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I. INTRODUCTION 
Soft errors, process variations, and device aging phenomena 

are currently some of the main factors in reliability degradation. 
With the continuous scaling of transistor dimensions, soft errors, 
which cause unpredictable transient circuit failure, are becoming 
increasingly dominant for functional reliability concerns [1]. A 
radiation-induced charged particle passing through a microelec-
tronic device ionizes the material along its path and generates free 
pairs of electrons and holes. The free (ionized) carriers deposited 
around the particle track can be attracted or repelled by an internal 
electric field of the device and lead to an electrical pulse, referred 
to as a single-event transient (SET) or a glitch. A single-event 
upset (SEU) or a soft error refers to transient bit corruption that 
occurs when a single-event transient is large enough to flip the 
state of a storage node. The rate at which soft errors occur is 
called soft error rate (SER). 

During SEU propagation in combinational logic, three mecha-
nisms used to provide logic circuits with effective protection 
against soft errors: (i) logical masking, (ii) electrical masking, and 
(iii) latching-window (timing) masking. However, as technology 
scaling proceeds aggressively (e.g., decreasing node capacitance 
and increasing clock frequency), the impact of these three mask-
ing mechanisms is lessened. On the other hand, error detecting 
and correcting codes have been mature enough to successfully 
mitigate soft error susceptibility of memory elements. A recent 
study [2] showed that soft errors significantly degrade the robust-
ness of logic circuits, while the nominal SER of SRAMs tends to 
be nearly constant from 130nm to 65nm technologies. As a result, 
unless explicitly dealt with, the SER of logic will become as great 
of a concern and is expected to be comparable to that of unpro-
tected memories by 2011 [3]. 

When the combinational block of a sequential circuit can 
propagate SEUs freely, the sequential circuit may become very 
sensitive to such events. This is because, once latched, soft errors 
can circulate through the circuit in subsequent clock cycles and 
affect more than one output, more than once. The untraceable 
propagation of soft errors greatly affects the circuit operation for 
consecutive cycles and thus, necessitates design methods for soft 
error tolerance of sequential circuits, in a similar manner to classic 
design constraints such as performance and power consumption. 

Having demonstrated the importance of soft errors in both 
combinational and sequential circuits which motivates our work, 
the main goal of this dissertation research is to develop a low-cost, 

integrated framework that can reduce the overall SER of a logic 
circuit. Several approaches are included to target different parts of 
logic circuits and poised to provide additive improvements in SER 
when applied in a particular order. 

II. PROPOSED FRAMEWORK 
Intensive research has been done in the area of SER reduction 

or soft error tolerance for logic circuits. The well-known triple 
modular redundancy induces excessive overhead and is unneces-
sary for transient (soft) errors. To reduce the overall cost for 
realizing soft error tolerance, partial duplication and gate resizing 
strategies target only nodes with high error susceptibility and 
ignore nodes with low error susceptibility. A potentially large 
overhead in area and power is still needed for a higher degree of 
soft error tolerance. 

In this thesis, we propose three approaches for SER reduction 
based on (A) redundancy addition and removal [4], (B) selective 
voltage scaling [5], and (C) clock skew scheduling [6]. These 
three approaches are described further described in the sequel. 

A. Redundancy Addition and Removal (RAR) 
Redundancy addition and removal has been presented as a 

successful logic optimization technique which iteratively adds and 
removes redundant wires to minimize a circuit in terms of literal 
count. Since during each step of wire addition and removal the 
soft error rate of a circuit may change, we rely on estimating the 
effects of redundancy manipulations and accept only those with 
positive impact on circuit SER. Several metrics and constraints 
are introduced to guide the RAR algorithm toward SER reduction 
in a systematic and cost-effective manner. 

B. Selective Voltage Scaling (SVS) 
Voltage scaling is also a possible solution for SER reduction 

because it can mitigate SET generation. More specifically, the 
same amount of charge disturbance produces a smaller (less 
harmful) SET at gates with high supply voltage than at gates with 
low supply voltage. Accordingly, we assign a higher supply 
voltage (VDD

H) selectively to gates that have large error impact 
and contribute most to the overall SER, and leave the remaining 
gates with the nominal supply voltage (VDD

L). The number of 
gates operating at the higher voltage level, positively correlated 
with the power overhead, can be bounded by the appropriate use 
of level converters on the connections from VDD

L-gates to 
VDD

H-gates for preventing short-circuit leakage current. 



C. Clock Skew Scheduling (CSS) 
To address the issue of multiple-bit upsets (MBUs) in sequen-

tial circuits which manifest themselves as multiple errors during 
multiple clock cycles, affecting more than one output, more than 
once, we propose to exploit clock skew scheduling for 
MBU-aware soft error tolerance. The CSS-based approach adjusts 
the arrival times of clock signals to memory elements (latches or 
flip-flops) such that the probability of capturing unwanted tran-
sient pulses is significantly decreased, as a result of more latch-
ing-window masking. For our concern of MBU awareness, instead 
of using all flip-flops in a sequential circuit as candidates for CSS, 
flip-flops that are capable of mitigating potential MBU effects 
need to be extracted before applying CSS. 

