 1.

Fig. 1: System Architecture

SDN Controller: An SDN controller that runs essential
APPs and provides services, including 1) P4 EVPN APP,
which is responsible for EVPN’s deployment and
management in the SDN domain, MP-BGP Speaker’s initial
connection settings, synchronization of host routing info,
route advertisement and reception, host learning and tracking
in the EVPN network, and traffic engineering in the SDN
network; 2) the ONOS Host Store, which is a database for host
information in the SDN; and 3) the EVPN Route Store, which
stores EVPN routes.

EVPN Control Plane: The MP-BGP Speaker is a
software router deployed on a general server or in a container
[13]. It is mainly responsible for exchanging EVPN routes
with external PE devices and synchronizing routing
information with the SDN controller.

User Plane: The P4 Edge Switch receives traffic from the
SDN, MP-BGP Speaker, and external networks. It is
responsible for classifying and handling different types of
traffic and forwarding them to their destinations accordingly.
It also acts as a VTEP that encapsulates and decapsulates
VXLAN tunnel packets between sites.

IV. IMPLEMENTATION DETAILS

A. SDN-enabled EVPN-VXLAN Functionalities

SDN-assisted Host Tracking: We leverage SDN to
achieve efficient host tracking.

MP-BGP Speaker Setup: Initially, the administrator
uploads a network configuration file for automated EVPN
deployment in the SDN domain. The SDN controller, per the
file's specifications, sets up a gRPC connection with the MP-
BGP speaker and registers an EVPN route listener with it via
the GoBGP-provided mechanism, ensuring that external
EVPN routes received by the speaker are promptly notified
and forwarded to the SDN controller for real-time route
information synchronization.

Local Host Learning and Advertisement: Since ONOS
acquires local SDN host info via packet-in ARP and the MP-
BGP speaker can handle EVPN route advertisements, the
SDN controller, upon learning a local host, sends the host info
to the MP-BGP speaker for timely local host advertisement.
As depicted in Fig. 2, the process is as follows: (0) A host
sends an ARP packet. (1) The SDN switch receiving the ARP
packet sends a packet-in message to the ONOS controller. (2)
The SDN controller learns the host and stores its info in the
ONOS Host Store. (3) The controller then sends the host info
to the speaker, instructing it to generate and advertise the
EVPN route for this host. (4) The speaker generates the
corresponding EVPN type-2 route advertisement.

Fig. 2: Local Host Learning and Advertisement

Remote Host Learning: The SDN relies on the MP-BGP
speaker to automatically push remote host EVPN routes
received from external PEs to the SDN controller, achieving
real-time learning of remote host information. As shown in
Fig. 3, the overall process is as follows: (0) Assume a remote
host sends an ARP packet to a remote PE. (1) The remote PE
learns the host locally. (2) The remote PE advertises the EVPN
type-2 route for the host. (3) The MP-BGP speaker receives
the route, and the pre-registered EVPN Route Listener
immediately pushes this route information to the SDN
controller. (4) The SDN controller analyzes and converts the
host route information, storing it in the EVPN Route Store,
thus completing the learning of the remote host.

Fig. 3: Remote Host Learning

ARP Suppression: We implement Proxy ARP on the
SDN controller, responding to all known host ARP via the
packet-in/packet-out approach. This curtails unnecessary ARP
flooding. In EVPN, upon learning local host info, PE routers
advertise it to other PEs through EVPN type-2 routes, which
include MAC/IP Advertisement and MAC-only
Advertisement. However, when only a MAC-only
Advertisement is received, Proxy ARP resorts to flooding for
remote host ARP requests because of the absence of IP-MAC

mapping in the EVPN Route Store, leading to superfluous
flooding traffic within the site and across the provider’s
backbone network, thus wasting bandwidth. We utilize SDN’s
built-in packet-in mechanism to learn remote host information
to tackle this. As illustrated in Fig. 4, by installing the
appropriate flow rule on the P4 Edge Switch, ARP packets
from remote hosts transmitted through the VXLAN tunnel are
decapsulated and then packet-in to the SDN controller. This
enables the SDN controller to automatically learn and store
host information in the ONOS Host Store. Significantly, the
ARP packets packet-in to ONOS are the original decapsulated
host ARP packets, rendering the VXLAN tunnel transparent
to ONOS. To ONOS, the remote host seems like a regular
local host directly connected to the P4 Edge Switch’s WAN
port.

