Wireless Communication Systems @CS.NCTU

Lecture 7: Multi-User MIMO (MU-MIMO) Instructor: Kate Ching-Ju Lin (林靖茹)

Agenda

- Interference Nulling
- Zero-forcing Beamforming (802.11ac)
- Interference Alignment
- Network MIMO

Cross-Link Interference

- Problem:
 - Any two nearby links cannot transmit simultaneously on the same frequency
- Solution:
 - A transmitter with multiple antennas can <u>actively</u> cancel its interfering signals at nearby receiver(s)

Interference Nulling

- Signals cancel each other at Alice's receiver
- Signals don't cancel each other at Bob's receiver
 - Because channels are different
 - Bob's receiver can remove Alice's interference via ZF decoding

Agenda

- Interference Nulling
- Zero-forcing Beamforming (802.11ac)
- Interference Alignment
- Network MIMO

802.11ac

- From 802.11a/b/g, to 802.11n, to 802.11ac
 - AP can be more and more powerful → supporting multiple antennas
 - But, how about mobile devices? → usually lightweight and small size → limited number of antennas

802.11ac

- 802.11ac adopts multiuser MIMO (MU-MIMO)
 - Involve multiple clients in concurrent transmissions
 - Extract the multiplexing gain
 - Maximal number of clients (streams) = number of antennas at the AP
 - Only support downlink MU-MIMO now

Cross-Stream Interference

- Say the AP send x₁, x₂ and x₃ to client 1, 2 and 3, respectively
 - If the AP simply uses each antenna to send one stream,
 - Each client receives the combined signal of x_1 , x_2 and x_3
 - x₂ and x₃ are cross-stream interference for client 1

Channel Model

$$y_{1} = h_{11}x_{1} + (h_{12}x_{2} + h_{13}x_{3}) + n_{1}$$
$$y_{2} = h_{22}x_{2} + (h_{21}x_{1} + h_{23}x_{3}) + n_{2}$$
$$y_{3} = h_{33}x_{3} + (h_{31}x_{1} + h_{32}x_{2}) + n_{3}$$

How to Remove Cross-Stream Interference?

- Zero-Forcing Beamforming (ZFBF)
 - Also called zero-forcing precoding or null-steering
 - Linear precoder that maximizes the output SNR
- The AP uses its antennas to actively cancel the interfering streams at a particular client
 - In the previous example, the AP cancel x₂ and x₃ at client 1 cancel x₁ and x₃ at client 2 cancel x₁ and x₂ at client 3
 - Steer a beam toward to its intended receiver
- How to suppress all the interference using the limited number of antennas?

Zero-Forcing Beamforming (ZFBF)

- Use all the antennas to send every stream
- Each stream *i* is precoded using ZFBF weight vector $w_i = [w_{i1} w_{i2} \dots w_{iN}]$
- The precoded signal $w_{ij}x_i$ is sent by the *j*-th antenna
- The *j*-th antenna transmit the summation of all the precoded signal $(w_{1j}x_1 + w_{2j}x_2 + ... + w_{Nj}x_N)$

Zero-Forcing Beamforming (ZFBF)

SNR of ZFBF

• ZFBF is essentially equivalent to ZF, but just performed by the transmitter

• The achievable SNR is determined by the channel correlation among concurrent clients

MU-MIMO Bit-Rate Selection

MU-MIMO User Selection

Grouping different subsets of clients as concurrent receivers results in different sum-rates → <u>Need proper user selection</u>

MU-MIMO User Selection

Grouping different subsets of clients as concurrent receivers results in different sum-rates → <u>Need proper user selection</u>

- Exhaustive search:
 - Calculate the sum-rate for each of $\binom{N}{k}$ groups
 - Pick the one with the maximal sum-rate
- Greedy:
 - sequentially add a user producing the maximal rate after projecting on the subspace of the users that have been selected