III. THESIS CONTRIBUTION 
These three techniques (RAR, SVS, and CSS) target different 

parts of logic circuits. Given a logic circuit, the RAR-based 
approach focuses on restructuring its combinational block, while 
the approaches using SVS and CSS involve modifications on the 
power distribution and clock network, respectively. All of these 
proposed approaches, when integrated and applied in a particular 
order (i.e., RAR  SVS  CSS), can thus provide additive 
improvements in SER. In addition, our framework as a whole has 
the following major and unique contributions: 

 Symbolic unified treatment: The proposed framework relies 
on a symbolic SER analyzer [7] which provides a unified 
treatment of three masking mechanisms through decision dia-
grams. Therefore, all masking mechanisms, rather than one or 
two of them, are considered jointly as criteria for our objective 
of SER reduction. To the best of our knowledge, this is the first 
work reducing circuit SER with all three masking mechanisms 
jointly considered. Also, two novel metrics are introduced for 
characterizing each gate/wire in terms of masking impact and 
error impact. Using these two metrics, we can precisely esti-
mate the impact on SER of a redundancy manipulation or a 
voltage assignment (scaling in supply voltage from VDD

L to 
VDD

H), and then decide whether to accept the given optimiza-
tion step for SER reduction. 

 Insignificant area overhead: Unlike some of existing SER 
reduction techniques based on duplication or resizing, which 
monotonically increase hardware resources without eliminat-
ing any, our RAR-based approach incurs very little area over-
head since there usually exists one or more redundant remov-
able wires after a redundant wire is added into a circuit. On 
average, only 4% area overhead can be observed in order for a 
SER reduction of about 23%. 

 Favorable power overhead: The proposed approach using 
SVS minimizes SER while keeping the power overhead below 
a specified limit. To this end, level converters (LCs) are placed 
such that the number of up-scaled gates is bounded. It has been 
verified by our experiments that the appropriate use of LCs is 
beneficial for power-aware SER reduction. On average, cir-
cuit SER can be reduced by 33% with less than 12% energy 
increase, which is much smaller than those induced by other 
existing frameworks applying voltage scaling/assignment 
where LCs are avoided. Moreover, we optimize the number 
and distribution of required LCs for minimal design penalty 

and error impact due to inserted LCs. At the same time, the 
nets with terminal nodes operating at different voltages implic-
itly become fewer, which can alleviate the common layout 
issues coming with dual-VDD or multiple-VDD design style. As 
a fraction of total gate count, less than 4% LCs are inserted 
across all benchmarks considered. 

 Minor modification on clock network: The overall methodol-
ogy using CSS for MBU-aware soft error tolerance is formu-
lated as a piecewise linear programming problem and its opti-
mal solution can be found by any mixed integer linear pro-
gramming solver. CSS itself involves only modifications of 
clock tree synthesis during the physical design stage. In other 
words, the difference between original and optimized designs 
lies in their clock trees, whereas the combinational network 
remains identical. Hence, our CSS-based approach, when ap-
plied as a post-processing procedure, can provide additive SER 
reduction without destroying existing SER improvements. On 
average, an extra 30-40% reduction in SER can be achieved 
with a drastic decline of MBU effects, while the clock network 
suffers a minor degree of modification ranging from 1% up to 
7%. 

IV. SUMMARY AND FUTURE WORK 

In this thesis, we present three SER reduction approaches 
based on RAR, SVS, and CSS. All of them rely on the symbolic 
SER analyzer which provides a unified treatment of three masking 
mechanisms. However, each of them targets a different part of 
logic circuits, leading to orthogonal relationships and compound-
ing results. Various experiments on a set of standard benchmarks 
reveal the effectiveness of our framework and demonstrate that 
the normalized joint cost per unit of SER reduction is relatively 
low when compared to other state-of-the-art techniques. 

As a future direction, we plan to consider the impact of process 
variability on clock skew scheduling for soft error tolerance. In 
the presence of process variations where the analyses of masking 
impact and error impact are no longer fixed values but distribu-
tions (Gaussian or non-Gaussian), probability density functions 
are required to be modeled and the problem will be formulated in 
a more complex mathematical form. 
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Abstract 

Soft errors have been a critical reliability concern in nano-
scale integrated circuits, especially in sequential circuits where a 
latched error can be propagated for multiple clock cycles and 
affect more than one output, more than once. This paper presents 
an analytical methodology for enhancing the soft error tolerance 
of sequential circuits. By using clock skew scheduling, we propose 
to minimize the probability of unwanted transient pulses being 
latched and also prevent latched errors from propagating through 
sequential circuits repeatedly. The overall methodology is formu-
lated as a piecewise linear programming problem whose optimal 
solution can be found by existing mixed integer linear program-
ming solvers. Experiments reveal that 30-40% reduction in the 
soft error rate for a wide range of benchmarks can be achieved.  