Fig. 4: Remote Host Learning on SDN User Plane

The following outlines how our architecture acquires the
IP-MAC mapping of remote hosts in the MAC-only
Advertisement scenario to ensure Proxy ARP functionality.
Remote host sites can be of two types:

Traditional EVPN Site: Making the VXLAN tunnel
transparent to the SDN controller, ARP packets from remote
hosts are handled by packet-in messages. The controller learns
remote host info and retrieves the IP-MAC mapping from the
ONOS Host Store. This enables Proxy ARP to respond to
ARP requests, avoiding ARP flooding directly.

SDN Site: Theoretically, no ARP packets from remote
hosts should exist in the SDN architecture with implemented
Proxy ARP. By ensuring the SDN implementation
consistently advertises MAC/IP Advertisement routes with
full IP-MAC mappings, Proxy ARP can always retrieve the
remote hosts’ IP-MAC mappings from the EVPN Route Store,
effectively preventing needless ARP flooding.

DAG: In EVPN, the PE handling inter-subnet routing of
user traffic acts as the default gateway. Here, we implement a
DAG to support tenant host mobility. This allows tenant hosts
to access the internet efficiently via the nearest PE without
making changes. As depicted in Fig. 5, the DAG concept
makes all gateways in the EVPN network function as one,
with all PEs (gateways) in the tenant EVPN network sharing
the same gateway IP. The DAG’s gateway MAC can be
configured in one of the following ways:

Unified Gateway MAC: A unified gateway MAC lets
network devices treat DAG as a single entity. In SDN-based
DAGs, the controller assigns a unified MAC address, allowing
external networks to communicate without knowing the
internal topology, boosting scalability. Poor internal MAC
management risks conflicts.

MAC Aliasing: Gateway MAC aliases enable load
balancing and failover. Mapping multiple aliases to one MAC
address lets DAG distribute traffic to different nodes. Failover
occurs by remapping aliases to healthy nodes [14]. In the SDN
domain, we install relevant flow rules on the P4 Edge Switch
for each received Default Gateway route to match the gateway
MAC and offer routing services.

The initial network configuration file can specify both
DAG gateway MAC settings. Implementing DAG enables
each PE to function as a default gateway. It offers optimal
routing, supports host mobility, and provides efficient internet
access for any connected tenant host.

Fig. 5: Distributed Anycast Gateway

B. P4 Switch Pipeline

Our architecture uses hardware offloading by introducing
a P4 Edge Switch for User Plane acceleration. This section
introduces the Pipeline design implemented with P4. P4 is a
domain-specific programming language that specifies how
User Plane devices process packets. independence
(programmers need not know underlying hardware specifics),
and reconfigurability (programmers can redefine packet
parsing and processing rules).

Fig. 6: P4 Switch Pipeline Overview

The Pipeline in this paper is written using P4 based on the
Tofino Native Architecture (TNA) [15]. The overall Pipeline
design is shown in Fig. 6. The Pipeline is divided into the
following three stages based on major functions:

1) VXLAN-VLAN Stage . This stage primarily handles the
initial VXLAN-VLAN conversion of incoming packets,
ensuring that packets forwarded to the Forwarding Stage carry
VLAN tags. It includes two tables. One is VXLAN
Decapsulation Table, which determines whether to
decapsulate based on VNI and VTEP IP. The VTEP IP must
match the P4 Edge Switch’s VTEP IP for decapsulation. If
decapsulation is needed, the VLAN tag is added to the packet
based on the VNI. The other is VLAN Table, which adds the
corresponding VLAN tag to packets that do not already have
one, based on the In_port. For packets from the MP-BGP
Speaker or remote PE that do not belong to any tenant, the
default behavior is to add a Native VLAN tag of 1 for
subsequent matching.

Fig. 7: VXLAN-VLAN Mapping Stage

2) Forwarding Stage. This stage handles packet
classification and forwarding logic, and consists of L2 and L3
forwarding tables. L2 Forwarding Table classifies and
forwards packets based on VLAN ID, Ethernet Type, and
destination MAC. If the destination is a Gateway MAC, the
Routing Tag is set to 1, indicating L3 routing in the next step.
For packets with a Routing Tag of 1, L3 Forwarding Table
forwards the packets based on the destination IP and performs
the corresponding hop-by-hop MAC replacement.

Fig. 8: Forwarding Stage

3) VXLAN Encapsulation Stage. This stage adds the
VXLAN header to packets, which includes only one table:
VXLAN Encapsulation Table. It calculates the inner packet
length in the pipeline and encapsulates tenant user packets
with the corresponding VXLAN header based on VLAN ID
and destination MAC address before sending them out.