MU-MIMO Power Allocation

 \bullet Achievable sum-rate for a set of user S

$$R = \max_{p_i} \sum_{i \in S} \log(1 + p_i |\mathbf{h}_i \mathbf{w}_i|^2)$$

subject to

$$\sum_{i \in \mathcal{S}} \|\mathbf{w}_i\|^2 p_i \le P_{\max}$$

Power allocated to user *i*

MU-MIMO Power Allocation

$$R = \max_{p_i} \sum_{i \in \mathcal{S}} \log(1 + p_i |\mathbf{h}_i \mathbf{w}_i|^2) \quad \text{s.t.} \quad \sum_{i \in \mathcal{S}} \|\mathbf{w}_i\|^2 p_i \le P_{\max}$$

• Optimal power allocation: Water filling

$$p_i = \left(\frac{\mu}{\|\mathbf{w}_i\|^2} - 1\right)^+,$$

where

$$(x)^{+} = \max\{x, 0\}$$

 μ is the water level satisfying $\sum_{i \in S} (\mu - \|\mathbf{w}_i\|^2)^{+} = P$

- [1] Yoo et.al. "On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming," IEEE JSAC, 24(3):528–541, March 2006.
- [2] Huang et.al., "User Selection for Multiuser MIMO Downlink With Zero-Forcing Beamforming," in IEEE TVT, vol. 62, no. 7, pp. 3084-3097, Sept. 2013.

Waterfilling Power Allocation

- Unequal power allocation
- Fairness is a concern

Agenda

- Interference Nulling
- Zero-forcing Beamforming (802.11ac)
- Interference Alignment
- Network MIMO

Interference Alignment

N-antenna node can only decode N signals

If I_1 and I_2 are aligned,

- \rightarrow appear as one interferer
- → 2-antenna receiver can decode the wanted signal x and the combined interference (I1+I2)
- \rightarrow No need to decode I₁ and I₂ since the Rx does not care

• A multi-antenna transmitter can rotate the received signal

 To rotate received signal y to y' = Ry, the transmitter precodes the transmitted signal by multiplying it with the rotation matrix R

Rotate Signal (2x2 Example)

- Say an interfering transmitter wants to align its signal at the interfered receiver along the direction (u,v)
- The interferer precodes its signal x with a weight vector (w_1, w_2)

Rotate Signal (2x2 Example)

- Find (w_1, w_2) such that
 - $(w_1h_{11}+w_2h_{12}, w_1h_{21}+w_2h_{22}) // (u, v)$

(1)
$$\frac{w_1h_{11} + w_2h_{12}}{w_1h_{21} + w_2h_{22}} = \frac{u}{v}$$
 Alignment

(2)
$$\sqrt{w_1^2 + w_2^2} = 1$$

Power constraint

$$\begin{array}{c} h_{11} & (h_{11}+h_{12}, h_{21}+h_{22}) \\ w_{1}x - h_{12} & h_{21} \\ w_{2}x - h_{22} & h_{22} \\ \end{array} \\ y_{2} = (w_{1}h_{21}+w_{2}h_{22})x \end{array}$$
 (U, v)

Interference Alignment

N-antenna node carí only decode N signals

How to align interfering signals?

- \rightarrow Find the direction of any interference (e.g., I₁)
- → All the remaining interferers (e.g., I₁ and I₂) rotate their signals to that direction

Agenda

- Interference Nulling
- Zero-forcing Beamforming (802.11ac)
- Interference Alignment
- Network MIMO

Network MIMO

- Also known as virtual MIMO, cooperative MIMO, distributed MIMO
- Why we need network MIMO?
 - Maximal number of concurrent packets is limited by the number of antennas per AP
 - It is hard to equip with a large number of antennas in a single AP
- How to build a network MIMO node?