1. Introduction 
Soft errors, process variations, and device aging phenomena 

are currently some of the main factors in reliability degradation. 
With the continuous scaling of transistor dimensions, soft errors, 
which cause unpredictable transient circuit failure, are becoming 
increasingly dominant for functional reliability concerns [1]. A 
radiation-induced charged particle passing through a microelec-
tronic device ionizes the material along its path and generates free 
pairs of electrons and holes. The free (ionized) carriers deposited 
around the particle track can be attracted or repelled by an internal 
electric field of the device and lead to an electrical pulse, referred 
to as a single-event transient (SET) or a glitch. A single-event 
upset (SEU) or a soft error refers to transient bit corruption that 
occurs when a single-event transient is large enough to flip the 
state of a storage node. The rate at which soft errors occur is 
called soft error rate (SER). 

During SEU propagation in logic, three mechanisms used to 
provide logic circuits with effective protection against soft errors: 
(i) logical masking, (ii) electrical masking, and (iii) latch-
ing-window (timing) masking [2]. However, as technology scaling 
proceeds aggressively (e.g., decreasing node capacitance and 
increasing clock frequency), the impact of these three masking 
mechanisms is lessened. On the other hand, error detecting and 
correcting codes have been mature enough to successfully miti-
gate soft error susceptibility of memory elements. A recent study 
[3] showed that soft errors significantly degrade the robustness of 
logic circuits, while the nominal SER of SRAMs tends to be 
nearly constant from 130nm to 65nm technologies. As a result, 
unless explicitly dealt with, the SER of logic will become as great 
of a concern and is expected to be comparable to that of unpro-
tected memories by 2011 [4]. 

When the combinational block of a sequential circuit can 
propagate SETs freely, the sequential circuit may become very 
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sensitive to such events. This is because, once latched, soft errors 
can circulate through the circuit in subsequent clock cycles and 
affect more than one output, more than once. The untraceable 
propagation of soft errors greatly affects the circuit operation for 
consecutive cycles and thus, necessitates design methods for soft 
error tolerance of sequential circuits, in a similar manner to classic 
design constraints such as performance and power consumption. 

In this paper, we present an analytical methodology for soft 
error tolerance of sequential circuits. Our work proposes to adjust 
the arrival times of clock signals to memory elements (latches or 
flip-flops) such that the probability of capturing unwanted tran-
sient pulses is significantly decreased. The technique, called clock 
skew scheduling (CSS), is formulated in our methodology as a 
piecewise linear programming (PLP) problem, and its optimal 
solution can be found by existing mixed integer linear program-
ming (MILP) solvers. The proposed framework involves only 
minor modifications of the clock tree synthesis step and does not 
touch the combinational logic of sequential circuits. Hence, this 
CSS-based approach can also act as a post-processing procedure 
for additional SER improvement on top of techniques targeting 
only combinational logic, which typically change the circuit 
timing and topology (e.g., resizing [5] and rewiring [6]). 

The rest of this paper is organized as follows: Section 2 gives 
an overview of related work and outlines the contribution of our 
paper. In Section 3, we illustrate an example motivating clock 
skew scheduling for soft error tolerance. Section 4 introduces 
several metrics associated with SER analysis. In Section 5, our 
proposed framework, using clock skew scheduling and based on a 
piecewise linear programming formulation, is presented. Section 6 
reports the experimental results for a set of standard benchmarks. 
Finally, we conclude our work in Section 7. 

2. Related Work and Paper Contribution 
2.1. Previous Work on Soft Error Tolerance 

Intensive research has been done in the area of soft error tol-
erance for combinational circuits. To reduce the overall cost for 
realizing soft error tolerance, gate resizing [5] and partial duplica-
tion [7] strategies target only nodes with high error susceptibility 
and ignore nodes with low error susceptibility. A potentially large 
overhead in area and power is still needed for a higher degree of 
soft error tolerance. In [8] and [9], voltage scaling/assignment is 
used to enhance the circuit robustness to soft errors. These 
methods trade power penalty for SER reduction by applying 
higher supply voltage(s) to a certain portion of gates. Approaches 
based on rewiring or resynthesis [6][10] can achieve relatively 
smaller SER improvement while incurring little overhead. 