Fig. 9: VXLAN Encapsulation Stage

V. PERFORMANCE EVALUATION

We performed functional verification and performance
evaluation of the proposed architecture. TABLE I details the
hardware specifications. Fig. 10 depicts the environmental
setup, where our implementation is on the left-hand side.
PE2/PE3 on the right-hand side with FRR [16] are remote
traditional EVPN sites. A Next-hop router connects host Hi in
the middle to emulate the Internet.

The entire environment utilizes two servers and one P4
switch. One ONOS server was responsible for running the
SDN controller. Except for the SDN controller, P4 Edge
Switch, and Hi, all other components were simulated and ran
in Docker [17] containers on another Container Server. Hi was
simulated by creating a namespace on the Container Server
and binding it to a network card on the server. All ports
connected to the P4 Edge Switch used 10GbE links.

TABLE I: Hardware Specifications

Fig. 10: Environment Setup

A. VXLAN Tunneling Performance

We verified the performance of the P4 Edge Switch as the
VTEP in the proposed architecture and compared it with OVS.

1) End-to-End Latency. We tested the latency of the P4
Edge Switch to evaluate its efficiency concerning VXLAN
encapsulation and decapsulation. Internet Control Message
Protocol (ICMP) packets were sent from H1 to H2 using the
PING command, encapsulated with a VXLAN header by the
P4 Edge Switch, transmitted to PE2 for decapsulation, and
returned. We recorded the Round Trip Time (RTT) to identify
significant latency. As shown in TABLE II, the P4 Edge
Switch maintained low latency and mean deviation, indicating
stable and fast performance. The OVS, simulated on the same
server, showed low delay due to the absence of physical link
latency.

TABLE I: Latency Test

2) Throughput. We also measured the throughput of the
P4 Edge Switch and compared it against OVS as a VTEP. H1
generated UDP traffic with varying payload sizes using iPerf2
[18], which the P4 Edge Switch encapsulated with VXLAN
headers and sent to PE2. Fig. 11 shows the results. With
smaller payloads, server limitations prevented full bandwidth
utilization, but encapsulation increased the Tx throughput. As
a software switch, OVS was limited by server hardware and
could not handle high traffic volumes or achieve line-rate
speeds. In contrast, the P4 Edge Switch consistently reached
line-rate speeds with larger payloads, effectively utilizing the
bandwidth.

Fig. 11: VXLAN Throughput

Fig. 12: ARP Latency Measurement

B. ARP Latency Measurement

We compared the latency of ARP packets on the User
Plane with and without Proxy ARP. The experiment used
Mininet [19] to simulate varying numbers of switches between
PE2 and H2, representing different network topologies. Each
link between switches and routers was set with a 1 ms delay
and 0.2 ms jitter. H1 sent ARP requests to H2 using ARPING,
and the RTT of the packets was observed, assuming SDN had
already learned H2’s information. Fig. 12 shows that without
Proxy ARP, ARP requests traveled via VXLAN to the remote
PE2 and then to H2, resulting in delays influenced by network

Machine CPU Memory OS Note
ONOS Server Intel i7-10700 32GB Ubuntu 18.04.5 LTS

(Kernel 5.4.0-150-generic)
SDN controller

Container Server Intel Xeon CPU E5-2630 v4
@ 2.20GHz + 128G

126GB Ubuntu 20.04.5 LTS
(Kernel 5.4.0-144-generic)

NIC: Intel Ethernet
Controller X540-AT2 10
Gbps

P4 Edge Switch Edgecore Wedge 100BF-32QS (Intel Tofino BFN-T10-032Q Switch, Xeon D-1548/48G), 10 Gbps QSFP28 links
Barefoot SDE Version: 9.3.0

Latency

OVS P4

MIN. 0.058 ms 0.093 ms

AVG. 0.101 ms 0.138 ms

MAX. 0.834 ms 0.186 ms

MDEV. 0.168 ms 0.024 ms

complexity and latency, along with increased ARP traffic.
With Proxy ARP, ARP requests were handled directly by the
SDN controller via packet-in/packet-out, resulting in more
stable delays influenced only by the SDN controller’s capacity
and the switch-to-controller latency. Proxy ARP also reduced
unnecessary ARP traffic, saving network bandwidth.