Network MIMO

- Combine multiple APs as a giant virtual AP
- Distributed antennas are connected via backhual wired network
- Process signals by one or multiple backend servers

Open Issues of Network MIMO

- Scalability
- Latency
- Synchronization

Scalability

- Forwarding raw complex signals through the Ethernet requires an extremely large backhual bandwidth
 - Ethernet capacity might now become a bottleneck
- Complexity of precoding/decoding a large scale of streams is fairly high
 - A single server can only support a limited number of concurrent packets
 - Software-based precoding/decoding at the servers is less efficient than hardware-based processing at APs

Latency

- Servers need to collect the received signals from distributed antennas
- The latency between antennas and servers might be longer than symbol duration
 - For example, the symbol duration of 802.11n is only 4 microseconds (us)
- A packet might not be able to be acknowledged immediately after data transmission
 - The MAC protocol might need to be re-designed

Synchronization

- MIMO transmissions require all the antennas to be tightly synchronized
 - Otherwise, a small frequency offset could destroy all the concurrent packets
- Potential Solutions
 - Connect all the APs to an external clock → scalability would be an issue
 - Each AP learn the frequency offset based on a reference clock and calibrate the offset
 hard to achieve a granularity acceptable for network MIMO

Wireless Communication Systems @CS.NCTU

Lecture 7: Multi-User MIMO (MU-MIMO) Interference Alignment and Cancellation (SIGCOMM'09) Lecturer: Kate Ching-Ju Lin (林靖茹)

Naïve Cooperative MIMO

- Say we combine two 2-antnena APs as a 4– antenna virtual AP
- Naïve solution:
 - Connect the two APs to a server via Ethernet
 - Each physical AP sends every received raw signal (complex values) to the server over Ethernet

Naïve Cooperative MIMO

Impractical overhead:

For example, a 3 or 4-antenna system needs 10's of Gb/s

- Naïve solution:
 - Connect the two APs to a server via Ethernet
 - Each physical AP sends every received raw signal (complex values) to the server over Ethernet

How to Minimize Ethernet Overhead?

- High-level idea:
 - 1. Decode some packets in certain AP
 - 2. Forward the decoded packets through the Ethernet to other APs
 - 3. Other APs decode the remaining packets
 - 4. Repeat 1-3 until all packets are recovered

How to Minimize Ethernet Overhead?

- Advantage:
 - The size of data packets is much smaller than the size of raw samples → minimize overhead
- Challenge:
 - In theory, an N-antenna AP cannot recover M concurrent transmissions if M>N
 - How can an N-antenna AP recover its packet from M concurrent transmissions (M>N)?
 Interference Alignment and Cancellation

Interference Alignment and Cancellation

- Align p_3 with p_2 at AP1
- AP1 broadcasts p_1 on Ethernet
- AP2 subtracts/cancels $p_1 \rightarrow$ decodes p_2 , p_3

Interference Alignment and Cancellation

Only forward 1 data packet through the Ethernet!

How to Align?

1. Learn the direction we need to align

- Client 2 aligns p_3 along (h_{21}, h_{22}) at AP1

How to Align?

- 2. Precode p_3 by (w_1, w_2)
- 3. AP2 receives p_3 along the direction $(w_1h_{31}+w_2h_{41}, w_1h_{32}+w_2h_{42})$

How to Align?

4. Since AP1 tries to decode p_1 , we align the interference p_3 along the direction of p_2 \rightarrow Let $(w_1h_{31}+w_2h_{41})/(w_1h_{32}+w_2h_{42})=h_{21}/h_{22}$

> Infinite number of solution? No! **power constraint** $w_1^2+w_2^2=P_{max}$

How to Remove Interference?

- For example, how can AP2 remove the interference from p₁?
- Cannot just subtract the bits of p_1 from the received packet
 - Should subtract interference signals as received by AP2
- How? \rightarrow Similar to SIC
 - AP2 re-modulates p₁'s bits
 - AP2 estimate the channel from client 1 to AP2 and apply the learned channel on the remodulated signals of p1
 - Subtract it from the received signal y

How to Generalize to M-Antenna MIMO?

<u>Theorem</u>

In a M- antenna MIMO system, IAC delivers

- 2M concurrent packets on uplink
- max{2M-2, 3M/2} concurrent packets on downlink

See the paper for the details!