Sequential circuits, as opposed to combinational circuits, have 
received less attention in terms of soft error tolerance. Since a 
sequential circuit has a feedback loop leading back to state inputs 
of the circuit, it is possible that errors latched at state lines propa-
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gate through the circuit for multiple clock cycles. The intuitive 
way to address this problem is by replacing sequential elements 
with hardened latches or flop-flips that are less sensitive to soft 
errors, as developed in [11]. A flip-flop sizing scheme [12] 
increases the probability of timing masking by lengthening the 
latching window intervals of vulnerable flip-flops. Nevertheless, 
this scheme does not take into account logical masking and 
electrical masking, which are also important factors in determin-
ing circuit SER. In [13], gates are locally relocated such that, for 
each gate, delays to different outputs are balanced as much as 
possible. In effect, this strategy minimizes the probability that an 
error originating at a gate is registered by any of the flip-flops. 
The error, however, may reach more than one output simultane-
ously due to balanced path delays and be registered by multiple 
flip-flops, resulting in so-called multiple-bit upsets (MBUs). For 
sequential circuits, MBUs imply that there will be multiple errors 
propagating in subsequent cycles, further degrading circuit 
reliability. This is a crucial reliability concern in sequential 
circuits that has not been addressed so far. 

2.2. Paper Contribution 
This paper presents a SER mitigation framework where the 

MBU impact is explicitly considered and alleviated. To the best of 
our knowledge, this is the first work addressing MBU-aware soft 
error tolerance in sequential circuits. On one hand, for an original 
error (SEU) in the clock cycle when a particle strikes, we maxi-
mize the probability of timing masking via clock skew scheduling 
(CSS). On the other hand, during clock cycles following the 
particle hit, we avoid multiple errors (MBU) from propagating 
repeatedly by exploring the effects of (i) implication-based 
masking and (ii) mutually-exclusive propagation, as explained 
later in Section 3.1 and Section 3.2, respectively. In this paper, we 
take advantage of intentionally induced skews to increase the 
probability of timing masking via CSS, while accounting for the 
MBU impact to further enhance soft error robustness. The contri-
butions and advantages of our framework are twofold: 

 Optimality/Complexity: The overall methodology for 
MBU-aware soft error tolerance is formulated as a piecewise 
linear programming (PLP) problem and its optimal solution 
can be found by existing mixed integer linear programming 
solvers. The worst-case problem size of our PLP formulation is 
O(n2) where n is the number of flip-flops in a sequential cir-
cuit. Therefore, the runtime spent on solving the PLP-based 
SER mitigation problem is quite reasonable. 

 Compounding results: CSS itself involves only modifications 
of clock tree synthesis during the physical design stage. In 
other words, the difference between original and optimized 
designs lies in their clock trees, whereas the combinational 
network remains identical. Hence, our CSS-based framework, 
when applied as a post-processing procedure, can provide ad-
ditive SER reduction without destroying existing SER im-
provements. On average, an extra 30-40% reduction in SER 
can be achieved with a drastic decline of MBU effects. 

3. A Motivating Example 
To motivate the use of clock skew scheduling for soft error 

tolerance, we use benchmark s27 (see Figure 1) from the 
ISCAS’89 suite, where flip-flops (FFs) are posi-
tive-edge-triggered. Without loss of generality, we assume that the 

delay of each gate is 1 (unit delay model) and wires do not 
contribute to the circuit delay. The assumption can be relaxed for 
a non-uniform delay model, with consideration of wire loads. In 
this example, we focus on a SEU which occurs at gate G8 and may 
be captured by flip-flops FF2 and/or FF3. 

Definition 1 (error-latching window): The error-latching window 
[13] of a flip-flop is a time interval, [t–tsu, t+th], where t is the 
moment when a clock edge happens, tsu and th are the setup and 
hold times of the flip-flop. An error must be present during this 
interval to be latched; otherwise, it is filtered by latching-window 
(timing) masking. The error-latching window associated with a 
flip-flop can be backward propagated to internal gates (according 
to respective propagation delays) to determine when an error has 
to occur to be latched by that flip-flop. 

Under unit delay model, the delays from G8 to FF2 and to FF3 
are 0 and 1, respectively. Our goal is to overlap the error-latching 
windows of FF2 and FF3 at G8 by adjusting the arrival times of 
clock signals to FF2 and/or FF3, which in effect decreases the 
probability that an error at G8 is latched with increased impact of 
timing masking. The idea of overlapping error-latching windows, 
first proposed in [13], is based on the fact that the probability of 
timing masking is inversely proportional to the sum of sizes of 
disjointed error-latching windows. For example, in Figure 2(a), 
there are two separate error-latching windows at G8 (one at time 
t-1 and the other at t) before skewing any flip-flop. If we lengthen 
the arrival time of clock signals to FF3 by 1 and its new er-
ror-latching window is shown as the upper right diagram in Figure 
2(b), there will be only one joint error-latching window at G8 (at 
time t) due to complete overlapping. This implies that, after 
skewing FF3, only errors occurring at G8 during the error-latching 
window at time t will be latched, while errors occurring during the 
already-non-existing window at time t-1 will be filtered by timing 
masking, leading to a significant reduction in SER. Since the 
overlapped error-latching window (at time t) can be backward 
propagated to primary inputs, the positive impact on circuit SER 
is also valid for those gates in G8’s fanin cone. 