C. Default Gateway Performance

We analyzed the performance of different default gateway
scenarios with host mobility using Mininet to simulate varying
numbers of routers between the Next-hop router and each site,
respectively, as shown in Fig. 13. Each link had a 1 ms delay
and 0.2 ms jitter. We compared H3’s RTT when sending
ICMP packets to Hi in three scenarios:

 Original Gateway (OG): H3 accessed the Internet
through PE3 from its original location.

 Remote Centralized Gateway (RCG): With the
Default Gateway at PE2, H3 moved to the SDN
domain. The P4 Edge Switch encapsulated H3’s
traffic with a VXLAN header to PE2 and then routed
the traffic to Hi. The return traffic followed the same
path back.

 DAG: H3 moved to the SDN domain and directly
accessed the Internet through the nearest P4 Edge
Switch.

Fig. 14 shows the average RTT from H3 to Hi (P4 edge
switch, PE2, PE3) for these scenarios. The x-axis represents
the number of router hops, and the y-axis shows the average
RTT. Despite equal hops to Hi, the RCG scenario shows
increased RTT as the hop count between the P4 Edge Switch
and PE2 increased, highlighting sub-optimal routing. In
contrast, the DAG scenario maintained low and stable RTT by
routing traffic through the nearest P4 Edge Switch. This
demonstrates its efficiency in avoiding sub-optimal routing
and providing better Internet connectivity for mobile hosts.

Fig. 13: Environment Setup for Default Gateway Performance Test

VI. CONCLUSIONS

This paper presents an SDN-enabled EVPN-VXLAN
architecture with a P4-accelerated User Plane. It can
interoperate with traditional EVPN, using SDN for features
like host tracking and faster convergence. Proxy ARP cuts
ARP traffic and resolves IP-MAC mapping issues.
Experiments show it has low, stable latency. P4 hardware
switches on the User Plane speed up processing, handle
VXLAN well, and outperform OVS in high-traffic scenarios.
The DAG offers low-latency internet access for tenant hosts.

Fig. 14: Environment Setup for Default Gateway Performance Test

VII. REFERENCES

[1] "Virtual Extensible LAN," [Online]. Available:

https://en.wikipedia.org/wiki/Virtual_Extensible_LAN.

[2] "RFC 7432 - BGP MPLS-Based Ethernet VPN," Feb 2015. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc7432.

[3] "Software-Defined Networking," [Online]. Available:
https://en.wikipedia.org/wiki/Software-defined_networking..

[4] P. Berde et al., "ONOS: Towards an Open, Distributed SDN OS,"
Proceedings of the third workshop on Hot topics in software defined
networking, ACM, 2014.

[5] Kyoomars Alizadeh Noghani, Cristian Hernandez Benet, Andreas
Kassler, Antonio Marotta, Patrick Jestin, Vivek V. Srivastava,
"Automating Ethernet VPN Deploymnet in SDN-based Data
Centers," in 2017 Fourth International Conference on Software
Defined Systems (SDS), 2017.

[6] K. A. Noghani and A. Kassier, "SDN enhanced Ethernet VPN for
data center interconnect," in IEEE 6th International Conference on
Cloud Networking, Prague, Czech Republic, 2017.

[7] Z. Zhao, F. Hong and R. Li, "SDN Based VxLAN Optimization in
Cloud Computing Networks," IEEE Access, pp. 23312–23319, 12
October 2017.

[8] Yihsuan Huang, SDNFV-enabled EVPN Interconnection, Master
Thesis, National Chiao Tung University, 2021.

[9] "Open vSwitch," [Online]. Available: https://www.openvswitch.org.

[10] "P4 Language and Related Specifications," [Online]. Available:
https://p4.org/specs/.

[11] "Integrated Routing and Bridging in Ethernet VPN (EVPN),"
[Online]. Available: https://datatracker.ietf.org/doc/rfc9135/.

[12] "Network function virtualization," [Online]. Available:
https://en.wikipedia.org/wiki/Network_function_virtualization.

[13] "GoBGP," [Online]. Available: https://github.com/osrg/gobgp.

[14] "BGP Extended Communitites Attribute," [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc4360.

[15] "Barefoot Tofno," [Online]. Available:
https://www.intel.com/content/www/us/en/products/details/network
-io/intelligent-fabric-processors/tofino.html.

[16] "FRRouting," [Online]. Available: https://frrouting.org/.

[17] "Docker," [Online]. Available: https://www.docker.com/.

[18] "iPerf," [Online]. Available: https://iperf.fr/iperf-doc.php.

[19] "Mininet," [Online]. Available: https://github.com/mininet/mininet.