However, in the case where FF3 has been skewed, MBUs may 
become more frequent because an error occurring at G8 during the 
joint error-latching window at time t will be latched by both FF2 
and FF3 simultaneously. Instead of using all flip-flops in a 
sequential circuit as candidates for clock skew scheduling, we 
carefully pick pairs of flip-flops that are beneficial for MBU 
elimination. In the sequel, we demonstrate how to identify pairs of 
flip-flops that are capable of alleviating MBU effects (during 
clock cycles subsequent to particle hits) and suitable to be man-
aged by CSS for MBU-aware soft error tolerance. 

Figure 1. Example circuit s27 



3.1. Implication-Based Masking 
We consider the following example to illustrate the concept of 

implication-based masking required for our methodology. The 
function of primary output O of circuit s27 is: 

O = (a + f ’ + g)(c + d’ + e + g) (1) 

The complement of Boolean difference of O with respect to 
(w.r.t.) FF2’s present-state line f is: 

F = (∂O/∂f)’ = a + c’de’ + g (2) 
Equation (2) represents the Boolean expression of logical 

masking patterns for errors propagated from f to O. 

Similarly, the complement of Boolean difference of O w.r.t. 
FF3’s present-state line g is: 

G = (∂O/∂g)’ = (a + f ’)(c + d’ + e) (3) 

Note that F is a function of g and G is a function of f, where f 
and g are present-state lines of FF2 and FF3 and may be corrupt 
due to the presumed SEU at G8. To remove f and g while keeping 
the logical masking patterns, we apply universal quantification. 

The universal quantification of F w.r.t. g is: 
edcaFFF ggg ′′+=⋅=∀ == 01

 (4) 

Equation (4) describes the patterns for logical masking of er-
rors from f to O, for all possible values of g (0 and 1). Since we do 
not know whether g is corrupt, applying universal quantification 
makes sense and will correctly reflect logical masking of errors 
from f to O, irrespective of g. 

Similarly, the universal quantification of G w.r.t. f is: 
)(01 edcaGGG fff +′+⋅=⋅=∀ ==

 (5) 

Up to now, (4) and (5), which no longer include f or g, have 
been functions of inputs a, c, d, and e. In addition, one can find 
that (5) is a subset of (4); that is to say, with respect to O, the 
logical masking of an error on g implies the logical masking of an 
error on f. More precisely in this case, both errors on f and g will 
be masked when (5) is satisfied. 

Definition 2 (implication-based masking): A pair of flip-flops X 
and Y is called an implication-based masking (IM) pair if, with 
respect to all outputs and flip-flops: 
(i) the set of logical masking patterns for errors propagated from 

X (denoted by LM(X)) contains the one for errors from Y (de-
noted by LM(Y)), i.e., LM(X) ⊇ LM(Y), or 

(ii) the set of logical masking patterns for errors propagated from 
Y (LM(Y)) contains the one for errors from X (LM(X)), i.e., 
LM(Y) ⊇ LM(X). 

Based on Definition 2, the first category of candidates for CSS 
can be identified. In circuit s27, as shown in Figure 1, (FF2 and 
FF3) is a pair of candidates falling into this category. By overlap-
ping the error-latching windows of these two flip-flops via CSS 
(see Figure 2(b)), not only can SER be reduced, but also 
CSS-induced MBUs will be eliminated by implication with a 
certain probability. This will be demonstrated in Section 6. 

3.2. Mutually-Exclusive Propagation 
The second type of candidate flip-flops, mutually-exclusive 

propagation pair, in s27 can be identified by a single side-input 

assignment, where a side input is a wire along which no error is 
propagated. Again, we focus on a SEU which occurs at G8 and 
may be captured by FF2 and/or FF3. 

To propagate errors from FF3’s present-state line g to R, G10 
needs a non-controlling value “0” on its side input G1 G10. As 
seen in Figure 1, the value assignment at the output of G1 is a 
controlling value for G2, at which errors from FF2’s present-state 
line f are thus logically masked. Therefore, with respect to R, the 
propagation of an error on g implies that an error propagated from 
f is logically masked. In other words, errors on f and g cannot be 
observable at R simultaneously. 

Definition 3 (mutually-exclusive propagation): A pair of flip-flops 
X and Y is called a mutually-exclusive propagation (MEP) pair if, 
with respect to all outputs and flip-flops, the set of logical mask-
ing patterns for errors propagated from X (LM(X)) contains the 
complement of the one for errors from Y (LM(Y)’), i.e., LM(X) ⊇ 
LM(Y)’. Intuitively, the sets of patterns for propagating errors 
from X and Y (LM(X)’ and LM(Y)’) are disjoint. 

Based on Definition 3, the second category of candidates for 
CSS can be identified. Similar to IM pairs, we can overlap the 
error-latching windows of two flip-flops falling into this category 
(e.g., FF2 and FF3 in s27) to achieve MBU-aware soft error 
tolerance because, due to the property of mutually-exclusive 
propagation, at least one of the two errors propagated from this 
pair of flip-flops will be logically masked before reaching a 
primary output or a flip-flop. The mutually-exclusive property 
guarantees that the MBU impact after applying CSS is at most 
equivalent to the case of not applying CSS, whereas circuit SER 
can be significantly reduced as a result of increased timing 
masking. It is also probable that two errors from a MEP pair are 
both masked and consequently less MBU impact is expected. 

Any two flip-flops are regarded as candidates and will be 

Figure 2. Overlapping of error-latching windows 

(a) Before skewing: two separate error-latching windows at G8 

(b) After skewing: one joint error-latching window at G8 



beneficial for SER reduction as long as they are either IM or MEP 
pairs. These two properties are the major motivation for our 
framework aiming at soft error tolerance, and both address the 
MBU issue by mitigating the occurrence of multiple-bit upsets. 
More precisely, as mentioned earlier, overlapping the er-
ror-latching windows of flip-flops increases the probability of 
timing masking and in turn decreases the soft error rate of a circuit. 
Furthermore, overlapping the error-latching windows of a candi-
date pair of flip-flops, which meet the IBM or MEP condition, can 
not only reduce circuit SER but also alleviate potential MBU 
effects. Hence, for our objective of MBU-aware soft error toler-
ance, we check all possible pairs of flip-flops and extract as 
candidates for the proposed CSS-based framework those satisfy-
ing the IM or MEP property. 

4. Analysis of Soft Error Susceptibility 
Before presenting the overall methodology for MBU-aware 

soft error tolerance, we briefly introduce two metrics associated 
with SER analysis in this section. The metrics, mean error impact 
(MEI) and mean error susceptibility (MES), are used to evaluate 
the circuit susceptibility to soft errors. Relying on a symbolic 
framework [14][15] which provides unified treatment of three 
masking mechanisms through decision diagrams, MEI and MES 
are calculated and thereafter, the soft error rate (SER) of a sequen-
tial circuit can be derived accurately and efficiently. 

4.1. Mean Error Impact (MEI) of Internal Gates 
The MEI value of a gate quantifies the probability that at least 

one primary output is affected by an error originating at this gate. 
The larger MEI a gate has, the higher the probability that an error 
occurring at this gate will be latched. This implies that those gates 
with higher MEI make the circuit more vulnerable to soft errors. 
Please refer to [14][15] for more details about MEI. 

4.2. Mean Error Susceptibility (MES) of Primary Outputs 
For each primary output Fj, initial duration d and initial am-

plitude a, mean error susceptibility (MES) [14] is defined as the 
probability of output Fj failing due to errors at internal gates. In 
[14][15], the authors compute MES of each primary output in the 
circuit for a discrete set of pairs (d, a) of initial glitch durations 
and amplitudes. Then, the probability of output Fj failing (output 
failure probability) due to errors with various durations and 
amplitudes is calculated as a weighted sum of the discrete set of 
MES values. Finally, the soft error rate (SER) of output Fj can be 
derived based on the output failure probability. 

5. Clock Skew Scheduling Based on  
Piecewise Linear Programming 
The motivating example in Section 3 is a special case of CSS 

for MBU-aware soft error tolerance. A fundamental assumption in 
the example is that we can completely overlap the error-latching 
windows of a given pair of flip-flops (FFs) which have been 
recognized as candidates for CSS. This assumption is not realistic 
because it is not always possible to completely overlap er-
ror-latching windows without incurring any timing violations, i.e., 
setup time violations owing to long paths or hold time violations 
owing to short paths. Moreover, adjusting the skew between two 
FFs may also change skews between affected FFs and unaffected 
FFs. For a large sequential circuit with hundreds of FFs, optimal 
skew scheduling, shown to be a signomial problem [16], is 

difficult to be determined algorithmically. To address this problem, 
we develop an analytical method which can apply CSS with a 
global view on all extracted candidate FFs while suppressing 
timing violations. A generalized problem formulation, based on 
piecewise linear programming (PLP), is presented in the sequel. 

5.1. Problem Formulation 
Given a non-skewed sequential circuit (i.e., skew(FFi, FFj) = 0 

for all i and j) and all possible pairs of flip-flops as candidates 
beneficial for MBU elimination, our objective is to achieve the 
highest level of MBU-aware soft error tolerance by maximizing 
the overlap between error-latching windows of each flip-flop pair 
via clock skew scheduling. 

Definition 4 (intersecting gate): The intersecting gate of two 
flip-flops FFi and FFj is the root gate for the intersection of FFi’s 
and FFj’s fanin cones. In case of more than one such gate, the one 
with the largest MEI value is selected. 

Definition 5 (skew): Given two flip-flops FFi and FFj for which 
the arrival times to clock pins are ci and cj respectively, the skew 
between FFi and FFj, denoted by skew(FFi, FFj), is (ci – cj). 

In Figure 3, flip-flops FFi and FFj are a pair of candidates 
whose intersecting gate is gate Gij. The propagation delays from 
Gij to FFi and to FFj are denoted by di and dj respectively. Let the 
amounts of adjustments in the arrival times of clock signals to FFi 
and FFj be si and sj, where si and sj can be positive or negative. To 
completely overlap the error-latching windows of FFi and FFj at 
Gij, we have to determine si and sj such that skew(FFi, FFj) = (si – 
sj) = (di – dj). But complete overlapping may need significantly 
large |si| and/or |sj| and thereby, may induce timing violations, 
which must be avoided in the resulting design. To suppress timing 
violations, we set up the first two constraints as follows. 

For each possible pair of flip-flops FFx (skewed by sx) and FFy 
(skewed by sy) between which there exist combinational paths 
from FFx to FFy, (6) is to prevent setup time violations and (7), 
hold time violations: 

sx + tcq + Axy + tsu < sy + Tclk (6) 
sx + tcq + axy > sy + th (7) 

where Tclk is the clock period of the sequential circuit, tcq, tsu and th 
are respectively the clock-to-output delay, setup and hold times of 
flip-flops, and Axy and axy are the maximum and minimum delays 

Figure 3. Generalized clock skew scheduling of a candidate pair 
of flip-flops (FFi and FFj) for MBU-aware soft error tolerance



of combinational paths from FFx to FFy, which can be obtained by 
performing static timing analysis. 

Let wij denote the reduction in SER of the given circuit ob-
tained by completely overlapping the error-latching windows of 
FFi and FFj at Gij. The reason for selecting an intersecting gate 
with the largest MEI is that, by doing so, it is very likely to obtain 
the largest wij for CSS. 

The theoretical optimal SER reduction is: 

( )∑ ∈Candidates),(, ji FFFFji ijw  (8) 

Since the optimum (8) may be unachievable due to constraints 
(6) and (7), we use another variable, fij (0  ≦ fij  ≦ wij), to denote 
the actual reduction in SER resulting from the overlapping 
(complete or partial) of FFi’s and FFj’s error-latching windows. 
Figure 4 shows fij as a function of sij (= skew(FFi, FFj) = si – sj). 
The rationale behind is that, once overlapped, fij is linearly 
proportional to the size of the overlap between FFi’s and FFj’s 
error-latching windows, and fij = wij when completely overlapped 
at sij = (di – dj). 

From Figure 4, one can note that the relationship of fij versus sij 
is neither convex, nor concave. Instead, the formulation becomes 
piecewise linear if fij(sij) is broken into four pieces: sij = (di – dj) – 
(tsu + th), sij = (di – dj), and sij = (di – dj) + (tsu + th). By introducing 
four new binary variables pij,1, pij,2, pij,3, and pij,4 such that 

pij,1 + pij,2 + pij,3 + pij,4 = 1 (9) 
and four new floating variables rij,1, rij,2, rij,3, and rij,4 where 

0  ≦ rij,k < pij,k for k = 1, 2, 3, and 4, (10) 
we can re-express sij as: 
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where LB and UB are the lower and upper bounds on sij. 

Similarly, fij can be rewritten as: 
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Geometrically, as shown in Figure 4, pij,k = 1 means sij is 
within the kth piece of fij(sij) and rij,k indicates the ratio of sij within 
the kth piece. For a valid solution, there must be only one among 
the four binary variables (pij,k) equal to 1 and only one among the 
four floating variables (rij,k) greater than or equal to 0. All of the 
other variables are 0. 

Lastly, our proposed PLP-based SER mitigation framework, 
for MBU-aware soft error tolerance, is formulated as: 

Maximize ( )∑ ∈Candidates),(, ji FFFFji ijf  (13) 

Subject to (6), (7), (9), (10), and (11) 

where (6) and (7) ensure no timing violation in the resulting 
circuit, and (9), (10), and (11) are used to transform the original 
formulation to a piecewise linear representation. 

The optimal solution to (13) can be found by existing mixed 
integer linear programming (MILP) solvers. The worst-case 
problem size of our PLP formulation is O(n2) where n is the 
number of flip-flops in a circuit. This PLP-based methodology has 
been experimentally verified to be very efficient in runtime, of on 
the order of a minute for all benchmarks considered. 

6. Experimental Results 
In this section, we demonstrate various experiments of our 

proposed framework for MBU-aware soft error tolerance. The 
benchmark circuits are chosen from the ISCAS’89 suite. The 
technology used is 70nm, Predictive Technology Model (PTM). 
The setup (tsu) and hold (th) times of flip-flops are both assumed to 
be 10ps. The overall methodology is implemented in C++, where 
the piecewise linear programming formulation is solved by GNU 
Linear Programming Kit (GLPK) version 4.33 on a 3GHz Pen-
tium 4 workstation running Linux. 

Table 1 reports the experimental results for average MES im-
provement and SER reduction. For each benchmark in Table 1, we 
list the numbers of primary inputs, primary outputs and internal 
gates in column two, and the numbers of flip-flops, candidate 
pairs along with the corresponding percentage among all possible 
pairs in column three. For a circuit with n FFs, we check all 
possible (n*(n-1)/2) pairs and extract those satisfying the IM or 
MEP property as candidates for clock skew scheduling. The 
average MES values over all primary outputs before and after 
applying our PLP-based CSS are shown in columns five and six, 
for three different initial duration sizes (small: 60ps, medium: 
100ps, and large: 140ps). Columns seven and eight demonstrate 
the MES improvement and the overall SER reduction. The 
runtime spent on solving the PLP problem, which is not included 
in the table, is about 1 minute for circuits s1196 and s1238 and 
very few or even less than 1 second for all the others. 

For example, circuit s208 has 10 primary inputs, 1 primary 
output, 68 internal gates, and 8 flip-flops. Among 28 (= 8*7/2) 
pairs of FFs, 21 pairs (75%) can be identified as candidates for 
CSS. Based on (17), we formulate the CSS problem with these 21 
pairs and then find its optimal solution by using GLPK. The MES 
improvements for small (60ps), medium (100ps), and large (140ps) 

Figure 4. fij versus sij, with four pieces that are piecewise linear: 
sij = (di – dj) – (tsu + th), sij = (di – dj), and sij = (di – dj) + (tsu + th)



duration sizes are 15.9%, 35.7%, and 36.1%, respectively. When 
considering all possible sizes of glitches, the overall SER reduc-
tion is 29.2%. On average across all benchmarks, 35.8% SER 
reduction can be achieved. 

Table 1 also shows the corresponding amount of skews due to 
CSS. This is measured by normalized absolute adjustment in 
clock signal, which is defined as: 

clk

i
i

T

FF

⋅

Δ∑
FFs#

)(AT
 (14) 

where ΔAT(FFi) is the amount of adjustment in the arrival time of 
clock signal to FFi and Tclk is the clock period of the circuit. 

Normalized absolute adjustment (14) quantifies the cost im-
posed by CSS in terms of the degree of clock network modifica-
tion. Intuitively, the larger the value of normalized absolute 
adjustment, the more aggressive modification the clock network 
may suffer. As it can be seen in the last column of Table 1, on 
average 4.4% normalized absolute adjustment is needed by our 
CSS-based framework. Note that the adjustment does not neces-
sarily imply additional logic on the clock tree. For an H-tree 
structure, we can just unbalance wire loads during tree connec-
tion/construction to implement the skews between pairs of FFs. 
This is practically feasible, especially for those circuits which 
need significantly low adjustments in clock signals. For those 
circuits needing higher adjustments, wire sizing/rerouting and 
buffer sizing/relocation [17] are always the very first schemes for 
creating intentional skews. 

Figure 5 shows the mitigation of MBU effects during clock 
cycles subsequent to particle hits (SEUs). In addition to the SER 
reduction for the first clock cycle via CSS, the potential 
CSS-induced MBU effects during the following cycles can be 
significantly mitigated by using IM and MEP pairs of flip-flops as 
candidates for CSS. On average across all subsequent cycles 
(from the 2nd to the 7th) in Figure 5, the MBU effects of circuits 

s208 (see Figure 5(a)) and s298 (see Figure 5(b)) can be mitigated 
by 43% and 63%, respectively. 

7. Conclusion 
In this paper, we propose an analytical method for MBU-aware 

soft error tolerance of sequential circuits. The approach adjusts the 
arrival times of clock signals such that error-latching windows of 
flip-flops can be overlapped, which in effect increases the prob-
ability of timing masking and decreases the soft error rate of a 
sequential circuit. Moreover, two types of candidate pairs of 
flip-flops, beneficial for MBU elimination, are introduced. The 
overall methodology using clock skew scheduling is formulated as 
a piecewise linear programming problem and can be solved 
efficiently by GLPK. Experiments on a set of ISCAS’89 bench-
marks reveal the effectiveness of our framework. 
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Table 1. Average mean error susceptibility (MES) improvement 
and overall soft error rate (SER) reduction 

Figure 5. Mitigation of MBU effects during clock cycles subse-
quent to particle hits (SEUs) 

(a) s208 (b) s298 
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